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ABSTRACT
Motivated by the recent successes of deep generative models used
for collaborative filtering, we propose a novel framework of VAE
for collaborative filtering using multiple experts and stochastic ex-
pert selection, which allows the model to learn a richer and more
complex latent representation of user preferences. In our method,
individual experts are sampled stochastically at each user-item
interaction which can effectively utilize the variability among mul-
tiple experts. While we propose this framework in the context of
collaborative filtering, the proposed stochastic expert technique
can be used to enhance VAEs in general beyond the application
of collaborative filtering. Hence, this novel technique can be of
independent interest. We comprehensively evaluate our proposed
method, Stochastic-Expert Variational Autoencoder (SE-VAE) on nu-
merical experiments on the real-world benchmark datasets from
MovieLens and Netflix and show that it consistently outperforms
the existing state-of-the-art methods across all metrics. Our pro-
posed stochastic expert framework is generic and adaptable to any
VAE architecture. The experimental results show that the adapta-
tions to various architectures provided performance gains over the
existing methods.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Latent variable models; Neural networks; • Informa-
tion systems→ Recommender systems.
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1 INTRODUCTION
Recommender systems are some of the most widely applied human-
AI interactions today, one of the most active application domains
where machine learning techniques are used. In essence, the recom-
mender systems cater useful information and contents of potential
interests to users without the users having to search for suitable
contents. The (offline) recommendation problem1 can be formalized
as a matrix completion problem where user-item interactions (e.g.,
ratings, clicks, purchases) are recorded in a matrix but there are
missing entries for which interactions have been observed. Hence,
the objective of the matrix completion problem is to accurately
predict missing entries of the matrix based on the observed values.

One of the key characteristics that an effective recommender
systems should have is flexibility and expressiveness of the model to
capture complex user preferences and interests. Collaborative filter-
ing methods [19, 22] are some of the mostly widely used techniques.
Due to the simplicity and tractability, latent variable models using
matrix factorization [1, 3, 6, 16] have been a prevalent approach. Ex-
tending to more general function class, there has been an increasing
body of literature proposing the adaptation of deep neural networks
(DNN) to collaborative filtering in order to exploit their expressive
power to account for non-linear and potentially more complex user-
item preferences. Variational autoencoders (VAE) [10] have been
proposed as a non-linear extension of classical latent variable mod-
els. The method proposed in [14] and its variants [9, 14, 20, 24, 25]
using VAEs have been shown to significantly outperform the clas-
sical latent variable models based on matrix factorization. To our
knowledge, VAE-based methods are currently the state-of-the-art
in terms of the predictive performances in collaborative filtering.

However, the question of whether these methods are able to
effectively learn richer and complex latent representation of user
preferences still remains. The common issue that arises in VAEs
for collaborative filtering is that the prior (and as a result also the
posterior) distributions may be too simple and restrictive to learn
potentially rich and complex latent representation of user prefer-
ences. There has been an effort to address this issue by allowing
more flexible prior distributions. [9] proposed a VAE with a mix-
ture distribution [23] (also knwon as mixture-of-experts) adapted to
collaborative filtering. However, mixture procedure over multiple
experts may not be able to fully exploit the variability across the
multiple experts, hence not able to provide sufficient performance
gains despite the potential expressive power given by the multiple
experts (see more discussions in Section 2.4).

1Here we differentiate the offline recommendation problem from the online recom-
mendation problem. The offline setting is where the historical batch data is available
for learners, whereas in the online setting such data arrives sequentially.
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To this end, we propose a novel VAE model for collaborative fil-
tering, which we call the Stochastic-Expert Variational Autoencoder
or SE-VAE for short. As the naming suggests, our model considers a
set of multiple experts, where each expert is associated with its own
deep latent Gaussian model. What differentiates our method from
the existing methods using multiple experts is that, instead of utiliz-
ing the multiple experts as a mixture aggregation, we incorporate
stochasticity in expert selection. That is, generating each user-item
interaction sample, we randomly select an expert among the expert
pool we maintain. This allows the model to incorporate diversity
and flexibility in user’s preferences, fully utilizing the variability
created by multiple experts. We summarize the main contributions
of our work as follows:

• We propose a novel framework of VAE for collaborative fil-
tering using multiple experts and stochastic expert selection,
which allows the model to learn richer and complex latent
representation of user preferences.

• While we propose this framework in the context of collabo-
rative filtering, the proposed stochastic expert technique can
be used to enhance VAEs in general beyond the application
of collaborative filtering. Hence, this novel technique can be
of independent interest.

• We comprehensively evaluate our method SE-VAE on numer-
ical experiments and show that it consistently outperforms
the existing state-of-the-art methods across all metrics.

• Our proposed stochastic expert framework is generic and
adaptable to any VAE architecture. The experimental results
in Section 5 show that the adaptations to various architec-
tures provided performance gains over the existing methods
(see Table 2).

2 PRELIMINARIES
2.1 Problem Formulation
We are interested in the problem setting where there exists a user-
item interaction history from which we aim to model user pref-
erences over items. In particular, we consider a set of U users
and a set of I items, where we use u ∈ {1, ...,U } to index users
and i ∈ {1, ..., I } to index items. We consider the click2 matrix
X = [x1; x2; . . . ; xU ]⊤ ∈ NU×I given by the user-item interactions.
Its row vector xu = [xu1, ...,xuI ]

⊤ ∈ NI for u ∈ {1, ...,U } denotes
sample click counts over items for useru. We denote Nu as the total
number of clicks from user u, i.e., Nu =

∑I
i=1 xui .

2.2 Related Work
Matrix factorization [12] has been a popular technique to solve the
aforementioned problem in Section 2.1 [1, 3, 6, 16], factorizing the
matrix of ratings into two classes of latent feature for user and items
and, moreover, predicting missing or future rating via product of
user and item factors. However, these matrix factorization based
methods depend on the linearity assumption of the user-item inter-
action and cannot capture more complex, non-linear relationships
between users and items. [13] showed that incorporating non-linear

2Following the convention used in [14], we use the term “click” to represent any type
of item consumption by a user, including “watch", “purchase", or “listen"

features to a hidden linear factor model can effectively improve the
performances of the recommender systems.

With the expressive powers of the deep generative models, vari-
ational autoencoder (VAE) [10, 18] based methods have been pro-
posed for collaborative filtering [9, 14, 20, 24, 25]. [14] proposed a
VAE model which takes user-item scores as an input and learns a
compressed late representations. The latent factors are then used
to reconstruct the input scores and to compute the missing scores.
We defer the more detailed description of the method in [14] to
Section 2.3, serving as a building block for our proposed method.

2.3 Variational Autoencoder for Collaborative
Filtering

VAEs are a class of probabilistic generative models using neural
networks. VAEs are typically used to compress (encode) the input in-
formation into a multivariate latent distribution and to reconstruct
(decode) the input as accurately as possible. Utilizing VAEs for col-
laborative filtering allows non-linear probabilistic latent-variable
models, hence generalizing linear latent factor models, such as ma-
trix factorization. The generative process of the proposed model
in [14], Multi-VAE, follows similar procedure as the deep latent
Gaussian model in [18]. For each user u ∈ {1, ...,U }, a latent vari-
able zu ∈ RK is sampled from a prior distribution. This sampled
latent variable zu is then fed into a generative model f (·) to com-
pute the probability distribution of user’s clicks over the items. In
[14], a standard multivariate Gaussian distribution is used for the
prior:

zu ∼ N(0, IK ) ,

π (zu ) ∝ exp{ f (zu )} ,

where π (zu ) ∈ RI is a distribution over the I items for user u. Here,
f (·) can be any differentiable function, where a linear function
would reduce to classical matrix factorization. Therefore, this is a
strict extension of the matrix factorization based latent variable
models. In [14], a multilayer perceptron is used for f (·). Now, once
π (zu ) is obtained, sampling of clicks xu can be done. In particular,
a multinomial distribution is assumed for the click distribution:

xu ∼ Multi (Nu ,π (zu )) . (1)

Recall Nu is the total number of clicks by user u. xu is generated
using π (zu ) repeatedly over Nu trials. With this generative pro-
cess, the VAE framework is then applied where the objective is
to maximize the data likelihood P(X) =

∫
p(X|z)p(z)dz. Such an

optimization problem, however, is challenging since the marginal
likelihood of the data P(X) is intractable under the function pθ
parametrized by θ . Addressing this challenge with variation infer-
ence, a lower-bound for the log marginal likelihood of the data
is considered. Then, the objective becomes maximizing the lower-
bound called the evidence lower bound (ELBO).

logp(xu ,θ ) ≥ Eqϕ (zu |xu ) [logpθ (xu |zu )] − KL
(
qϕ (zu |xu )∥p(zu )

)
:= L(xu ;θ ,ϕ) .

Here, qϕ (zu | xu ) is the variational distribution whose optimized
function approximates the intractable posterior p(zu | xu ).

2483



Stochastic-Expert Variational Autoencoder
for Collaborative Filtering WWW ’22, April 25—29, 2022, Lyon, France

𝑝(𝑧|𝑥)

𝑧

VAE VAE with Mixture of Experts Stochatic-Expert VAE

Figure 1: Conventional VAE approaches for collaborative fil-
tering are not suitable for learning complex posterior dis-
tributions. While using a mixture distribution can help al-
low more flexible distributions, generative models based on
mixture distributionsmay not be able to capture all themul-
tiple modes when aggregated over multiple distributions
via mixture. Our proposed stochastic-exert framework can
overcome such a bottleneck via random selection of expert
overmultiple experts which allows sampling from different
modes.

2.4 Challenges of VAE for Collaborative
Filtering

One of the main challenges in the VAEs for collaborative filtering
is that the prior (and as a result also the posterior) distributions
may be too simple and restrictive to learn potentially rich and com-
plex latent representation of user preferences. Various approaches
[9] have been proposed to handle this issue with attempts to allow
more flexible distributions. VAEwith a mixture distribution [23] has
been adapted to collaborative filtering in [9]. However, as we show
later in the experiments, utilizing a mixture distribution alone does
not appear to properly capture the richness of latent representation,
resulting in similar performances of the VAEs without the mixture
(e.g., Multi-VAE in [14]). See Section 5 for comparisons in the ex-
perimental results. One possible explanation for this observation is
as follows. With a mixture distribution, there is a smoothing effect
over multiple distributions which may be more expressive than a
simple unimodal distribution. Yet, with a highly complex posterior
distribution to be learned, it may only generate samples from the
smoothed basins which may fail to capture various multiple modes.
This phenomenon is illustrated in Figure 1.

In this work, we aim to overcome this issue via random sampling
in expert selection instead of mixture aggregation. Sampling an
expert for each item click is inspired by the generative process of
Latent Dirichlet Allocation (LDA), where each word in a document
is sampled from a selected topic from the document’s topic distribu-
tion. We argue that this sampling expert scheme allows the model
to effectively capture the multi-facet of users’ preference.

3 PROPOSED METHOD
3.1 Model Description
In this section, we illustrate our proposed VAE model for collabo-
rative filtering, which we call the Stochastic-Expert Variational Au-
toencoder or SE-VAE for short. As the naming suggests, our model
considers a set of multiple experts, where each expert is associated

with its own deep latent Gaussian model. What differentiates our
method from the existing methods using multiple experts is that, in-
stead of utilizing the multiple experts as a mixture aggregation, we
incorporate stochasticity in expert selection. For clear and concrete
exposition of our proposed framework, we describe the generative
process of SE-VAE compared to Multi-VAE [14] explained in Sec-
tion 2.3. It is important to note that our proposed methodology is
generic and adaptable to any VAE achitecture, not confined to a
specific network structure of Multi-VAE.

Multiple Experts. While the generative process of Multi-VAE
starts by sampling a single latent variable zu ∈ RK for user u from
a standard Gaussian prior, our model maintains a set of M latent
representations {z(m)

u }Mm=1, where each representation corresponds
to an expert – hence, we maintain a total of M experts. For user
u and for expertm, the latent representation z

(m)
u is transformed

via a function fθm : RK → RI parametrized by θm to produce a
probability distribution over I items, π (z(m)

u ). That is, for each user
u ∈ {1, ...,U } and its expertm ∈ {1, ...,M},

z(m)
u ∼ N(0, IK ) ,

π (z(m)
u ) ∝ exp{ fθm (z(m)

u )} .

Here, the exponentiation of fθm (z(m)
u ) is applied element-wise,

exp(v) = [exp(v1), ..., exp(vd )] for v ∈ Rd . For each expert m,
fθm (·) is a multilayer perceptron, allowing each expert to keep its
own parameter. The distribution over I items of expertm, π (z(m)

u ),
is obtained for every expert, and is used when generating clicks.

Stochastic Expert Selection. As mentioned earlier, the expert se-
lection procedure is the key feature of our method. We first sample
wu ∈ RM , the logits for the Gumbel-Softmax, which is used to
select among multiple experts. Then, expert selection is sampled
independently for each click n ∈ {1, ...,Nu } for user u:

wu ∼ N(0, IM ) ,

enu ∼ Gumbel-Softmax(wu ) .

where the one-hot vector enu ∈ {0, 1}M represents an expert se-
lection for the n-th click of user u. Hence, even for a single user
u, clicks can be generated from different experts. Let mn be the
index of the selected expert for the n-th click, such that enu,mn

= 1.
Then, a one-hot vector for a single click xnu is sampled from the
distribution using the selected expertmn :

xnu ∼ Mult
(
1,π (z(mn )

u )
)
.

Hence, the selected expert determines the distribution over the
items, and therefore, an item-click is generated at the n-th click. In
contrast to click sampling at the user level used in (1) for Multi-VAE,
we can incorporate more flexible preferences by allowing multiple
experts to generate samples for a single user. This procedure of an
individual click sample is repeated for all n ∈ {1, ...,Nu }, hence
creating a set of click vectors {x1u , ..., x

Nu
u }. Note that since click

samples are independent of each other, one can generate a set of
click vectors in parallel, rather than in a sequence. After generating
each of the clicks, we aggregate over the individual click vectors
to produce a click count vector for the given user, xu , i.e., xu =
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∑Nu
n=1 x

n
u . This stochastic expert selection significantly differs from

the previous work [14] and its variants, e.g., [9], where each user
has its own fixed distribution over the items.

3.2 Variational Inference
Given the collection of the observed clicks, we are interested in
estimating the parameters θm in the generative process shown in
Section 3.1. As in the VAE, and its variants, we use variational
inference to approximate the posterior p(z(m)

u | xu ) by a computa-
tionally tractable variational distribution. The variational param-
eters in the variational distribution are selected to minimize the
Kullback-Leibler divergence between the true (and potentially in-
tractable) posterior and the variational distribution. We use a factor-
ized variational distribution over the latent variables {µ(m)

u ,σ
2,(m)
u }

for each expert, this is consistent with the existing vanilla-VAE
models with a fully factorized Gaussian distribution, which we ex-
tend by maintaining the parameters for each expert. Besides the set
of {(µ(1)u ,σ

2,(1)
u ), ..., (µ

(M )
u ,σ

2,(M )
u )}, we again set q(wu ) to be a fully

factorized Gaussian distribution which is used in Gumbel-Softmax
as input logits. This weight logit vector allows us to maintain multi-
ple experts and to sample an expert from the categorical distribution
using the Gumbel-Softmax. The use ofwu sampled from a Gaussian
distribution is motivated by the logistic normal used in correlated
topic model [11]. With these variational parameters, the objective of
variational inference is to minimize the Kullback-Leibler divergence
by optimizing the free variational parameters.

3.3 Variational Auto-Encoder Implementation
We first provide a brief overview of the main three advantages
that VAEs have over the conventional mean-field variational Bayes
(VB) algorithms for variational inference. First, in VAEs, one can
efficiently deal with intractable posterior distributions. Therefore,
no simplified assumptions on the posterior distribution are required
in VAEs. Second, VAEs can make parameter updates using small
mini-batches or even single datapoints.3 Third, the network param-
eters in the inference model (or the encoder) are shared across all
data points allowing flexible reuse of inferences to answer related
new problems, which is referred to as amortized inference [2, 14].

A VAE [10] consists of an encoder and a decoder. The encoder
tries to discover some latent representation of an input in a prob-
abilistic manner; while the decoder attempts to reconstruct the
original input from the latent vector. In contrast to the conventional
variational inference methods, where free variational parameters
are updated independently, VAEs rely on neural network structure
with data-dependent function. In the encoder of a VAE, a set of
parameters denoted as ϕ are optimized to best learn the variational
parameters for each user u: the K-dimensional mean and covari-
ance vectors4 with дϕ (xu )

def
= [µϕ (xu ),σϕ (xu )]. We extend this

approach to ours by projectingM of {µϕ (xu ),σϕ (xu )} through the
encoder, having the inference function augmented as below:

3In the strict sense, a recent work, Stochastic-Variational Inference [5] applies stochas-
tic optimization to scale up recent advances in variational inference.
4Note that we use a diagonal covariance matrix, hence only requiring a K -dimensional
vector for covariance.

дϕ (xu )
def
=


µ
(1)
ϕ (xu ) ... µ

(M )

ϕ (xu )

σ
(1)
ϕ (xu ) ... σ

(M )

ϕ (xu )

 ∈ R2K×M , (2)

where the µϕ (·) and σϕ (·) are the variational parameters for K-
dimensional mean and variance respectively as in the previous VAE
models [10, 14]. For the (m)-th expert, the variational distribution
is defined as follows:

q
(m)

ϕ (z(m)
u | xu ) = N(µ

(m)

ϕ (xu ), diag{σ
2,(m)

ϕ (xu )}) . (3)

which reflects how the encoder with parameter ϕ outputs the cor-
responding variational parameters of the variational distribution
from the input data xu . From Equation 2, it is worth noting that
the parameters in the encoder are shared across all of the experts
rather than having separate encoders for each. Later in our experi-
ments, we discuss how the former approach outperforms the latter
approach.

As mentioned earlier, our proposed model consists of multiple
experts, where one of the experts is stochastically selected for each
click in the generative process. Therefore, we use an additional
neural network for the Gumbel-Softmax distribution. This addi-
tional network is then connected to our bottleneck layer of SE-VAE
acting as a channel selector. During the training phase, the Gumbel-
Softmax layer outputs a one-hot vector and otherwise generates
the soft mixtures.

The overall generative model with the encoder and the decoder
is summarized in Figure 2. The output from the Gumbel-Softmax
layer act as a channel selector. When an expert is selected, the
encoded input data is processed through the selected decoder. Later,
each reconstruction is aggregated for computing the reconstruction
loss. In the following, we provide the details.

Evidence Lower Bound. For the inference, we resort to variational
inference in the VAE context by starting with the lower bound of
the marginal log-likelihood, namely Evidence Lower Bound (ELBO).
In a collaborative filtering context, users are assumed to be inde-
pendent of each other, and the marginal log-likelihood becomes
the sum over the marginal log-likelihood of each user’s data point.
The ELBO of the marginal log-likelihood for user u is defined as
L(xu ;θ ,ϕ), where for simplicity of expression, we denote the col-
lection of parameters {θ (1), ...,θ (M )} as θ :

logp(xu ;θ ) ≥ Eqϕ (zu |xu )[logpθ (xu |zu )]

− KL(qϕ (zu | xu )| |p(zu )) − KL(qϕ (wu | xu )| |p(wu ))

def
= L(xu ;θ ,ϕ) . (4)

Note that the second component in the RHS of the KL-divergence
accounts for the logits which is fed into the Gumbel-Softmax layer.
Taking the stochastic expert in to account, the ELBO can be further
expressed as:

L(xu ;θ ,ϕ) =
M∑

m=1
Eqϕ (zu |xu )[qcat(eu,m = 1) logpθm (xu |z

(m)
u )]

− KL(qϕ (zu | xu )| |p(zu )) − KL(qϕ (wu | xu )| |p(wu )),

(5)

where qcat(eu,m = 1) is a probability of expert (m) being selected
for user u. The training procedure involves maximizing the ELBO
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Figure 2: Schematic overview of SE-VAE. The click data {xu }u gets encoded via an encoder network into latent representation
{z(m)
u }u,m . Each one-hot encoded click vector xnu for n ∈ {1, ...,Nu } is then generated using randomly selected expert via a

decoder network to re-construct a click count vector xu for user u.

through updating ϕ and θ . The ELBO can also be interpreted as
the expected negative reconstruction error with a regularizer. The
first term of the Equation 5 is a negative reconstruction error in
auto-encoder parlance; while the second term acts as a regularizer
controlling KL-divergence of the approximate posterior from the
prior. It is well known that the KL-divergence can be integrated
analytically by having the prior as p(z) = N(0, I ) and the poste-
rior approximation qϕ (z|x) as Gaussian of which the subscript and
superscript have been omitted. In our study, we follow the same
assumptions made in VAE [10] and previous work [9, 14] in collab-
orative filtering. Due to the stochasticity in the sampling process,
performing back-propagation becomes challenging. Here, we utilize
reparametrization trick referring to the original work VAE [10] and
categorical reparametrization [8] for Gaussian and Gumbel-Softmax
sampling respectively. The overall learning process is provided in
Algorithm 1.

Algorithm 1 Training procedure for SE-VAE

Require: X ∈ NU×I

Ensure: ϕ, θ = {θ (1), ...,θ (M )}

Initialize θ ,ϕ
while not converged do

Obtain batch of users
for user u in a batch do

Sample zu and wu using the RT
Compute gradient of L w.r.t. θ ,ϕ with zu and wu

end for
Take average of gradients from the batch
Update θ and ϕ with SGD

end while

β-VAE [4] is a modification of the VAE framework. It has been
shown that the β-VAE is more stable and achieves better perfor-
mance than the vanilla-VAE which is when β = 1 in β-VAE. If β
is small, then the influence of the prior constraint are weakened.
While having β set to β > 1 [4] yields improvements in perfor-
mance in visual domain. Liang et al. [14] found that setting β set
to β < 1 is more effective in collaborative filtering. The findings in
later studies [9, 20] are also consistent with [14]. As in [9, 14, 20],

The KL-divergence in the ELBO for our model has β set to β < 1
for our study.

4 EXPERIMENTAL SETUP
Before presenting our experimental results in Section 5, we first
describe the experimental setup for the empirical evaluations of our
proposed method, SE-VAE, and the benchmark models. We then pro-
vide the descriptions of the benchmark datasets and the evaluation
metrics widely used for evaluating recommender systems.

4.1 Model
In our experiments, we compare the performance of our model
against benchmark models, which is presented in Section 5. We
set one of the best performing models from [9] as our benchmark,
where we follow the exact same settings from their experiments.
As such, throughout our experiments we keep K the latent space
dimension to 200 the have the number of hidden units in each layer
fixed to 600, which are also consistent with Multi-VAE [14] and its
following work by Kim and Suh [9]. For a fair comparison, possible
parameters were fixed to the same settings in [9] including batch
sizes, and learning rates. We use the same configurations for other
settings, such as split of training, validation, and test datasets as
done in [9] for its predecessors.

For evaluating our model, we considered SE-VAE with three
experts. As we show in the experimental results, this number of
experts appears to be a suitable choice, exhibiting superior per-
formances over the existing methods although the number is rel-
atively small and not optimized for performances. We believe the
fine-tuning on the number of experts would enhance the perfor-
mances of the proposed method, which we leave for future work.
For the logistic normal distribution used for sampling experts, we
set its prior to the same number for each expert. The model was
implemented and trained using PyTorch. The experiments were
conducted using a GeForce RTX 2080 Ti GPU. Code is avaiable at
https://github.com/yoonsikcho/se-vae.

4.2 Datasets
We evaluate our proposed algorithm using the datasets which have
been widely used for collaborative filtering. The datasets used in
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this study is in the same format as in previous studies [9, 14, 15,
20, 21, 25], which has been binarized reflecting implicit feedback.
The explicit feedback rating has been binarized having a threshold
of 3, meaning the rating 4 and above out of 5 has been marked as
1, otherwise 0. Inactive users with less than 5 reviews have been
removed from each dataset.

MovieLense20M. This is a user-movie rating dataset. Each user
left their rating score on a scale of 5, which has been binarized for
our study. After preprocessing the dataset, MovieLense20M dataset
contains 136, 677 users with 20, 108 items. Between these users and
the given items, there were 10.0 million interactions. On average, a
user has clicked 73 items, and the % of interactions is 0.36%.

Netflix. This is a user-movie rating dataset from the Netflix Prize.
The rating scale is the same as the MovieLense20M. The same
preprocessing method has been taken in this dataset. After pre-
processing the dataset, the Netflix dataset contains 435, 435 users
nearly 3.4 times the users from MovieLense20M. The dataset con-
tains 17, 769 items with 56.9million interactions. On average, a user
has clicked 122 items, and the % of interactions is 0.69%. Netflix
data has denser input data X than that of MovieLense20M.

4.3 Evaluation Metrics
We follow the same metrics which have been used in previous stud-
ies [9, 14, 15, 20, 21, 25]. Two ranking-based metrics: Recall@R and
the truncated Normalized Discounted Cumulative Gain (NDCG@R)
are used throughout our experiments. These two metrics both com-
pare the predicted ranking of the held-out items (in validation and
testing) with their true ranking, where the rankings prediction
can be obtained from the output of the decoder pθ (·) based on the
inferred latent representation. We summarize both metrics below:

Recall@R. In collaborative filtering, we are interested in predict-
ing the top-N items to the user in a sense that top-N items are
more carefully observed in recommender systems. Recall@R is the
proportion of relevant (clicked) items predicted in the top R items.
This metric becomes useful considering that the online users focus
on top-N recommended items on first page or upper area without
scrolling down.

NDCG@R. Recall@R considers all items equally important when
predicted within the first R. This becomes problematic when R
becomes large as it cannot differentiate the importance between
items when they are all in top-R. Normalized discounted cumulative
gain overcomes this issue by using the monotonically increasing
discount. It emphasizes the importance of higher ranking than
lower ones.

5 RESULTS
Herewe discuss the empirical performances of our proposedmethod
and comparison with the existing methods on the main evaluation
task, click prediction. For our experiments, we use the dataset and
evaluation metrics summarized in Sections 4.2 and 4.3 respectively.
The purposes of the evaluations are three-fold:

(1) We want to show that our proposed method outperforms
the existing state-of-the-art methods.

(2) We want to illustrate the flexibility of our framework, easily
adapting to various VAE models used in CF.

(3) We want to compare our approach with other possible model
extensions including models with a higher value of K for the
latent dimension, and a mixture of experts.

5.1 Performance Comparison against the
Benchmark Models

For our first experiment, we apply the stochastic expert (SE) frame-
work to the current state-of-the-art models in [9], the Hierarchical
VampPrior with Gated Linear Units (GLU), H+VAMP(Gated), and
compare its performance to that of the previous benchmark mod-
els [7, 9, 14, 15, 17, 20, 21, 24, 25]. For the implementation of SE,
we used three experts. The experiment results show the superior
performances of H+VAMP(Gated) with SE from the state-of-the-art,
even only with three experts. As the results are shown in Table 1,
our proposed model in the bottom row outperforms the previous
benchmark models in every aspect. The best performing model and
the best results in each metric are marked in bold.

For the results shown in Table 1, the same test datasets from
Mult-VAE [14] were used for all the models including our method.
The results for WMF [7], SLIM [17], and CDAE [24] are from the ex-
periment reports in [14], where the performance of each model
was evaluated based on the same test datasets. All the other re-
sults are taken from the respective original papers. We find that
both VAEGAN [25] and EASE [21] follow the same preprocessing
procedure as Mult-VAE. VAEGAN and EASE use Mult-VAE as their
baselines citing the results of Mult-VAE in [14]. We confirm that the
codes for RaCT [15], RecVAE [20], and H+Vamp(Gated) [9] also use
the same test datasets as those of Mult-VAE. Our implementation is
reformulated based on H+Vamp(Gated) for fair comparisons, with
evaluations using the exact same test datasets.

5.2 Flexibility of SE-VAE
Now, we further investigate whether the performance improvement
can be shown for the SE adaptation to other VAE models. In our sec-
ond experiment, we verify the flexibility of SE-VAE by applying the
SE framework to various VAEmodels, which includes Mult-VAE and
the enhanced Mult-VAE with two hidden layers and GLU from [9].
As shown in Table 2, we observe that the VAE models incorporat-
ing the SE framework consistently outperform their corresponding
VAE models without the SE, achieving higher performance in every
metric. This result suggests that the simple modification of adapting
the SE to the existing methods provide performance improvement,
hence allowing for wide applicability of the proposed framework.

5.3 Ablation Studies
In the following experiments, we validate the effectiveness of our
model by comparing SE-VAE against a VAE with a bottleneck layer
with a higher dimension, matching the number of variational pa-
rameters of ours, and with other possible models with a similar
idea. In the following, we discuss this in detail.

Bottleneck Layer Dimension. As elaborated previously, the output
layer of the encoder in SE-VAE has more units,M-times the number
of the VAE. In our implementation, we distribute the sampled µ

(m)
u
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Table 1: Comparing our proposed method against the benchmark models. Our proposed method (SE-VAE): a model in which
stochastic-expert (SE) is applied to the previous state-of-the-art model, H+VAMP(Gated). The results for WMF [7], SLIM [17],
CDAE [24] are from the experiment reports in Multi-VAE [14], all the other results are taken from the respective original papers.
The standard errors of the performances across the models are around 0.002 for MovieLens20M and 0.001 for Netflix.

Model MovieLens20M Netflix
NDCG@100 Recall@50 Recall@20 NDCG@100 Recall@50 Recall@20

WMF [7] 0.386 0.498 0.360 0.351 0.404 0.316
SLIM [17] 0.401 0.495 0.370 0.379 0.428 0.347
CDAE [24] 0.418 0.523 0.391 0.376 0.428 0.343
Mult-VAE [14] 0.426 0.537 0.395 0.386 0.444 0.351
VAEGAN (AVB+D+C) [25] 0.438 0.541 0.407 0.396 0.447 0.363
EASE [21] 0.420 0.521 0.319 0.393 0.445 0.362
RaCT [15] 0.434 0.543 0.403 0.392 0.450 0.357
RecVAE [20] 0.442 0.553 0.414 0.394 0.452 0.361
H+Vamp (Gated) [9] 0.445 0.551 0.413 0.408 0.462 0.376
SE-VAE (H+Vamp, Gated) 0.447 0.556 0.418 0.409 0.463 0.377

Table 2: Comparing SE-VAE models with the VAE benchmark models. For benchmark models, results are taken from [9]. De-
noted SE in the model name when stochastic expert has been applied. Stochastic expert has been applied to each model in [9].
Standard errors are around 0.002 for MovieLens20M and 0.001 for Netflix.

Model MovieLens20M Netflix
NDCG@100 Recall@50 Recall@20 NDCG@100 Recall@50 Recall@20

Mult-VAE 0.42700 0.53524 0.39569 0.38711 0.44427 0.35255
Mult-VAE (SE) 0.43057 0.53688 0.40010 0.38789 0.44512 0.35332

Mult-VAE (Gated) 0.43515 0.54498 0.40558 0.39241 0.44958 0.35953
Mult-VAE (Gated,SE) 0.44163 0.54594 0.41229 0.39342 0.45094 0.36010

H+Vamp (Gated) 0.44522 0.55109 0.41308 0.40861 0.46252 0.37678
H+Vamp (Gated,SE) 0.44718 0.55551 0.41787 0.40907 0.46312 0.37713

and σ (m)
u to its expert (m) accordingly. Figure 3 presents the over-

all structure of the SE-VAE, where the connected Gumbel-Softmax
layer and its network (Figure 1.b.-right) has been omitted for sim-
plicity. To further verify that our performance is not simply due to
the increased number of units in the bottleneck layer, we perform
another set of experiments. In this small experiments, we use the
MovieLens20M data, and compare the NDCG@100 obtained from
the benchmark models with increased number of units with the
results of ours. Table 3 verifies the performance gain through SE
is not merely due to the higher number of neurons. Left column
(K = 200) is taken from [9], center column (K=600) is the results
obtained when the total number of units in the bottleneck layer
matches that of our model. Right column is taken from our results.

Mixture of Expert vs Stochastic Expert. In this set of experiments,
we verify whether the stochastic expert is effective by comparing
with another widely known VAE extension: the mixture of experts
(MoE). We use MovieLense20M data to compare the performances
of the two extended models. For the three models selected from [9],
we apply MoE and SE on each of the three models and report
their performances. Table 4 reveals that SE-VAE outperforms the
MoE extensions. Interestingly, when MoE has been applied to VAE,

Table 3: Comparison between our proposed algorithm with
baselinemodels.When the latent dimension is set toK = 600
the number of parameters become same as our proposed al-
gorithm with 3 experts. Results in NDCG@100 are reported
using the MovieLens20M dataset.

Models (NDCG@100) K = 200 K = 600 with SE

Mult-VAE 0.42700 0.42709 0.43057
Mult-VAE (Gated) 0.43515 0.42482 0.44163
H+Vamp (Gated) 0.44522 0.44485 0.44718

the performance always drop from the original VAE models. The
mixture assumption is not strong enough to capture the complex
user preference. We believe the performance drop of MoE could be
due to the mixing of different modalities, where each effectiveness
washes away contrary to our expectations.

Sharing an Encoder vs Individual Encoder per Expert. Our pro-
posed model shares the parameter ϕ as shown in Figure 3. A natural
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Figure 3: Network structure of SE-VAE. For visual simplicity,
we depict only the VAE assuming one-hot expert is sampled
from other network. The encoder is shared across all the ex-
perts, while the decoders are assigned for each of the expert.
For each of the click, one-hot expert vector selects a decoder
and make predictions through pθ (·).

Table 4: Comparison between mixture of experts and sto-
chastic expert in their NDCG@100. Applying stochastic ex-
pert on each model outperforms mixture of experts ap-
proach, while mixture of experts approach drops the orig-
inal performance. MovieLens20M dataset has been used for
this report.

Models (NDCG@100) original with MoE with SE

Mult-VAE 0.42700 0.42601 0.43057
Mult-VAE (Gated) 0.43515 0.43216 0.44163
H+Vamp (Gated) 0.44522 0.43142 0.44718

question that arises from the proposed model can be the the follow-
ing: “What if the encoder is assigned to each expert? ” To answer
this question, we also conducted experiments using the Movie-
Lense20M dataset, where we compared a SE model with separate
encoders with our proposed approach. We found that the model

with individual encoder showed the performance similar to that of
single VAE. We hypothesize that the model with individual encoder
exhibits this behavior because this approach is, in fact, similar to
averaging the results from multiple running of single VAE. On the
other hand, when we use a shared encoder, when updating the
variational parameters {µ(m),ϕ(m)}Mm=1, the update of a variational
parameter pair (µ,σ ) affects the other pairs. We believe this better
reflects the multifaceted nature of human activities.

6 CONCLUSION
In this paper, we propose a novel framework of VAE for collab-
orative filtering on implicit feedback data. The proposed frame-
work incorporates a new feature where individual experts are sam-
pled stochastically at each user-item interaction. Our model is able
to effectively utilize the variability across multiple experts, and
the stochasticity in expert selection provides performances gains
which are evidenced by the comprehensive numerical experiments.
Based on the experiments with real-world benchmark datasets from
MovieLens and Netflix, our proposed method showed superior per-
formances compared to the existing state-of-the-art collaborative
filtering methods across all metrics considered. We further pro-
vide additional experiments comparing the proposed stochastic
expert framework with other mixture approaches, which reveals
the strength of our model design.

While we focus on the problem of collaborative filtering in this
paper, we believe that the proposed stochastic expert technique
can be used to enhance VAEs in general beyond the application
of collaborative filtering. Hence, this novel technique can be of
independent interest. In our future work, we plan to further explore
the effectiveness of the stochastic expert technique in general VAEs.
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