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ABSTRACT The sign function can be adopted to implement the comparison operation, max function, and
rectified linear unit (ReLU) function in the Cheon–Kim–Kim–Song (CKKS) scheme; hence, several studies
have been conducted to efficiently evaluate the sign function in the CKKS scheme. Recently, Lee et al. (IEEE
Trans. Depend. Sec. Comp.) proposed a practically optimal approximationmethod for the sign function in the
CKKS scheme using a composition of minimax approximate polynomials. In addition, Lee et al. proposed
a polynomial-time algorithm that finds the degrees of component polynomials that minimize the number
of non-scalar multiplications. However, homomorphic comparison/max/ReLU functions using Lee et al.’s
approximation method have not been successfully implemented in the residue number system variant
CKKS (RNS-CKKS) scheme. In addition, the degrees of component polynomials found by Lee et al.’s
algorithm are not optimized for the RNS-CKKS scheme because the algorithm does not consider that the
running time of non-scalar multiplication depends significantly on the ciphertext level in the RNS-CKKS
scheme. In this study, we propose a fast algorithm for the inverse minimax approximation error, which is a
subroutine required to find the optimal set of degrees of component polynomials. The proposed algorithm
facilitates determining the optimal set of degrees of component polynomials with higher degrees than in the
previous study. In addition, we propose a method to find the degrees of component polynomials optimized
for the RNS-CKKS scheme using the proposed algorithm for the inverse minimax approximation error.
We successfully implement the homomorphic comparison, max function, and ReLU function algorithms on
the RNS-CKKS scheme with a low comparison failure rate (< 2−15), and provide various parameter sets
according to the precision parameter α. We reduce the depth consumption of the homomorphic comparison,
max function, and ReLU function algorithms by one depth for several values of α. In addition, the numerical
analysis demonstrates that the homomorphic comparison, max function, and ReLU function algorithms using
the degrees of component polynomials found by the proposed algorithm reduce the running time by 6%, 7%,
and 6% on average, respectively, compared with those using the degrees of component polynomials found
by Lee et al.’s algorithm.

INDEX TERMS Cheon–Kim–Kim–Song (CKKS) scheme, fully homomorphic encryption (FHE),
homomorphic comparison operation, minimax approximate polynomial, Remez algorithm, residue number
system variant CKKS (RNS-CKKS) scheme.

I. INTRODUCTION
Homomorphic encryption (HE) is a cryptosystem that
allows certain algebraic operations on encrypted data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

A HE that allows all algebraic operations on encrypted
data is known as fully homomorphic encryption (FHE).
Gentry proposed the first FHE scheme using bootstrap-
ping in [1]. FHE has garnered considerable attention in
various applications, and its standardization process is in
progress.
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The Cheon–Kim–Kim–Song (CKKS) [2] scheme, a repre-
sentative FHE scheme, allows the addition and multiplication
of real and complex numbers. Because data are usually
represented by real numbers, the CKKS scheme, which can
deal with real numbers, has garnered significant attention
in several applications, such as machine learning [3]–[6].
Thus, several studies have been conducted to optimize the
CKKS scheme [7]–[11]. Cheon et al. [7] proposed a residue
number system variant CKKS scheme (RNS-CKKS). The
running time of the RNS-CKKS scheme is ten times faster
than that of the original CKKS scheme with one thread.
In addition, the running time performance can be improved
in a multicore environment because the RNS-CKKS scheme
enables parallel computation. Thus, several HE libraries,
such as SEAL [12], PALISADE [13], and Lattigo [14], are
implemented using the RNS-CKKS scheme.

Although the CKKS scheme can virtually support all
arithmetic operations on encrypted data, several applica-
tions require nonarithmetic operations. One of the core
non-arithmetic operations is the comparison operation,
denoted as comp(a, b), which outputs 1 if a > b, 1/2 if
a = b, and 0 if a < b. This comparison operation
is widely employed in various real-world applications,
including machine learning algorithms, such as support
vector machines, cluster analysis, and gradient boosting [15],
[16]. The max function and rectified linear unit (ReLU)
functions are other essential nonarithmetic operations that
are widely adopted in deep learning applications [17], [18].
These three non-arithmetic operations can all be implemented
using the sign function sgn(x); that is,

comp(a, b) =
1
2
(sgn(a− b)+ 1),

max(a, b) =
1
2
(a+ b+ (a− b) sgn(a− b)),

ReLU(x) =
1
2
(x + x sgn(x)),

where sgn(x) = x/|x| for x 6= 0 and 0 otherwise. Thus,
several studies have been conducted to implement the sign
function in the CKKS scheme efficiently [9], [19]. A method
to approximate sgn(x) using the composition of component
polynomials was proposed in [19], and it was proven that this
method achieves optimal asymptotic complexity. In addition,
the authors of [9] proposed a practically optimal method that
approximates sgn(x) with the minimum number of non-scalar
multiplications using a composition of minimax approximate
polynomials.

Although the authors of [9] proposed a comparison
operation algorithm with practically optimal performance on
the CKKS scheme, there are several limitations in using
the comparison operation for the RNS-CKKS scheme. First,
because the rescaling error is relatively large in the RNS-
CKKS scheme, unlike in the CKKS scheme, it is necessary
to deal with this comparatively large rescaling error to
achieve low approximation failure rates. Another issue is
determining a set of degrees of component polynomials that

provide better comparison operation performance. Although
the authors of [9] also proposed a polynomial-time algorithm
that determines the set of degrees that minimizes the number
of non-scalar multiplications, this set of degrees is not
optimized for the RNS-CKKS scheme, unlike the CKKS
scheme. This is because the running time of non-scalar
multiplication alters significantly with the current ciphertext
level in the RNS-CKKS scheme. Thus, if we optimize
the degrees of component polynomials by considering the
running time of non-scalar multiplication according to
the ciphertext level, the performance will be improved
further.

A. OUR CONTRIBUTIONS
The contributions of this study are presented as follows.

1) For the first time, we successfully implement the
homomorphic comparison, max function, and ReLU
function algorithms using a composition of minimax
approximate polynomials on the RNS-CKKS scheme
with a low failure rate (< 2−15), and provide proper
parameter sets.

2) We improve the performance of an algorithm to
determine the inverse minimax approximation error,
which is a subroutine to determine the optimal set
of degrees of component polynomials. In a previous
study, the optimal set of degrees of component
polynomials that minimizes the number of non-scalar
multiplications was determined among degrees only
up to 31 [9]; however, we determine the optimal set
of degrees of component polynomials among degrees
up to 63, using the improved algorithm for inverse
minimax approximation error (see Algorithm 7). Con-
sequently, the depth consumption of the homomorphic
comparison operation (resp. max/ReLU function) is
reduced by one depth when α is 9 or 14 (resp. when
α is 16, 17, or 18), thereby enabling an additional
multiplication operation. In addition, this improved
algorithm for inverse minimax approximation error
enables the identification of a set of degrees of
component polynomials optimized for homomorphic
comparison operation, max function, or ReLU function
in the RNS-CKKS scheme (see Section IV). Our source
code for determining the optimized degrees is avail-
able at https://github.com/eslee3209/
MinimaxComp_degrees.

3) We propose a method to determine the set of degrees
of component polynomials optimized for the homo-
morphic comparison,max function, andReLU function
on the RNS-CKKS scheme using the proposed fast
algorithm for inverse minimax approximation error.
Using the optimized set of degrees for the RNS-CKKS
scheme, we reduce the running time of the homomor-
phic comparison, max function, and ReLU function
algorithms by 6%, 7%, and 6%, respectively, compared
with the previous work in [9] on the RNS-CKKS
scheme library SEAL [12].
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B. RELATED WORKS
Although it is not difficult to perform a comparison operation
(or max/ReLU function) in bit-wise FHE, such as the fastest
homomorphic encryption in the West (FHEW) [20] or fast
fully homomorphic encryption over the torus (TFHE) [21],
the comparison operation is very challenging in word-wise
FHE, such as the CKKS scheme. Thus, several studies
have been conducted on comparison operations in the
CKKS scheme that adopts the evaluation of approximate
polynomials [9], [19], [22]. Among them, the comparison
operation proposed in [9] exhibits the best performance, and
we improve the performance of [9].

Another comparison operation method for the CKKS
scheme that uses FHEW/TFHE bootstrapping was recently
studied [23]–[26]. Although this approach uses FHEW/TFHE
bootstrapping, users can still employ efficient word-wise
operations in the CKKS scheme. When a comparison opera-
tion is required, users switch the ciphertexts to FHEW/TFHE
ciphertexts and perform a comparison operation using
FHEW/TFHE bootstrapping. This comparison method that
uses FHEW/TFHE bootstrapping can be less efficient than
the proposed homomorphic comparison that fully uses CKKS
packing in terms of the amortized running time (running
time per comparison operation). However, this comparison
method is still interesting research topic because this can have
advantages in the case of large-precision comparison.

C. OUTLINE
The remainder of this paper is organized as follows. Section II
describes the notations, RNS-CKKS scheme, scaling factor
management technique, and homomorphic comparison oper-
ation using a minimax composite polynomial. In Section III,
a fast algorithm for determining the inverse minimax approx-
imation error is proposed. A new algorithm that determines
the set of degrees of component polynomials optimized for
the homomorphic comparison of the RNS-CKKS scheme
is proposed in Section IV. The application of min/max and
ReLU functions is presented in Section V. In Section VI,
the numerical results for the homomorphic comparison, max
function, and ReLU function algorithms that use the proposed
set of degrees for the component polynomials are provided in
the RNS-CKKS scheme library SEAL. Finally, concluding
remarks are presented in Section VII.

II. PRELIMINARIES
A. NOTATION
Let R = Z[X ]/(XN + 1) and Rq = R/qR be
polynomial rings, whereN is a power-of-two integer. Let C =
{q0, q1, · · · , q`−1} be the set of positive coprime integers.
Then, for a ∈ ZQ, where ZQ is the set of integers modulo
Q and Q =

∏`−1
i=0 qi, we denote the RNS representation

of a with respect to C as [a]C = ([a]q0 , · · · , [a]q`−1 ) ∈
Zq0 × · · · × Zq`−1 . For the set of real numbers R and set of
complex numbers C, the field isomorphism τ̄ : R[X ]/(XN +
1) → CN/2 is defined as τ̄ : r(X ) 7→ (r(ζ̄ 5

j
))0≤j<N/2,

where ζ̄ = exp(−π i/N ) is the (2N )th root of unity in C.
HWTN (h) is the set of signed binary vectors in {0,±1}N

with a Hamming weight h. For 0 < a, b ∈ R, we denote
[−b,−a] ∪ [a, b] as R̃a,b. In particular, if a = 1− τ and b =
1 + τ for some τ ∈ (0, 1), then R̃a,b = R̃1−τ,1+τ is denoted
by Rτ . |{(n1, n2, · · · , ni); S(n1, · · · , ni)}| denotes the number
of tuples (n1, · · · , ni), such that statement S(n1, · · · , ni)
is true. αmax, `max,mmax, nmax, and tmax denote the upper
bound of the precision α, ciphertext level, number of non-
scalar multiplications, depth consumption, and running time,
respectively. These values should be sufficiently large; thus,
we set αmax = 20, `max = 30,mmax = 70, nmax = 40, and
tmax = 240 in this study. dmax denotes the upper bound of
the degrees of the component polynomials, and dmax of 31 or
63 is used in this study.

B. RNS-CKKS SCHEME
Before describing the RNS-CKKS scheme, some basic
operations for the RNS are presented. Let B =

{p0, · · · , pk−1}, C = {q0, · · · , q`−1}, and D =

{p0, · · · , pk−1, q0, · · · , q`−1}, where pi and qj are the distinct
primes.

– ConvC→B: For [a]C = (a(0), a(1), · · · , a(`−1)) ∈ Zq0×
· · · × Zq`−1 , output

ConvC→B([a]C)

=

`−1∑
j=0

[a(j) · q̂−1j ]qj · q̂j mod pi


0≤i<k

,

where q̂j =
∏

j′ 6=j qj′ ∈ Z. This algorithm over
integers ConvC→B(·) :

∏`−1
j=0 Zqj →

∏k−1
i=0 Zpi can

be extended to an algorithm over polynomial rings as
ConvC→B(·) :

∏`−1
j=0 Rqj →

∏k−1
i=0 Rpi by applying it

coefficient-wise.
– ModUpC→D: For [a]C ∈

∏`−1
j=0 Rqj , output

(ConvC→B([a]C), [a]C) ∈
k−1∏
i=0

Rpi ×

`−1∏
j=0

Rqj .

– ModDownD→C : For ([a]B, [b]C) ∈
∏k−1

i=0 Rpi ×∏`−1
j=0 Rqj , output

([b]C − ConvB→C([a]B)) · [P
−1]C,

where P =
∏k−1

i=0 pi.
The basic algorithms in the RNS-CKKS scheme are
described as follows:

– Setup(λ;1,L): For a security parameter λ, scaling
factor 1, and the number of levels L (also called
the maximum level), we set some parameters. The
polynomial degree N of R is chosen such that the
number of levels L can be supported by security
λ. A secret key distribution χkey, error distribution
χerr over R, and encryption key distribution χenc are
chosen according to the security parameter λ. Bases
with prime numbers B = {p0, p1, · · · , pk−1} and
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C = {q0, q1, · · · , qL} are selected such that pi ≡ 1mod
2N for 0 ≤ i ≤ k−1 and qj ≡ 1mod 2N for 0 ≤ j ≤ L.
q0 is usually set close to 260 and qj − 1 is as small as
possible for 1 ≤ j ≤ L. All prime numbers are distinct.
We assume thatD = B∪C. Let C` = {q0, q1, · · · , q`},
and D` = B ∪ C` for 0 ≤ ` ≤ L. Let P =

∏k−1
i=0 pi and

Q =
∏L

j=0 qj. Let p̂i =
∏

0≤i′≤k−1,i′ 6=i pi′ for 0 ≤ i ≤
k − 1 and q̂`,j =

∏
0≤j′≤`,j′ 6=j qj′ for 0 ≤ j ≤ ` ≤ L.

The following numbers are then computed:
• [P−1]qj for 0 ≤ j ≤ L
• [p̂i]qj and [p̂

−1
i ]pi for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ L

• [q̂`,j]pi and [q̂
−1
`,j ]qj for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ ` ≤

L
– Ecd(z;1): For z ∈ CN/2, output bτ̄−1(1z)e ∈ R.
– Dcd(m;1): For m ∈ R, output 1−1 · τ̄ (m) ∈ CN/2.
– KSGen(s1, s2): This algorithm generates the switching

key for switching the secret key s1 to s2. First, sample
(a′(0), · · · , a′(k+L)) ← U (

∏k−1
i=0 Rpi ×

∏L
j=0Rqj )

and e′ ← χerr. Then, for the given s1, s2 ∈

R, output the switching key swk = (swk(0) =
(b′(0), a′(0)), · · · , swk(k+L) = (b′(k+L), a′(k+L))) ∈∏k−1

i=0 R2
pi ×

∏L
j=0R2

qj , where b
′(i)
← −a′(i) · s2 + e′

mod pi for 0 ≤ i ≤ k − 1 and b′(k+j)←−a′(k+j) · s2 +
[P]qj · s1 + e

′ mod qj for 0 ≤ j ≤ L.
– KeyGen(λ): This algorithm generates the secret, pub-

lic, and evaluation keys. First, sample s← χkey and set
the secret key sk← (1, s). Sample (a(0), · · · , a(L))←
U (
∏L

j=0Rqj ) and e ← χerr. Then, the public key is
pk ← (pk(j) = (b(j), a(j)) ∈ R2

qj )0≤j≤L , where b
(j)
←

−a(j) · s+ e mod qj for 0 ≤ j ≤ L. The evaluation key
is evk← KSGen(s2, s).

– Enc(z;pk,1): For a message slot z ∈ CN/2, compute
m = Ecd(z;1). Then, sample v← χenc and e0, e1←
χerr. The ciphertext is ct = (ct(j))0≤j≤L ∈

∏L
j=0R2

qj ,

where ct(j) ← v · pk(j) + (m + e0, e1) mod qj for 0 ≤
j ≤ L.

– Dec(ct; sk,1): For a ciphertext ct = (ct(j))0≤j≤` ∈∏`
j=0R2

qj , obtain m̃ = 〈ct(0), sk〉mod q0. Then, output
z = Dcd(m̃;1).

– Add(ct1, ct2): For two ciphertexts ctr = (ct(j)r )0≤j≤` for
r = 1, 2, output the ciphertext ctadd = (ct(j)add)0≤j≤`,
where ct(j)add ← ct(j)1 + ct(j)2 mod qj for 0 ≤ j ≤ `.

– Mult(ct1, ct2;evk): For two ciphertexts ctr = (ct(j)r =
(c(j)r0, c

(j)
r1))0≤j≤` for r = 1, 2, compute the following:

• d (j)0 = c(j)00c
(j)
10 mod qj, d

(j)
1 = c(j)00c

(j)
11 + c

(j)
01c

(j)
10 mod

qj, and d
(j)
2 = c(j)01c

(j)
11 mod qj for 0 ≤ j ≤ `.

• ModUpC`→D` (d
(0)
2 , · · · , d (`)2 ) =

(d̃ (0)2 , · · · , d̃ (k−1)2 , d (0)2 , · · · , d (`)2 ).
• c̃t = (c̃t (k+`) = (c̃(j)0 , c̃

(j)
1 ))0≤j≤k+`, where c̃t

(i)
=

d̃ (i)2 ·evk(i) mod pi and c̃t
(k+j)
= d (j)2 ·evk(k+j) mod

qj for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ `.
• (ĉ(0)r , · · · , ĉ

(`)
r ) = ModDownD`→C`

(c̃(0)r , · · · , c̃
(k+`)
r ) for r = 0, 1.

• ctmult = (ct(j)mult)0≤j≤`, where ct(j)mult = (ĉ(j)0 +
d (j)0 , ĉ

(j)
1 + d

(j)
1 ) mod qj for 0 ≤ j ≤ `.

Then, output the ciphertext ctmult.
1) RS(ct): For a ciphertext ct = (ct(j) = (c(j)0 , c

(j)
1 ))0≤j≤`,

output the ciphertext ct′ = (ct′(j) = (c′(j)0 , c
′(j)
1 ))0≤j≤`−1,

where c′(j)r = q−1` · (c
(j)
r − c

(`)
r ) mod qj for r = 0, 1 and

0 ≤ j ≤ `− 1.
In this study, we set the key distribution χkey =

HWTN (256), which samples an element in R with ternary
coefficients that have 256 nonzero values uniformly at
random.

C. SCALING FACTOR MANAGEMENT
A technique for eliminating the large rescaling error in the
RNS-CKKS scheme was proposed in [27], where different
scaling factors at different levels were utilized instead of the
same scaling factor for each level. If the maximum level is L
and the ciphertext modulus for level i is qi, then the scaling
factor for each level is set as follows: 1L = qL and 1i =

12
i+1/qi+1 for i = 0, · · · ,L − 1.
When two ciphertexts at the same level are multiplied

homomorphically, an approximate rescaling error is not
introduced. Then, we consider when two ciphertexts are at
different levels, levels i and j, such that i > j. In this
case, the moduli qi, qi−1, · · · , qj+1 in the first ciphertext
are dropped, and the first ciphertext is then multiplied
by a constant b1jqj+1

1i
e. Subsequently, we rescale the first

ciphertext using qj+1. Because both ciphertexts are now at the
same level, conventional homomorphic multiplication can be
performed. The approximate rescaling error decreased in this
manner.

D. HOMOMORPHIC COMPARISON OPERATION USING
MINIMAX COMPOSITE POLYNOMIAL
In this study, the required depth consumption and number
of non-scalar multiplications for evaluating a polynomial
of degree d with odd-degree terms using the odd baby-
step giant-step algorithm and optimal level consumption
technique are denoted by dep(d) and mult(d), respectively.
The values of dep(d) and mult(d) for odd degrees d of up to
63 are presented in Table 1.

The minimax approximate polynomial of degree at most
d on D for sgn(x) is denoted by MP(D; d). In addition, for
the minimax approximate polynomial p(x) = MP(D; d),
the minimax approximation error maxD ‖p(x)− sgn(x)||∞ is
denoted by ME(D; d). It is known that for any continuous
function f on D, the minimax approximate polynomial of
degree d at most on D is unique [29]. Furthermore, the
minimax approximate polynomial can be obtained using the
improved multi-interval Remez algorithm [30].

For a domain D = R̃a,b and set of odd integers
{di}1≤i≤k , a composite polynomial pk ◦ · · · ◦ p1 is called a
minimax composite polynomial on D for {di}1≤i≤k , denoted
by MCP(D; {di}1≤i≤k ) if the followings are satisfied:
• p1 = MP(D; d1)
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TABLE 1. Required depth consumption and the number of non-scalar
multiplications for evaluating polynomials of degree d with odd-degree
terms using the optimal level consumption technique [10] and the odd
baby-step giant-step algorithm [28].

• pi = MP(pi−1 ◦ pi−2 ◦ · · · ◦ p1(D); di) for i, 2 ≤ i ≤ k .
BecauseME(Rτ ; d) is a strictly increasing function of τ , its

inverse function exists, which is called the inverse minimax
approximation error, and is denoted by IME(τ ′; d). Thus, for
τ ∈ (0, 1) and d ∈ N, IME(τ ′; d) is equal to the value τ ′ ∈
(0, 1) that satisfies ME(Rτ ′; d) = τ . An approximate value of
IME(τ ′; d) can be obtained using binary search, as indicated
in Algorithm 1 [9].

The comparison operation is denoted as

comp(a, b) =


1 if a > b
1/2 if a = b
0 if a < b.

The procedure for obtaining an approximate value of
comp(a, b) for the given precision parameters α, ε and inputs
a, b ∈ [0, 1] is summarized as follows:
1) Obtain the minimum depth consumption Mdep from

ComputeMinDep algorithm in Algorithm 3.
2) Choose depth consumption D(≥ Mdep) and obtain

the optimal set of degrees Mdegs from ComputeMin
MultDegs algorithm in Algorithm 4.

3) For some appropriate margin η, perform the homo-
morphic comparison algorithm MinimaxComp in
Algorithm 5 using Mdegs.

Algorithm 1: AppIMEbinary(τ ′; d, ī) [9]
Input: Target maximum error τ ′, an odd degree d , and

iteration number ī
Output: An approximate value of IME(τ ′; d)

1 min← 2−21 and max← 1− 2−21

2 while ī > 0 do
3 if ME(R(min+max)/2; d) < τ ′ then
4 min← min+max

2
5 else
6 max← min+max

2
7 end
8 ī← ī− 1
9 end

10 return min+max
2

Algorithm 2: ComputehG(τ ) [9]
Input: An input τ and an odd maximum degree dmax
Output: 2-dimensional tables h̃ and G̃

1 Generate 2-dimensional tables h̃ and G̃, both of which
have size of (mmax + 1)× (nmax + 1).

2 for m← 0 to mmax do
3 for n← 0 to nmax do
4 if m ≤ 1 or n ≤ 1 then
5 h̃(m, n)← τ

6 G̃(m, n)← φ

7 else
8 j← argmax

1≤i≤ dmax−1
2

mult(2i+1)≤m
dep(2i+1)≤n

IME(h̃(m−mult(2i+

1), n− dep(2i+ 1)); 2i+ 1)
9 h̃(m, n)← IME(h̃(m−mult(2j+ 1), n−

dep(2j+ 1)); 2j+ 1)
10 G̃(m, n)←

{2j+1}∪G̃(m−mult(2j+1), n−dep(2j+1))
11 end
12 end
13 end

ComputeMinDep and ComputeMinMultDegs algo-
rithms use ComputehG algorithm as a subroutine, and
MinimaxComp algorithm uses ComputeMinMultDegs
algorithm as a subroutine. Subsequently, the output of the
MinimaxComp algorithm, p̃(a, b) = pk◦pk−1◦···◦p1(a−b)+1

2
satisfies the following comparison operation error
condition.

|p̃(a, b)− comp(a, b)| ≤ 2−α

for any a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

(1)

The set of degrees, Mdegs = {d1, · · · , dk}, obtained from
the ComputeMinMultDegs algorithm satisfies deg(pi) =
di, 1 ≤ i ≤ k . Mdegs is the optimal set of degrees,
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Algorithm 3: ComputeMinDep(α, ε) [9]
Input: Precision parameters α and ε
Output: Minimum depth consumption Mdep

1 h̃, G̃← ComputehG(21−α)
2 for i← 0 to nmax do
3 if h̃(mmax, i) ≥ δ = 1−ε

1+ε then
4 Mdep← i
5 return Mdep
6 end
7 if i = nmax then
8 return ⊥
9 end
10 end

Algorithm 4: ComputeMinMultDegs(α, ε,D) [9]
Input: Precision parameters α and ε, and depth

consumption D
Output: Minimum number of multiplications Mmult and

the optimal set of degrees Mdegs
1 h̃, G̃← ComputehG(21−α)
2 for j← 0 to mmax do
3 if h̃(j,D) ≥ δ = 1−ε

1+ε then
4 Mmult← j
5 Go to line 11
6 end
7 if j = mmax then
8 return ⊥
9 end
10 end
11 Mdegs← G̃(Mmult,D) ; // Mdegs: ordered set
12 return Mmult and Mdegs

Algorithm 5: MinimaxComp(a, b;α, ε,D, η) [9]
Input: Inputs a, b ∈ (0, 1), precision parameters α and

ε, depth consumption D, and margin η
Output: Approximate value of comp(a, b)

1 Mdegs = {d1, d2, · · · , dk} ←
ComputeMinMultDegs(α, ε,D)

2 p1← MP(R̃1−ε,1; d1)
3 τ1← ME(R̃1−ε,1; d1)+ η
4 for i← 2 to k do
5 pi← MP(Rτi−1; di)
6 τi← ME(Rτi−1; di)+ η
7 end
8 return pk◦pk−1◦···◦p1(a−b)+1

2

such that the homomorphic comparison operation minimizes
the number of non-scalar multiplications and satisfies the
comparison operation error condition in (1) for the given
depth consumption D.

III. FAST ALGORITHM FOR INVERSE MINIMAX
APPROXIMATION ERROR
The ComputehG algorithm in Algorithm 2 [9] should
be performed to obtain the optimal set of degrees from
the ComputeMinMultDegs algorithm. To apply the
ComputehG algorithm, the inverse minimax approximation
error IME(τ ′; d) should be computed many times. That
is, the AppIMEbinary algorithm [9] determining an
approximate value of IME(τ ′; d) should be called many
times. However, a single call of the AppIMEbinary
algorithm also requires multiple computations of ME(Rτ ; d),
that is, several calls for the improved multi-interval Remez
algorithm [30]. Accordingly, the ComputehG algorithm
requires a significant running time. Specifically, the number
of computations for IME(τ ′; d) in ComputehG for each
precision parameter α is provided as follows:

mmax∑
m=0

nmax∑
n=0

∣∣∣∣{i;mult(2i+ 1) ≤ m,dep(2i+ 1) ≤ n,

1 ≤ i ≤
dmax − 1

2

}∣∣∣∣
=

∣∣∣∣{(m, n, i); 0 ≤ m ≤ mmax, 0 ≤ n ≤ nmax,

mult(2i+ 1) ≤ m,dep(2i+ 1) ≤ n,

1 ≤ i ≤
dmax − 1

2

}∣∣∣∣
=

dmax−1
2∑
i=1

∣∣∣∣{(m, n);mult(2i+ 1) ≤ m ≤ mmax,

dep(2i+ 1) ≤ n ≤ nmax

}∣∣∣∣
=

dmax−1
2∑
i=1

(mmax−mult(2i+ 1)+ 1)(nmax−dep(2i+ 1)+1)

=
dmax − 1

2
(mmax + 1)(nmax + 1)

−(mmax + 1)

dmax−1
2∑
i=1

dep(2i+ 1)

−(nmax + 1)

dmax−1
2∑
i=1

mult(2i+ 1)

+

dmax−1
2∑
i=1

mult(2i+ 1)dep(2i+ 1).

If we set dmax = 31,mmax = 70, and nmax = 40, as in [9],
the number of computations for IME(τ ′; d) is

15(mmax + 1)(nmax + 1)− (mmax + 1) · 64

−(nmax + 1) · 113+ 64 · 113

= 15 · 71 · 41− 71 · 64− 41 · 113+ 64 · 113
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= 41, 720.

If we want to adopt dmax = 63, the number of computations
for IME(τ ′; d) is 117, 675.

To obtain a precise approximate value of IME(τ ′; d)
using the AppIMEbinary algorithm, we iterate at least
ten times. Then, the expected number of computations for
ME(Rτ ; d) in ComputehG is at least 117, 675 × 10 =
1, 176, 750. Notably, this is the case for only one value of the
precision parameter α, where the input τ of the ComputehG
algorithm is 21−α . To perform the ComputehG algorithm for
α ranging from 4 to 20, approximately 1, 176, 750 × 17 =
20, 004, 750 calls for ME(Rτ ; d) are required. Because of
the large number of calls for ME(Rτ ; d), a value of dmax
larger than 31 could not be used in [9], failing to improve the
performance of homomorphic comparison operations using
higher degrees. Thus, it is desirable to study how to efficiently
determine the approximate value of IME(τ ′; d).

A. PROPOSED ALGORITHM FOR INVERSE MINIMAX
APPROXIMATION ERROR
We propose a fast method to determine the approximate value
of IME(τ ′; d), which enables the use of a value of dmax larger
than 31. The procedure for the proposed method is as follows.

1) Sample the values of τ at moderate intervals.
2) Compute the values of ME(Rτ ; d) for the sampled τ .
3) For τ ′ ∈ (0, 1), obtain an approximate value of

IME(τ ′; d) by interpolation using the computed sample
values of ME(Rτ ; d).

For αmax, which is the upper-bound of α, we consider
sampling τ between 2−αmax−1 and 1−2−αmax−1. If τ is close to
zero or one, sampling should be very dense; however, densely
sampling the entire range between 2−αmax−1 and 1−2−αmax−1

requires a large number of samples. Thus, we propose to
sample densely when τ is close to zero or one, and sparsely
otherwise.

Specifically, we first sample t uniformly between
−αmax−1 and−1. Furthermore, we compute ME(R2t ; d) for
the sampled values of t . In addition, we sample t uniformly
between 1 and αmax + 1 and compute ME(R1−2−t ; d) for
the sampled values of t . By interpolating these samples,
we can achieve a precise approximation of IME(τ ′; d)
using a smaller number of samples. Precision n̄ determines
how frequently the values of t are sampled, and we set
n̄ = 10. For a given maximum degree, dmax, and precision,
n̄, the StoreME algorithm in Algorithm 6 stores 2t (resp.
1−2−t ) in a two-dimensional table X̃ , and ME(R2t ; d) (resp.
ME(R1−2−t ; d)) in a two-dimensional table Ỹ for all degrees
d, 3 ≤ d ≤ dmax. For n̄ = 10 and αmax = 20, the number of
calls for ME(Rτ ; d) is 6, 030 for dmax = 31 and 12, 462 for
dmax = 63.
The AppIME algorithm in Algorithm 7 outputs an

approximate value of IME(τ ′; d) using tables X̃ and Ỹ
obtained from the StoreME algorithm. Here, several calls
for the AppIME algorithm require only one computation
of tables X̃ and Ỹ , that is, one execution of the StoreME

Algorithm 6: StoreME(dmax, n̄)
Input: Maximum degree dmax and precision n̄
Output: 2-dimensional tables X̃ and Ỹ

1 Generate 2-dimensional tables X̃ and Ỹ , both of which
have size of dmax−1

2 × 2(n̄αmax + 1)
2 for i← 0 to dmax−3

2 do
3 for j← 0 to n̄αmax do
4 τ ← 2−αmax−1+j/n̄

5 X̃ (i, j)← τ

6 Ỹ (i, j)← ME(Rτ ; 2i+ 3)
7 end
8 for j← 0 to n̄αmax do
9 τ ← 1− 2−(1+j/n̄)

10 X̃ (i, j+ n̄αmax + 1)← τ

11 Ỹ (i, j+ n̄αmax + 1)← ME(Rτ ; 2i+ 3)
12 end
13 end
14 return X̃ and Ỹ

algorithm. Thus, StoreME is performed only once for
various precision parameters, α.

B. RUNNING TIME OF THE PROPOSED ALGORITHM
We compare the running time of the ComputehG algorithm
using the previous algorithm for the inverse minimax
approximation error with that using the proposed algorithm.
Numerical analysis is conducted on a Linux PC with an
Intel Core i7-10700 CPU at 2.90 GHz with one thread. One
call for the improved multi-interval Remez algorithm takes
approximately 1.4 s on average when dmax = 31, and
4.9 s on average when dmax = 63. The expected running
time of ComputehG can then be obtained. Table 2 presents
the expected running time of the ComputehG algorithm
for α in the range 4–20 using the previous and proposed
algorithms for the inverse minimax approximation error.
As presented in Table 2, the proposed AppIME algorithm
requires significantly less running time than the previous
AppIMEbinary algorithm, which enables the execution of
the ComputehG algorithm for dmax = 63. Although the
running time of 17 h might still seem to be large, it should
be noted that this process only needs to be performed once
because its goal is to determine the optimal set of degrees.

Whereas the ComputehG algorithm in Algorithm 2 can
only be performed for dmax ≤ 31 in [9], we apply the
ComputehG algorithm for dmax ≤ 63 using the proposed
fast AppIME algorithm in Algorithm 7. Table 3 presents
the optimal sets of degrees, Mdegs, and the corresponding
minimum depth consumption, Dmin, for dmax = 31 and
dmax = 63. From Table 3, it can be observed that depth
consumption is reduced by one when α is nine or 14. That is,
for α = 9 or α = 14, a high dmax enables onemore non-scalar
multiplication per homomorphic comparison operation in the
FHE setting, where the available number of operations is
very limited per bootstrapping. Furthermore, the proposed
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Algorithm 7: AppIME(τ, d; dmax, n̄)
Input: Target maximum error τ , degree d , the odd

maximum degree dmax, and precision n̄
Output: An approximate value of IME(τ ; d)

1 X̃ , Ỹ ← StoreME(dmax, n̄)
2 for j← 0 to 2n̄αmax + 1 do
3 xj← X̃ ( d−32 , j)
4 yj← Ỹ ( d−32 , j)
5 end
6 for j← 1 to 2n̄αmax + 1 do
7 if yj ≥ τ then
8 if xj−1 < 0.5 and xj ≥ 0.5 then
9 return xj
10 else if yj−1 < 0.5 and yj ≥ 0.5 then
11 return xj
12 else if xj < 0.5 and yj < 0.5 then
13 p← log xj−1 + (τ − log yj−1)

log xj−log xj−1
log yj−log yj−1

14 return 2p

15 else if xj−1 ≥ 0.5 and yj < 0.5 then
16 p←− log(1− xj−1)
17 −(τ − log yj−1)

log(1−xj)−log(1−xj−1)
log yj−log yj−1

18 return 1− 2−p

19 else if yj−1 ≥ 0.5 then
20 p←− log(1− xj−1)
21 +(τ + log(1− yj−1))

log(1−xj)−log(1−xj−1)
log(1−yj)−log(1−yj−1)

22 return 1− 2−p

23 else
24 return ⊥
25 end
26 end
27 return ⊥

TABLE 2. Expected running time of ComputehG algorithm for α in the
range 4–20 using the previous and proposed algorithms for inverse
minimax approximation error.

AppIME algorithm enables the identification of a set of
degrees optimized for the RNS-CKKS scheme, as described
in Section IV.

IV. DETERMINING DEGREES OF COMPONENT
POLYNOMIALS OPTIMIZED FOR THE RNS-CKKS SCHEME
Unlike the previous study on the homomorphic comparison
operation in the CKKS scheme [9], we study the homo-
morphic comparison operation in the RNS-CKKS scheme
as well, and there are additional aspects to be considered.
Unlike the CKKS scheme, the RNS-CKKS scheme has
a relatively large rescaling error with the risk of a high

TABLE 3. Optimal sets of degrees Mdegs and corresponding minimum
depth consumption for homomorphic comparison operation for
dmax = 31 and dmax = 63. Dmin denotes the minimum depth
consumption for the homomorphic comparison operation.

failure rate in the homomorphic comparison operation using a
minimax composite polynomial [9]. We replace all additions
and multiplications required for polynomial evaluation with
additions and multiplications that use the scaling factor
management technique. It can be observed in Section VI
that a low failure rate is achieved using this technique and
appropriate parameter sets.

Another difference exists between the homomorphic
comparison operation in the CKKS scheme and that in
the RNS-CKKS scheme. For a given depth consumption
D, the set of degrees Mdegs that minimizes the number
of non-scalar multiplications can be obtained using the
ComputeMinMultDegs algorithm. Because the compu-
tation time of a non-scalar multiplication does not depend
significantly on the current ciphertext modulus in the CKKS
scheme, minimizing the number of non-scalar multiplications
corresponds to minimizing the running time. However,
because the computation time of non-scalar multiplication
depends significantly on the current level in the RNS-CKKS
scheme, minimizing the number of non-scalar multiplications
does not always correspond to minimizing the running time.

Fig. 1 illustrates the computation time of an example
polynomial of degree seven, according to the current level
on the RNS-CKKS scheme library SEAL [12]. From Fig. 1,
it can be observed that the computation time of a polynomial
tends to increase quadratically according to the maximum
level. For example, we consider two ordered sets Mdegs =

{7, 7, 31, 31} and Mdegs = {31, 31, 7, 7}. In the CKKS
scheme, the computation time of the homomorphic compari-
son operation using two sets of degrees will be approximately
the same. However, the homomorphic comparison operation
using the former is faster in the RNS-CKKS scheme because
a high degree polynomial is computed at a lower level.
Our core idea is to determine the set of degrees that
minimizes the running time rather than the number of non-
scalar multiplications. Specifically, we modify the previous
ComputehG and ComputeMinMultDegs algorithms so
that the modified algorithms can determine the set of degrees
Mdegs that minimizes the running time.
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FIGURE 1. Running time of a polynomial of degree seven according to the
current level of the ciphertext in the RNS-CKKS scheme library SEAL [12].

Here, we define C`(i, `′) for 0 ≤ i ≤ dmax−3
2 , 0 ≤

` ≤ `max, 0 ≤ `′ ≤ `max. First, we set the maximum
level to `. Then, starting from level `′(≤ `), any polynomial
of degree 2i + 3 is evaluated using the optimal level
consumption technique [10] and an odd baby-step giant-step
algorithm [28]. If t is the running time of the polynomial
evaluation in milliseconds, we define C`(i, `′) as C`(i, `′) =
b

t
100e. Here, if ` < `′ or `′ < dlog2(2i + 3)e, polynomial

evaluation is infeasible; thus, C`(i, `′) is set to a sufficiently
large value of 100, 000 in this case. We obtain the values of
C`(i, `′) by performing polynomial evaluation on encrypted
data. This computation is done on Intel Core i7-10700 CPU
at 2.90 GHz in single thread with an Ubuntu 20.04 LTS
distribution. Subsequently, uτ,L(m, n) and Vτ,L(m, n) are
defined recursively using the values of C`(i, `′) as follows:

uτ,L(m, n)

=


τ, if m ≤ 1 or n ≤ 1
IME(uτ,L(m− CL(jm,n − 1, n), n
−dep(2jm,n + 1)); 2jm,n + 1), otherwise,

Vτ,L(m, n)

=


φ, if m ≤ 1 or n ≤ 1
{2jm,n + 1} ∪ Vτ,L(m− CL(jm,n − 1, n),
n− dep(2jm,n + 1)), otherwise,

where

jm,n = argmax
1≤i

CL (i−1,n)≤m
dep(2i+1)≤n

IME(uτ,L(m− CL(i− 1, n),

n− dep(2i+ 1)); 2i+ 1).

uτ,L(m, n) implies the maximum value of τ ′ ∈ (0, 1), such
that there exists a set of degrees {di}1≤i≤k that satisfy the
following:

MCE(Rτ ′; {di}1≤i≤k ) ≤ τ
k∑
i=1

dep(di) ≤ n

Algorithm 8: ComputeuV(τ ;L)
Input: τ , maximum level L
Output: 2-dimensional tables ũ and Ṽ

1 Generate 2-dimensional tables ũ and Ṽ , both of which
have size of (tmax + 1)× (nmax + 1)

2 for m← 0 to tmax do
3 for n← 0 to nmax do
4 if m ≤ 1 or n ≤ 1 then
5 ũ(m, n)← τ

6 Ṽ (m, n)← φ

7 else
8 j← argmax

1≤i
CL (i−1,n)≤m
dep(2i+1)≤n

IME(ũ(m− CL(i− 1, n),

n− dep(2i+ 1)); 2i+ 1)
9 ũ(m, n)← IME(ũ(m− CL(j− 1, n),

n− dep(2j+ 1)); 2j+ 1)
10 Ṽ (m, n)← {2j+ 1} ∪ Ṽ (m− CL(j− 1, n),

n− dep(2j+ 1))
11 end
12 end
13 end

k∑
i=1

CL(
di − 3
2

,L −
i−1∑
j=1

dep(dj)) ≤ m,

where
∑k

i=1 CL(
di−3
2 ,L−

∑i−1
j=1 dep(dj)) denotes the running

time of the homomorphic comparison operation using a set
of degrees Mdegs = {di}1≤i≤k . For Vτ,L(m, n) = {d ′i }1≤i≤k ′ ,
MCE(Ruτ,L (m,n); {d

′
i }1≤i≤k ′ ) ≤ τ ,

∑k ′
i=1 dep(d ′i ) ≤ n, and∑k

i=1 CL(
di−3
2 ,L −

∑i−1
j=1 dep(dj)) ≤ m.

The ComputeuV algorithm in Algorithm 8 outputs
two-dimensional tables ũ and Ṽ that store the values of
uτ,L and Vτ,L , respectively. This ComputuV algorithm
requires several computations for IME(τ ′; d). However, these
computations can be performed rapidly using the proposed
AppIME algorithm.
Then, the ComputeMinTimeDegs algorithm in Algo-

rithm 9 outputs the minimum running timeMtime (in 100 ms)
and optimal set of degrees Mdegs using the two tables ũ and
Ṽ obtained from the ComputeuV algorithm.
We now propose the homomorphic comparison algorithm

OptMinimaxComp in Algorithm 10, which uses the
ComputeMinTimeDegs algorithm. This is a modified
version of the previous MinimaxComp algorithm in Algo-
rithm 5 [9], minimizing the running time of the RNS-CKKS
scheme for a given depth consumption D.

V. APPLICATION TO MIN/MAX AND ReLU FUNCTION
In this section, we apply the methods of improving the
homomorphic comparison operation proposed in Sections III
and IV to the max and ReLU functions. First, the max
function is an important operation employed in several
applications, including deep learning. The max function is
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Algorithm 9: ComputeMinTimeDegs(α, ε,D)
Input: Precision parameters α and ε, and depth

consumption D
Output: Minimum running time Mtime and the optimal

set of degrees Mdegs
1 ũ, Ṽ ← ComputeuV(21−α;D)
2 for j← 0 to tmax do
3 if ũ(j,D) ≥ δ = 1−ε

1+ε then
4 Mtime← j
5 Go to line 11
6 end
7 if j = tmax then
8 return ⊥
9 end
10 end
11 Mdegs← Ṽ (Mtime,D) ; // Mdegs: ordered set
12 return Mtime and Mdegs

Algorithm 10: OptMinimaxComp(a, b;α, ε,D, η)
Input: Inputs a, b ∈ (0, 1), precision parameters α and

ε, depth consumption D, and margin η
Output: Approximate value of comp(a, b)

1 Mdegs = {d1, d2, · · · , dk} ←
ComputeMinTimeDegs(α, ε,D)

2 p1← MP(R̃1−ε,1; d1)
3 τ1← ME(R̃1−ε,1; d1)+ η
4 for i← 2 to k do
5 pi← MP(Rτi−1; di)
6 τi← ME(Rτi−1; di)+ η
7 end
8 return pk◦pk−1◦···◦p1(a−b)+1

2

easily implemented using the sign function, that is,

max(a, b) =
(a+ b)+ (a− b) sgn(a− b)

2
.

Thus, the approximate polynomial for the max function
p̃(a, b) can be obtained from the approximate polynomial for
the sign function p(x) as

p̃(a, b) =
(a+ b)+ (a− b)p(a− b)

2
.

Then, p̃(a, b) should satisfy the following max function
error condition for precision parameter α:

|p̃(a, b)−max(a, b)| ≤ 2−α for any a, b ∈ [0, 1]. (2)

Because we have min(a, b) = a + b − max(a, b), the
approximate polynomial for the min. function p̂(a, b) can also
be easily obtained, that is, p̂(a, b) = a+ b− p̃(a, b).
The previous homomorphic max function MinimaxMax

in [9] adopts the set of degrees of component polynomials
obtained by executing the ComputeMinMultDegs algo-
rithm in Algorithm 4 for inputs α, ζ · 2−α , and D− 1, where
ζ is the max function factor that can be determined experi-
mentally. The proposed algorithm in Algorithm 11 improves

Algorithm 11: OptMinimaxMax(a, b;α, ζ,D, η)
Input: Inputs a, b ∈ [0, 1], precision parameter α, max

function factor ζ , depth consumption D, and
margin η

Output: Approximate value of max(a, b)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinTimeDegs(α, ζ · 2−α,D− 1)
2 p1← MP(R̃1−ε,1; d1)
3 τ1← ME(R̃1−ε,1; d1)+ η
4 for i← 2 to k do
5 pi← MP(Rτi−1; di)
6 τi← ME(Rτi−1; di)+ η
7 end
8 return (a−b)pk◦pk−1◦···◦p1(a−b)+(a+b)

2

on the previous MinimaxMax algorithm, and we obtain the
set of degrees using the ComputeMinTimeDegs algorithm
instead of the ComputeMinMultDegs algorithm.

In addition, the authors of [17] proposed a method to
precisely approximate the ReLU function using the approx-
imation of the sign function. This precise approximation of
the ReLU function is necessary to evaluate the pretrained
convolutional neural networks on FHE. The ReLU and sign
functions have the following relationship

ReLU(x) =
x + x sgn(x)

2
.

Thus, the approximate polynomial r(x) for the ReLU func-
tion can be implemented using the approximate polynomial
p(x) for the sign function, as follows:

r(x) =
x + xp(x)

2
. (3)

Then, r(x) should satisfy the following ReLU function
error condition for precision parameter α:

|r(x)− ReLU(x)| ≤ 2−α for any x ∈ [−1, 1]. (4)

The previous ReLU function algorithm that uses equa-
tion (3) can be described as Algorithm 12, which we refer to
as MinimaxReLU. The proposed ReLU function algorithm
in Algorithm 13 improves on the previous ReLU function
algorithm MinimaxReLU, and we obtain the set of degrees
using the ComputeMinTimeDegs algorithm instead of the
ComputeMinMultDegs algorithm. It should be noted that
the ReLU function algorithm uses the same value of the max
function factor ζ as the max function algorithm for a given
precision parameter α.

As explained in Section III, the proposed AppIME
algorithm makes it possible to apply the ComputehG
algorithm for dmax = 63, which enables us to obtain
a better set of degrees of component polynomials using
ComputeMinMultDegs. Table 4 presents the optimal set
of degreesMdegs for max/ReLU functions and corresponding
minimum depth consumption Dmin for dmax = 31 and
dmin = 63. From Table 4, it can be observed that the
depth consumption is reduced by one when α is 16, 17,

26172 VOLUME 10, 2022



E. Lee et al.: Optimization of Homomorphic Comparison Algorithm on RNS-CKKS Scheme

Algorithm 12: MinimaxReLU(x;α, ζ,D, η) [17]
Input: Inputs x ∈ [−1, 1], precision parameter α, max

function factor ζ , depth consumption D, and
margin η

Output: Approximate value of ReLU(x)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinMultDegs(α, ζ · 2−α,D− 1)
2 p1← MP(R̃1−ε,1; d1)
3 τ1← ME(R̃1−ε,1; d1)+ η
4 for i← 2 to k do
5 pi← MP(Rτi−1; di)
6 τi← ME(Rτi−1; di)+ η
7 end
8 return xpk◦pk−1◦···◦p1(x) +x

2

Algorithm 13: OptMinimaxReLU(x;α, ζ,D, η)
Input: Inputs x ∈ [−1, 1], precision parameter α, max

function factor ζ , depth consumption D, and
margin η

Output: Approximate value of ReLU(x)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinTimeDegs(α, ζ · 2−α,D− 1)
2 p1← MP(R̃1−ε,1; d1)
3 τ1← ME(R̃1−ε,1; d1)+ η
4 for i← 2 to k do
5 pi← MP(Rτi−1; di)
6 τi← ME(Rτi−1; di)+ η
7 end
8 return xpk◦pk−1◦···◦p1(x) +x

2

TABLE 4. Optimal set of degrees Mdegs and corresponding minimum
depth consumption for the homomorphic max/ReLU function for
dmax = 31 and dmax = 63. Dmin is the minimum depth consumption for
the homomorphic max and ReLU functions.

or 18, enabling one more non-scalar multiplication per
homomorphic max or ReLU function.

Furthermore, the proposed OptMinimaxMax and
OptMinimaxReLU algorithms minimize the running time
of the RNS-CKKS scheme for a given depth consumption

D using the ComputeMinTimeDegs algorithm instead of
the ComputeMinMultDegs algorithm.

VI. NUMERICAL RESULTS
In this section, numerical results of the proposed
OptMinimaxComp, OptMinimaxMax, and Opt
MinimaxReLU algorithms in Algorithms 10, 11, and 13,
respectively, are presented. The performances of
the OptMinimaxComp, OptMinimaxMax, and
OptMinimaxReLU algorithms using the proposed
ComputeMinTimeDegs algorithm are evaluated and
compared with those of the MinimaxComp, MinimaxMax,
and MinimaxReLU algorithms using the previous
ComputeMinMultDegs algorithm. Numerical analyses
are conducted using the representative RNS-CKKS scheme
library SEAL [12] on an Intel Core i7-10700 CPU at
2.90 GHz in a single thread with an Ubuntu 20.04 LTS
distribution.

A. PARAMETER SETTING
Precision parameters, ε and α, are the input and
output precisions of the homomorphic comparison
algorithm MinimaxComp or OptMinimaxComp in
the RNS-CKKS scheme. We set ε = 2−α , which
implies that the input and output precisions are the
same. By contrast, the homomorphic max function
algorithms, MinimaxMax and OptMinimaxMax, and the
homomorphic ReLU function algorithms, MinimaxReLU
and OptMinimaxReLU, use only the input precision
parameter α. We set N = 216. MinimaxComp,
MinimaxMax, MinimaxReLU, OptMinimaxComp,
OptMinimaxMax, and OptMinimaxReLU are performed
simultaneously for N/2 tuples of real numbers. The
amortized running time is then obtained by dividing the
running time by N/2.

1) SCALING VALUES AND MARGINS
We adopt the scaled Chebyshev polynomials T̃i(t) = Ti(t/w)
for a scaling valuew > 1 as the basis polynomials. The scaled
Chebyshev polynomials are computed using the following
recursion:

T̃0(x) = 1

T̃1(x) = x/w

T̃i+j(x) = 2T̃i(x)T̃j(x)− T̃i−j(x) for i ≥ j ≥ 1.

The scaling values, w, and margins, η, are obtained
experimentally. The obtained scaling values andmargins used
in our numerical analyses of the homomorphic comparison
operation and homomorphic max/ReLU functions are pre-
sented in Tables 5 and 6, respectively.

2) SCALING FACTOR
If the output of the homomorphic comparison operation or
homomorphic max function for one input tuple for two real
numbers a and b does not satisfy the comparison operation
error condition in (1) or the max function error condition
in (2), then it is considered to have failed. In addition, if the
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TABLE 5. Set of scaling values and margins for the previous homomorphic comparison algorithm MinimaxComp and the proposed algorithm
OptMinimaxComp.

TABLE 6. Set of scaling values and margins for the previous homomorphic max/ReLU function algorithms MinimaxMax/MinimaxReLU and the proposed
algorithms OptMinimaxMax/OptMinimaxReLU.

TABLE 7. Comparison between the running time (amortized running time) of the previous homomorphic comparison algorithm MinimaxComp and that of
the proposed algorithm OptMinimaxComp in the RNS-CKKS scheme.

output of the homomorphic ReLU function for one real input
number x does not satisfy the ReLU function error condition
in (4), it is said to have failed. The homomorphic comparison
operation, max function, or ReLU function is performed for
215 inputs for each α, and the number of failures is obtained.
The failure rate is the number of failures divided by the
total number of inputs, 215. We set the scaling factor to
be sufficiently large such that the homomorphic comparison
operation, max function, or ReLU function does not fail in
any slot; the failure rate is said to be less than 2−15 in this
case. We set the scaling factor 1 = 250 in all our numerical
analyses, and the number of failures is zero in all numerical
results.

3) BASES WITH PRIME NUMBERS
Bases with prime numbers B = {p0, p1, · · · , pk−1} and
C = {q0, q1, · · · , qL} should be selected. We set k = 1 and

p0 ≈ 260. In the numerical analysis of the homomorphic
comparison operation that consumes depth D, we set the
maximum level L = D. We set q0 ≈ 260 and qj ≈ 1 to
1 ≤ j ≤ L.

B. PERFORMANCE OF THE PROPOSED HOMOMORPHIC
COMPARISON ALGORITHM
The previous homomorphic comparison operation uses a
set of degrees Mdegs from ComputeMinMultDegs for
dmax = 31. By contrast, the proposed homomorphic
comparison operation obtains Mdegs for dmax = 63 from
ComputeMinTimeDegs. Depth consumption D should
satisfy D ≥ Mdep, where Mdep is the minimum depth
consumption obtained from the ComputeMinDep algo-
rithm. The set of degrees and running times (amortized
running times) of the previous homomorphic comparison
algorithm MinimaxComp and the proposed algorithm

26174 VOLUME 10, 2022



E. Lee et al.: Optimization of Homomorphic Comparison Algorithm on RNS-CKKS Scheme

TABLE 8. Comparison between the running times (amortized running times) of the previous homomorphic max/ReLU function algorithms
MinimaxMax/MinimaxReLU and that of the proposed algorithms OptMinimaxMax/OptMinimaxReLU in the RNS-CKKS scheme.

OptMinimaxComp are presented in Table 7. It can be
observed that the proposed homomorphic comparison algo-
rithm reduces the running time by 6% on average compared
to the previous algorithm.

Increasing the depth consumption D sometimes increases
running time. In this case, a depth consumption greater than
D does not need to be used, and Table 7 does not include this
case. Table 7 also does not include cases in which the previous
and proposed algorithms use the same set of degrees, Mdegs.

C. PERFORMANCE OF THE PROPOSED HOMOMORPHIC
MAX/ReLU FUNCTION ALGORITHM
As in the numerical analysis of the homomorphic
comparison operation, the proposed homomorphic
max and ReLU function algorithms obtain Mdegs from
ComputeMinTimeDegs for dmax = 63. The set of
degrees and running times (amortized running times) of
the previous homomorphic max/ReLU function algorithms
MinimaxMax/MinimaxReLU and the proposed algorithms
OptMinimaxMax/OptMinimaxReLU are presented in
Table 8. It can be observed that the proposed homomorphic
max and ReLU function algorithms reduce the running
time by 7% and 6% on average, respectively, compared
with the previous homomorphic max and ReLU function
algorithms. As in the numerical analysis of the homomorphic
comparison operation, Table 8 does not include cases when a
larger depth increases the running time or when the previous
and proposed algorithms use the same set of degrees Mdegs.

VII. CONCLUSION
We implemented the optimized homomorphic compari-
son, max function, and ReLU function algorithms for
the RNS-CKKS scheme using a composition of minimax
approximate polynomials for the first time. We successfully
implemented the algorithms on the RNS-CKKS scheme
with a low failure rate (< 2−15) and provided parameter
sets according to the precision parameter α. In addition,
we proposed a fast algorithm for the inverse minimax
approximation error, which is a subroutine required to
determine the optimal set of degrees. This algorithm enabled
us to determine the optimal set of degrees for a higher
maximum degree than that in the previous study. Finally,
we proposed a method to determine the set of degrees that

is optimized for the RNS-CKKS scheme using the proposed
fast algorithm for inverse minimax approximation error.
We reduced the depth consumption of the homomorphic
comparison operation (resp. max/ReLU functions) by one
depth when α is 9 or 14 (resp. when α is 16, 17, or 18).
In addition, the numerical analysis demonstrated that the
proposed homomorphic comparison, max function, and
ReLU function algorithms reduced the running time by 6%,
7%, and 6% on average, respectively, compared with the
previous algorithms.
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