IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 15, 2022, accepted February 17, 2022, date of publication March 14, 2022, date of current version March 22, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3159694

Privacy-Preserving Machine Learning With
Fully Homomorphic Encryption for
Deep Neural Network

JOON-WOO LEE'!, HYUNGCHUL KANG 2, YONGWOO LEE"“2, WOOSUK CHOI?,
JIEUN EOM2, MAXIM DERYABIN “2, EUNSANG LEE"!,

JUNGHYUN LEE"!, (Graduate Student Member, IEEE),

DONGHOON Y002, YOUNG-SIK KIM"“3, (Member, IEEE),

AND JONG-SEON NO"'1, (Fellow, IEEE)

'Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul 08826, Republic of Korea
2Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
3Department of Information and Communication Engineering, Chosun University, Gwangju 61452, Republic of Korea

Corresponding author: Young-Sik Kim (iamyskim@chosun.ac kr)

This work was supported by Samsung Advanced Institute of Technology.

ABSTRACT Fully homomorphic encryption (FHE) is a prospective tool for privacy-preserving machine
learning (PPML). Several PPML models have been proposed based on various FHE schemes and approaches.
Although FHE schemes are suitable as tools for implementing PPML models, previous PPML models
based on FHE, such as CryptoNet, SEALion, and CryptoDL, are limited to simple and nonstandard
types of machine learning models; they have not proven to be efficient and accurate with more practical
and advanced datasets. Previous PPML schemes replaced non-arithmetic activation functions with simple
arithmetic functions instead of adopting approximation methods and did not use bootstrapping, which
enables continuous homomorphic evaluations. Thus, they could neither use standard activation functions
nor employ large numbers of layers. In this work, we first implement the standard ResNet-20 model with
the RNS-CKKS FHE with bootstrapping and verify the implemented model with the CIFAR-10 dataset
and plaintext model parameters. Instead of replacing the non-arithmetic functions with simple arithmetic
functions, we use state-of-the-art approximation methods to evaluate these non-arithmetic functions, such as
ReLU and Softmax, with sufficient precision. Further, for the first time, we use the bootstrapping technique of
the RNS-CKKS scheme in the proposed model, which enables us to evaluate an arbitrary deep learning model
on encrypted data. We numerically verify that the proposed model with the CIFAR-10 dataset shows 98.43%
identical results to the original ResNet-20 model with non-encrypted data. The classification accuracy of
the proposed model is 92.43%=2.65%, which is quite close to that of the original ResNet-20 CNN model
(91.89%). It takes approximately 3 h for inference on a dual Intel Xeon Platinum 8280 CPU (112 cores)
with 172 GB of memory. We believe that this opens the possibility of applying FHE to an advanced deep
PPML model.

INDEX TERMS Privacy-preserving machine learning, ResNet-20, RNS-CKKS FHE scheme, SEAL library,

software implementation.

I. INTRODUCTION

The privacy-preserving issue is one of the most practi-
cal problems for machine learning recently. Fully homo-
morphic encryption (FHE) is the most appropriate tool

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Cusano

VOLUME 10, 2022

for privacy-preserving machine learning (PPML) to ensure
strong security in the cryptographic sense and satisfy the suc-
cinctness of communication. FHE is an encryption scheme in
which ciphertexts can be processed with any deep Boolean
or arithmetic circuits without access to the data. The secu-
rity of FHE is usually defined as the indistinguishability
under chosen-plaintext attack (IND-CPA) security, which is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 30039

https://orcid.org/0000-0001-5566-5358
https://orcid.org/0000-0001-9424-6498
https://orcid.org/0000-0002-6761-3667
https://orcid.org/0000-0002-5270-2405
https://orcid.org/0000-0001-9476-3313
https://orcid.org/0000-0003-4114-4935
https://orcid.org/0000-0002-3946-0958
https://orcid.org/0000-0001-9365-8167

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

a standard cryptographic security definition. If the client
sends the public keys and encrypted data with an FHE scheme
to the PPML server, the server can perform all the com-
putations required in the desired service before sending the
encrypted output to the client. Therefore, the application of
FHEs to PPML has been extensively researched before now.

The most successful PPML model on homomorphically
encrypted data prior to now was constructed using the Fast
Fully Homomorphic Encryption over the Torus homomor-
phic encryption scheme (TFHE) by Lou and Jiang [1], but
it used the leveled version of the TFHE scheme without
bootstrapping rather than an FHE version. In other words,
they chose in advance the parameters that can be used to
perform the desired network without bootstrapping. If we
want to design a deeper neural network with the leveled
homomorphic encryption scheme, impractically large param-
eters must be used, which causes a heavy runtime or mem-
ory overhead. Furthermore, because the packing technique
cannot be applied easily in the TFHE scheme, it can cause
additional inefficiency with regard to the running time and
memory overhead if we want to process many data simul-
taneously. Thus, it is desirable to use FHE with moderate
parameters and bootstrapping, which naturally supports the
packing technique in the PPML model.

Applicable FHE schemes with this property are word-wise
FHE schemes, such as the Brakerski-Fan-Vercauteren
(BFV) scheme [2] or Cheon-Kim-Kim-Song (CKKS)
scheme [3], [4]. In particular, the CKKS scheme has gained
considerable interest as a suitable tool for PPML implemen-
tation because it can deal with encrypted real numbers nat-
urally. However, these schemes support only homomorphic
arithmetic operations such as homomorphic addition and
homomorphic multiplication. Unfortunately, popular acti-
vation functions are usually non-arithmetic functions, such
as ReLU, sigmoid, leaky ReLU, and ELU. Thus, these activa-
tion functions cannot be directly evaluated using a word-wise
FHE scheme. When previous machine learning models using
FHE replaced the non-arithmetic activation function with
simple polynomials, these models were not proven to show
high accuracy for advanced classification tasks beyond the
MNIST dataset.

Although many machine learning models require multiple
deep layers for high accuracy, there is no choice but to use a
small number of layers in previous FHE-based deep learning
models until the fast and accurate bootstrapping techniques
of FHE schemes have very recently become available. The
bootstrapping technique transforms a ciphertext that can-
not further support homomorphic multiplication into a fresh
ciphertext by extending the levels of the ciphertext [5], [6].
However, the bootstrapping technique has been actively
improved with regard to algorithmic time complexity [7]-[9],
precision [10], and implementation [11], making bootstrap-
ping more practical. The PPML model with many layers must
be implemented using a precise and efficient bootstrapping
technique in the FHE. In addition, because the training pro-
cess is generally quite expensive as it requires many images

30040

and a large running time, it is more desirable to use the
pre-trained parameters trained for the original standard plain-
text machine learning model without any additional training
process.

A. OUR CONTRIBUTION

For the first time, we implement the ResNet-20 model for
the CIFAR-10 dataset [12] using the residue number system
CKKS (RNS-CKKS) [4] FHE scheme, which is a variant
of the CKKS scheme using the SEAL library 3.6.1 ver-
sion [13], one of the most reliable libraries implementing
the RNS-CKKS scheme. In addition, we implement boot-
strapping of the RNS-CKKS scheme in the SEAL library
according to [6]-[10] to support a large number of homo-
morphic operations for a deep neural network, as the SEAL
library does not support the bootstrapping operation. ResNets
are historic convolutional neural network (CNN) models that
enable a very deep neural network with high accuracy for
complex datasets such as CIFAR-10 and ImageNet. Many
high-performance methods for image classification are based
on ResNets because these models can achieve sufficiently
high classification accuracy by stacking more layers. We first
apply the ReLU function based on the composition of min-
imax approximate polynomials [14] to the encrypted data.
Using the results, we show the possibility of applying FHE
with bootstrapping to the standard deep machine learning
model by implementing ResNet-20 over the RNS-CKKS
scheme. The implemented bootstrapping can support a suf-
ficiently high precision to successfully use bootstrapping in
ResNet-20 with the RNS-CKKS scheme for the CIFAR-10
dataset.

Boemer et al. [15] pointed out that all existing PPML mod-
els based on FHE or multi-party computation (MPC) are
vulnerable to model-extraction attacks. One of the reasons
for this problem is that previous PPML methods with the FHE
scheme do not evaluate Softmax with the FHE scheme. It sim-
ply sends the result before the Softmax function, and then it
is assumed that the client computes Softmax by itself. Thus,
information about the model can be extracted with many
input-output pairs to the client. It is desirable for the server to
evaluate the Softmax function with FHE. We first implement
the Softmax function in the machine learning model using
the method in [3], and this is the first implementation of a
privacy-preserving machine learning model based on FHE
mitigating the model extraction attack.

We prepare the pretrained model parameters by training
the original ResNet-20 model with the CIFAR-10 plaintext
dataset and perform privacy-preserving ResNet-20 with these
plaintext pretrained model parameters and encrypted input
images. We find that the inference result of the proposed
privacy-preserving ResNet-20 is 98.43% identical to that of
the original ResNet-20. It achieves 92.43%42.65% classi-
fication accuracy, which is close to the original accuracy
of 91.89%. Thus, we verify that the proposed implemented
PPML model successfully performs ResNet-20 on encrypted

VOLUME 10, 2022

J.-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

data, even with the model parameters trained for the plaintext
model.

B. RELATED WORKS

1) HE-FRIENDLY NETWORK

Some previous works re-designed the machine learning
model to be compatible with the HE scheme by replacing the
standard activation functions with simple nonlinear polyno-
mials [16]-[20], called the HE-friendly network. Although
the highest classification accuracy of the HE-friendly CNN
with the simple polynomial activation function implemented
by word-wise HE is 91.5% for the CIFAR-10 dataset [20],
a better PPML machine learning model has not been demon-
strated until now. This suggests that these machine learning
models are usually successful only for a simple dataset and
cannot achieve sufficiently high accuracy for an advanced
dataset. Because the choice of activation functions is sensitive
in the advanced machine learning model, it may not be desir-
able to replace the standard and famous activation functions
with simple arithmetic functions. Moreover, an additional
pre-training process must be conducted before the PPML
service is provided. Because the training process is quite
time-consuming and requires a large amount of data, it is
preferable to use the standard model parameters of ResNets
and VGGNets trained for plaintext data when the privacy of
the testing dataset has to be preserved.

2) HYBRID MODEL WITH FHE AND MPC

Some previous studies evaluated non-arithmetic activation
functions using the multiparty computation technique to
implement the standard well-known machine learning model
that preserves privacy [15], [21]-[24]. Although this method
can accurately evaluate even non-arithmetic functions, the
privacy of the model information can be disclosed. In other
words, the client should know the activation function used in
the model, which is undesirable for PPML servers. In addi-
tion, because communication with clients is not succinct,
clients must be involved in the computation, which is not
desirable for clients.

3) PPML WITH LEVELED HOMOMORPHIC ENCRYPTION

Some studies have used a leveled homomorphic encryption
scheme to implement a standard machine learning model.
A representative example is the work of Lou and Jiang [1],
which implements ResNet-20 for the CIFAR-10 dataset or
ResNet-18 for the ImageNet dataset with a leveled version
of the TFHE scheme. When using a leveled homomorphic
encryption scheme, we should set parameters capable of
depth consumption for the desired circuit. Thus, to homomor-
phically evaluate deeper circuits, we must set large parame-
ters. This property of the leveled homomorphic encryption
scheme makes it difficult to evaluate a more deep learning
model because the required parameters may be impractical
to the general computing environment. Furthermore, the run-
ning time of each homomorphic encryption becomes larger,

VOLUME 10, 2022

and thus, the total running time can be asymptotically larger
than the linear time with the circuit depth. However, the
FHE scheme uses practical parameters with a fixed size
regardless of the circuit depth, and the total running time
can be linearly proportional to the circuit depth. Therefore,
for practical deep-learning models with large circuit depths,
the implementation of a deep-learning model using the
FHE scheme is an important research topic.

Il. PRELIMINARIES

A. RNS-CKKS SCHEME

The CKKS scheme [3] is an FHE scheme that supports
arithmetic operations on encrypted data over real or complex
numbers. The structure of these encrypted data is a one-
dimensional vector, where each component of this vector is
called a slot. Users with a public key can process encrypted
real or complex data using the CKKS scheme without know-
ing any private information. The security of the CKKS
scheme is based on the ring-LWE hardness assumption. The
supported homomorphic operations are the addition, scalar
multiplication, non-scalar multiplication, rotation, and com-
plex conjugation operations, and each operation except the
homomorphic rotation operation is applied component-wise.
While scalar multiplication is multiplication with plaintext,
non-scalar multiplication is multiplication with ciphertext.
The rotation operation homomorphically performs a cyclic
shift of the vector in several steps. The non-scalar multipli-
cation, rotation, and complex conjugation operations in the
CKKS scheme require additional evaluation keys and key-
switching procedures.

Each real amount of data is scaled with a large integer,
called the scaling factor, and then rounded to the integer
before encrypting the data. When the two data encrypted
with the CKKS scheme are multiplied homomorphically, the
scaling factors of the two data sets are also multiplied. This
scaling factor should be reduced to the original value by using
the rescaling operation.

Because the CKKS scheme requires somewhat large inte-
gers, the original CKKS scheme uses a multi-precision
library, which requires a higher computational complexity.
To reduce the complexity, a residue number system variant
of the CKKS scheme [4], called the RNS-CKKS scheme,
was also proposed. In the residue number system, a large
integer is split into several small integers, and the addition
and multiplication of the original large integers are equivalent
to the corresponding component-wise operations of the small
integers. The RNS-CKKS scheme was used in this study.

In this study, we denote homomorphic addition, homomor-
phic scalar multiplication, and homomorphic non-scalar mul-
tiplication as @, ©, ®. The homomorphic rotation operation
for the left rotation with r steps is denoted as rot(ct, r).

B. BABY-STEP GIANT-STEP POLYNOMIAL EVALUATION
To utilize homomorphic encryption, many nonarith-
metic operations of ResNets and bootstrapping must be

30041

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

approximated using high-order polynomials. When we evalu-
ate a polynomial for the encrypted input with the RNS-CKKS
scheme, it is important to reduce the number of non-scalar
multiplications and depth consumption as much as possible.
A well-known polynomial evaluation method that is efficient
in nonscalar multiplications and depth consumption is the
baby-step giant-step polynomial evaluation method.

Bossuat et al. [9] suggested a variant of the baby-step
giant-step polynomial evaluation method that guaran-
tees optimal depth consumption with a small additional
non-scalar multiplication. Because depth consumption is
generally more sensitive than the number of non-scalar mul-
tiplications because of the number of bootstrapping, we use
this variant as a default method for homomorphic polynomial
evaluation. Lee et al. [25] suggested an efficient method for
polynomials with only odd-degree terms. These algorithms
are elaborated upon with the proposed implementation based
on a binary tree in Section III-A.

C. BOOTSTRAPPING OF CKKS SCHEME

The rescaling operation reduces both the scaling factor and
ciphertext modulus, which are necessary for each homo-
morphic multiplication. After several consecutive multiplica-
tions, the ciphertext modulus cannot be further reduced. The
bootstrapping operation of the CKKS scheme [6] transforms
a ciphertext with a small modulus into a fresh ciphertext with
a large modulus without changing the message. Therefore,
any arithmetic circuit with a large multiplicative depth can be
obtained using bootstrapping.

Bootstrapping of the CKKS scheme starts with an increase
in the modulus of the ciphertext. Because the message poly-
nomial becomes m + gol, where gg is the modulus before
bootstrapping and / is an unknown integer polynomial, the
modular reduction of the coefficients of the message poly-
nomial should be performed homomorphically to remove the
qol part.

To move the coefficients of the message polynomials into
the slots, CoeffToSlot is performed to the raised ciphertext.
The core part of this operation is matrix multiplication with a
Vandermonde matrix. Specifically, if we have Uy and U as:

- N/2—1
! 0 g(z)v/z 1
1 s} §1 /12—
U= |. . . . ,
' ' L N
L1 Nt o KN//Q,l
N2 N/241 _
e B G
+ —
4 / | / g_11\/ 1
Uy = .) . .
NJ2 N2+ N-1
LSv2—1 Snja—t SN j2—1

Then, the CoeftToSlot operation is the homomorphic eval-
uation of the two formulas, z; =]%](l_]kr -z + Ul - 7) for
k = 0,1. Chen et al [7] proposed an FFT-like optimiza-
tion technique for this operation. They observed that these

30042

matrices are FFT-friendly in that some kind of butterfly struc-
ture can be applied to the operation. To provide a trade-off
between the running time and depth consumption, they also
proposed a level collapsing technique, where several layers
in the butterfly structure were merged to reduce the depth
consumption to the desired value. We used this FFT-like
optimization technique and the level-collapsing technique in
our implementation.

Next, we perform homomorphic modular reduction on the
converted ciphertext, called ModReduction. There are several
techniques, and we elaborate only on the techniques that
we used to implement. Lee et al. [10] proposed that modular
reduction is represented by the composition of several func-
tions A3 o hg o hp such that

hy(x) = 2m W) e =202 — 1
1(x) = cos 5T x—Z L ho(x) =2x° — 1,

1
h(x) = T arcsin x.

Then, hy and h3 are approximated using minimax approxi-
mate polynomials in the approximation regions. Lee et al.
also proposed an improved multi-interval Remez algorithm
to obtain a minimax approximate polynomial for piecewise
continuous functions. This approximation required several
parameters. K is the parameter that determines the number
of approximation intervals and € is the half width of each
interval. The approximation region was UlK: ZI(K,I)[i — €,
i + €]. While the parameter € is related to the range and
precision of the input message data, the parameter K is related
to bootstrapping failure. The additional parameters are the
polynomial degrees of the approximate polynomials of the
h1 and A3 functions. The homomorphic evaluation of polyno-
mials is performed using the baby-step giant-step polynomial
evaluation algorithm in Section II-B.

Then, the modular-reduced slots are reverted to the coef-
ficients of the message polynomial using SlotToCoeff. The
SlotToCoeff operation is a homomorphic evaluation of the
formula z = Uy - z0 + U; - z;. This operation can also
be optimized with FFT-like optimization and level-collapsing
techniques [7].

D. MINIMAX COMPOSITION OF ReLU

Lee et al. [14] showed that the ReLU function had to be
approximated with sufficiently high precision if we use
pre-trained model parameters with the original ResNet-20
model. A polynomial with a large degree is required if a single
minimax polynomial approximates the ReLU function, and a
large running time is required to evaluate homomorphically.
Instead of using a single minimax polynomial for the ReLU
function, they used the formula ReLU(x) = %x(l + sign(x))
and approximated sign(x) by the minimax composition of the
small degree polynomials [26]. It reduced the running time of
the homomorphic evaluation of the ReLU function, and this
approximation method made the homomorphic evaluation of
non-arithmetic functions, such as the ReLLU function, more
practical.

VOLUME 10, 2022

J.-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

Lee et al. [26] specified a method for determining the opti-
mal composite polynomials for the sign function. When each
polynomial composing the composite polynomial was found,
the range of the previous polynomial was used as the approx-
imation domain for the next polynomial. If each polynomial
is a minimax approximate polynomial of the sign function
for each domain, the range of each polynomial is always two
intervals symmetric to the origin. Each degree of the element
polynomial requiring minimal nonscalar multiplications for
the desired precision is determined by a dynamic program-
ming algorithm.

IIl. NEW CONSIDERATION FOR ResNet-20

ON RNS-CKKS SCHEME

To implement the ResNet-20 model with the RNS-CKKS
scheme, three new points must be considered: binary
tree-based implementation for polynomial evaluation, natural
implementation for the strided convolution, and implementa-
tion of the Softmax function.

A. BINARY TREE BASED IMPLEMENTATION OF
POLYNOMIAL EVALUATION

For a more intuitive and systematic implementation, we mod-
ify the baby-step giant-step polynomial evaluation algorithm
using a binary tree data structure. There is a precomputation
process for recursively dividing by the division algorithm for
the polynomial, which is shown in Algorithm 1. The output
of DividePoly is a binary tree useful in the homomorphic
polynomial evaluation process.

Algorithm 2 shows the binary tree-based baby-step giant-
step polynomial evaluation algorithm. For optimal depth con-
sumption, we may further divide the leftmost leaf node as
by Bossuat ef al. [9] in Lines 3—13. We generalize the giant
step degree as an arbitrary integer rather than a power-of-two
integer, as in [25].

Then, Lines 15-18 homomorphically evaluate the poly-
nomial in the non-leaf nodes and leaf nodes. T, (x) denotes
the nth Chebyshev polynomial. The Chebyshev polynomials
have the following recursive formula:

Tinan(x) — Tip—n(x) = 2T, (x) Ty (x),

where m > n. When we homomorphically evaluate the
Chebyshev polynomials in Lines 15 and 17, we use the
formula m = n, where Ty(x) is 1. When we homomorphically
evaluate other Chebyshev polynomials in Line 16, we set m
as the largest power-of-two integer less than the degree, and
n as the difference between the degree and m.

Lines 19-26 reduce the binary tree until it has only the
root node by homomorphically evaluating the polynomials
for non-leaf nodes with two leaf nodes. This implementation
is essentially the same as the method in [9]; however, it is
easier to design the implementation for the algorithm.

Lee et al. [25] suggested a method for polynomials with
only odd-degree terms. They observed that, if k is even, there
is no need to evaluate the Chebyshev polynomials with an
even degree that is not a power-of-two integer in Line 16.

VOLUME 10, 2022

If we denote OddPolyEval rather than PolyEval in
the following section, we omit these polynomial evaluation
processes.

Algorithm 1: DividePoly(p; k)
Input : A degree-d polynomial p, a giant step
parameter k
Output: A binary tree P with leaf having polynomials
1 if d < k then

2 return a binary tree P with a single root node having
4
3 else
4 Find m such that k - 2"~ ! < d <k .2™,
5 Generate a binary tree P with a single root node
haVing Tk,zm—l .

6 Divide p by T} ,m-1 to obtain the quotient g and the
remainder r.

7 Generate a binary tree Q using DividePoly(g; k).
8 Generate a binary tree R using DividePoly(r; k).
9 Append Q, R to the left child and the right child of
the root in P, respectively.

10 return P

11 end

B. STRIDED CONVOLUTION

Juvekar et al. [21] proposed an efficient convolution opera-
tion for a packing structure in an FHE scheme. They also
proposed a strided convolution operation on the homomor-
phic encryption scheme by decomposing the strided convo-
lution into a sum of nonstrided convolutions. However, their
proposed strided convolution operation is not natural for the
packing structure in the RNS-CKKS scheme. Furthermore,
the following operations after their strided convolution are
difficult to perform on the RNS-CKKS scheme.

We propose an efficient and natural method for strided con-
volution in the RNS-CKKS scheme. Instead of decomposing
the strided convolution, we regard the output of the strided
convolution as part of the non-strided convolution, as in fact
the output data for the non-strided convolution includes the
output data for the strided convolution. If we perform non-
strided convolution, there are some gaps between the required
output data for the strided convolution, which is not com-
pletely uniform in the regular sense. Thus, after performing
the non-strided convolution, we perform homomorphic scalar
multiplication with a window kernel that reflects these gaps.
The slot structure of the output data of the strided convolution
in the output slots of the nonstrided convolution is shown
in Fig. 1.

We also find that this slot structure with regular gaps is
compatible with the following ReLU functions, non-strided
convolution operations, and even strided convolution opera-
tions. Because the ReLU function is evaluated component-
wise, this slot structure does not consider the ReLU function.
The non-strided convolution to the slot structure after the

30043

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

Algorithm 2: PolyEval(ct, p; k)
Input : A ciphertext ct = Enc(x), a degree-d
polynomial p
Output: A ciphertext of p(x)
1 Generate a binary tree P using DividePoly(p; k).
2 [< [logk]l—1
3 if P is a full binary tree and the leftmost leaf polynomial
has degree more than 2' then
4 po < the leftmost leaf polynomial

5 V <« the leftmost leaf node
6 while the polynomial in V has degree more than 2!
do

Replace pp with T in V.
Divide pg by T to obtain the quotient ¢ and the
remainder r.

9 Append g, r to the left child and the right child
of V.

10 V <« the left child of V

1 l<—1-1

12 end

13 end

14 | < [logk] —1

15 Homomorphically evaluate T>(x), T4(x), - - - , Th(x)

using Ta,(x) = 2T, (x)? — 1.
16 Homomorphically evaluate other T, (x) for 3 <n < k.
17 Homomorphically evaluate Tox(x), - - - , Tom—14(x).
18 Evaluate all of leaf node polynomials using the
pre-computed ciphertexts.
19 while P has only a root node do
20 V <« one of the non-leaf nodes that have two leaf
child
21 cty <« ciphertext for the polynomial (7'(x)) in V
(pre-computed in Line 15, 17)
22 ct, < ciphertext for the polynomial (g(x)) in left
child of V
23 ct, < ciphertext for the polynomial (7(x)) in right
child of V
24 ctr < ct; @ cty d ct,
25 Replace T'(x) with g(x)T (x) + r(x) in node V and
remove the childs of V

26 end
27 return ct, for input polynomial p(x)

proposed strided convolution can be performed with
Gazelle’s convolution method [21], with all rotation steps
doubled. Additional strided convolution to the slot structure
after the strided convolution can be performed with the
non-strided convolution for this slot structure, followed by
additional filtering. With these convolution methods, we can
perform non-strided and strided convolution operations, even
after several strided convolutions.

In ResNet-20, we only use convolution with a stride of
one or two, and thus we assume that the strided convolution
is convolution with stride two. Each convolution operation

30044

al|lb|c
11213
f h AlC
¢ = @ |a]5]16]| =
A e B I
71819
min|o|p

(a) Plaintext

alolelalelelefn]i[s[x[1]m]a]o]es]

l stride-1 convolution

|[a]B]c|p|e[F[c|u]1]s][x]L]|m]|x]o]r]

IlIO]Ilo]o[a[olo?l]0[1]0[0]0[0]0'windowkernel
|A| |C| | I I I !I| IKI I I I I |stride—2 convolution
(b) Ciphertext

FIGURE 1. Stride-2 convolution.

should be given an additional parameter slotstr, which repre-
sents the slot structure for meaningful data in the input cipher-
text of each convolution. The parameter slotstr is stored in
each ciphertext for each channel and initialized with zero,
and it is added by one only when the strided convolution
is performed. If the non-strided convolution is performed,
we apply Gazelle’s convolution method with the steps mul-
tiplied by 289 If the strided convolution is performed,
we perform the same procedure as the non-strided convolu-
tion, except for the following filtering. A specific algorithm
for the strided convolution is presented in Section V-C.

C. APPROXIMATION FOR SOFTMAX

The inverse function of the Softmax function is unstable,
that is, if one tries to recover the inputs to Softmax from
the erroneous Softmax outputs, the recovered input may be
quite different because of the amplification of noise in the
output. Various inherent noises in homomorphic computa-
tions occur in the RNS-CKKS scheme, and thus, the input to
Softmax will be difficult to recover. Thus, we implemented
the Softmax function in our privacy-preserving ResNet-20
implementation for security against the model extraction
attack. The Softmax function is ¢/ ZJ.T:_OI e% for each i =
0,---,T — 1, where T denotes the number of classification
types. Because the Softmax function was not implemented in
previous works for the PPML with homomorphic encryption,
the approximation method for the Softmax function should be
newly designed. There are two non-arithmetic operations in
the Softmax function: an exponential function and an inverse
function.

We use different approximation techniques for these
non-arithmetic functions because of the differences in the
characteristics of the input values. The absolute input values
of the exponential function are dozens, but the output values
of that function are unstable. However, the input values of
the inverse function are unstable because each scale of the
input value is different from the input value. Based on these

VOLUME 10, 2022

J.-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

characteristics, we chose the following approximation meth-
ods, and the entire algorithm is suggested in Section V-G.

1) EXPONENTIAL FUNCTION

If we simply approximate the exponential functions on a
desired interval, the approximation may not be accurate,
because the scales of the output for the exponential func-
tion can be too varied. Assume that we must approximate
the exponential function ¢* in [—B, B]. We can then regard
the function as (¢*/P)P. Note that we can approximate e”
in [—1,1] when we set y = x/B, and the exponential
function in this interval is easy to approximate. Thus, we
approximate the exponential function in [—1, 1] using the
least-squares method, and we find that the approximate poly-
nomial with degree 12 can approximate sufficiently precisely.
Then, when we homomorphically evaluate the exponential
function in [—B, B], we divide the input by B, evaluate the
approximate polynomial for the exponential function, and
exponentiate it with B. If we set B as a power-of-two integer,
the exponentiation with B can be implemented by repeated
squaring.

2) INVERSE FUNCTION

Although the exponential function has a range with various
scales, the inverse function in the Softmax function has a
domain with various scales. This characteristic makes the
approximation of the inverse function difficult with ordinary
polynomial approximation, even with some scaling of the
input. In this case, the Goldschmidt division method is
appropriate for evaluating the inverse function of the input
with various scales [27], [28]. In the Goldschmidt division
method, the following formula is used,

1—x2n nil 2i
— =[[a+x%.
i=0

If |[x| < 1, where the left term of the above formula con-
verges to 1/(1 — x) quickly, even with a small n. When
we substitute y = 1 — x, the inverse function 1/y can be
approximated as]_[?2_01 1+ 1=y, when0 <y < 2.
Note that, even if y is close to zero, the approximated inverse
function value is amplified to a very large number. This
characteristic cannot be satisfied by using ordinary polyno-
mial approximation methods. This characteristic can be used
to reserve the role of the Softmax function in generating
a one-hot vector, even when we approximate the Softmax
function.

When the range of the input is (0, 2R], we consider the
inverse function in the range of 1/R-1/(y/R). In other words,
the input value is multiplied by 1/R, evaluated by the inverse
function with the Goldschmidt division method, and multi-
plied by 1/R again. Note that R is a very large number, and
the input may be far less than R. Even if y/R is very close
to zero, the Goldschmidt method stably evaluates the inverse
function, as previously mentioned.

VOLUME 10, 2022

3) GUMBEL SOFTMAX FUNCTION

If the input value of the Softmax function is large, the bound B
for the range of the exponential function should be so large
that the output value exceeds the capacity of the homomor-
phic encryption scheme. If the value of R is set to a fixed value
for sufficient precision of the inverse function, the input value
of the inverse function can be larger than 2R. In this case,
we can use the Gumbel Softmax technique, which evaluates
the following function instead of the Softmax function:

eil*
Vi e
where A is an additional parameter. If we use the Gumbel
Softmax function, the output vector is still similar to the one-
hot vector, and thus the model extraction attack can be suffi-
ciently mitigated. Furthermore, the range of the exponential

function is reduced from B to B'/* and the input of the inverse
function is included in (0, 2R].

IV. POSITION OF BOOTSTRAPPING

Because we first use the bootstrapping operation in a machine
learning model, we should consider performing the bootstrap-
ping operation in the middle of the ResNet-20 model. In this
section, we analyze several factors affecting the efficiency of
the bootstrapping operation.

The key-switching operation is the heaviest operation in
the homomorphic operations in the RNS-CKKS scheme;
thus, the nonscalar multiplication, rotation, and complex con-
jugation requiring the key-switching operation are far heavier
than the addition and scalar multiplication. Therefore, the
number of key-switching operations roughly determines the
total number of operations.

There is a major additional factor affecting the total number
of operations and the level of ciphertext for the key-switching
operation. The key-switching operation includes the decom-
posing, multi-sum, and mod-down operations. While the
mod-down operation is linear with the level of the input
ciphertext, the decomposing operation and multi-sum oper-
ation are quadratic with the level of the input ciphertext.
Because the most time-consuming operation among the three
procedures is the decomposing operation, the key-switching
operation is a quadratic function with level. This quadratic
property shows the large effect of the ciphertext level on the
key-switching operation and total number of operations.

This quadratic property is numerically confirmed using the
SEAL library, as shown in Fig. 2. Fig. 2 shows the running
time of the rotation operation for the various levels of the
input ciphertext, where the most part of the rotation operation
is the key-switching operation, and it also shows the graph of
the square root of the running time to represent the quadratic
property more clearly. The square root of the running time
is almost a linear function with level, which confirms the
quadratic property. Thus, the sum of the squared level of
each input ciphertext of each key-switching operation can
be simulated much more closely than the number of key-
switching operations.

30045

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

)

Running time (s}

0 5 10 15 20 25
Ciphertext modulus (level +1)

(@) Trot-(£ + 1) graph

Square root of running time
°
g

0 5 10 15 20 25
Ciphertext modulus (level +1)

(b) VTrot-(£ + 1) graph

FIGURE 2. Running time for the rotation operation for various number of
ciphertext modulus with N = 21 (a) T,o¢-(¢ + 1) graph (b) /Toe-(¢ + 1)
graph.

Although the most time-consuming operation in
ResNet-20 is the bootstrapping operation, the level of the
ciphertexts for each key-switching operation in the boot-
strapping is fixed, regardless of the structure of ResNet-20.
Thus, it is desirable to compare the number of key-switching
operations of the convolution and ReLLU functions. We note
that the number of key-switching operations in the convolu-
tion operation is significantly higher than that in the ReLU
function because of the numerous rotation operations in the
convolution operation.

This suggests that it is desirable to perform bootstrapping
immediately after the convolution operation. Then, the con-
volution operation is performed at the lowest level of the
ciphertext, and many rotation operations in the convolution
operation are significantly reduced. A numerical comparison
of this analysis is presented in Section VI.

V. IMPLEMENTATION DETAILS OF ResNet-20

ON RNS-CKKS

A. STRUCTURE

Fig. 3 shows the structure of the ResNet-20 model and Table |
shows the specification of the ResNet-20. With this structure,
We design our implemented structure for ResNet-20 using the
RNS-CKKS scheme, as shown in Fig. 4, where it consists
of convolution (Conv), batch normalization (BN), ReLU,
bootstrapping (Boot), average pooling (AP), fully connected
layer (FC), and Softmax. This model is virtually identical
to the original ResNet-20 model, except that bootstrapping

30046

procedures are added. These procedures are described in the
following subsections.

B. GENERAL SETTING FOR RNS-CKKS SCHEME

1) PARAMETERS

We set the ciphertext polynomial degree to 2'¢ and the secret
key Hamming weight to 64. The bit lengths of the base
modulus (go), special modulus, and default modulus are set
to 60, 60, and 50, respectively. The bit length of the modulus
in the bootstrapping range is the same as that of gg. The
numbers of levels for the general homomorphic operations
and bootstrapping are set to 11 and 13, respectively. The max-
imum bit length of the modulus is 1450, which satisfies the
111.6-bit security. The security level X is computed based on
Cheon et al.’s hybrid dual attack [29], which is the fastest
attack on the LWE with a sparse key. Table 2 lists the
parameters.

2) DATA PACKING
The message is a 32 x 32 x 3 CIFAR-10 RGB image, and
one single image is processed at a time. We can use 2!3
message slots in one ciphertext with our parameters, which is
a half of polynomial degree. Rather than using the full slots
of the ciphertext, we employ the sparse packing method [6]
to pack a channel of a CIFAR-10 image in one ciphertext
using only 2!9 sparse slots. This is because the bootstrapping
of sparsely packed ciphertext takes much less time than that
of fully packed ciphertext, and convolution operations can be
performed more smoothly with minimal rotation operations.
We construct a structure for the encrypted tensor. In our
implementation, it is not sufficient to have ciphertexts com-
posing the encrypted data, but we must store the slot structure
parameter generated by the strided convolution. For ease of
understanding, we also store the dimensions of the tensor
in the encrypted tensor. An encrypted tensor Tensorct for a
tensor in RE*¢*" ig in the form of ({cty)}k, £, slotstr, i), where
{cti}x is an array of ciphertexts comprising the encrypted
tensor, and slotstr is the slot structure parameter. Algorithm 3
shows the detailed algorithm for encrypting image tensors.

Algorithm 3: EncTensor(A € REXLXH)

Input : A tensor A € REXLxH
Output: An encrypted tensor Tensorct
fork =0toH — 1do

2
v < 0 e RE

-

2

3 fori=0toL — 1do

4 forj=0toL —1do
5 X <«i-L+j

6 velx] < Ali, J, k]
7 end

8 end

9 Cty < Enc(vk;N,Lz)
10 end

—
=

return ({Cty }¢—o,... m—1,L, 0, H)

VOLUME 10, 2022

J.-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

TABLE 1. The specification of the ResNet-20 (CIFAR-10).

Layer Input Size #Inputs Filter Size #Filters Output Size =~ #Outputs
Convl 32 x 32 3 3x3 16 32 x 32 16
2-1 32 x 32 16 3x3 16 32 x 32 16
Conv2 2-2 32 x 32 16 3x3 16 32 x 32 16
2-3 32 x 32 16 3x3 16 32 x 32 16
3-1-1 32 x 32 16 3x3 32 16 x 16 32
3-1-2 16 x 16 32 3x3 32 16 x 16 32
Conv3 3-1-s 32 x 32 16 1x1 32 16 x 16 32
3-2 16 x 16 32 3x3 32 16 x 16 32
3-3 16 x 16 32 3x3 32 16 x 16 32
4-1-1 16 x 16 32 3x3 64 8 X8 64
4-1-2 8 x 8 64 3x3 64 8 x 8 64
Conv4 4-1-s 16 x 16 32 1x1 64 8 x 8 64
4-2 8 x 8 64 3x3 64 8 x 8 64
4-3 8 x 8 64 3x3 64 8% 8 64
Average Pooling 8 X8 64 8 X8 64 - 64
Fully Connected 64 x 1 1 - - - 10

10-Tuple
Vector

Jirl

conv2_2

FIGURE 3. Structure of ResNet-20.

TABLE 2. RNS-CKKS parameter settings.

Hamming Modulus Special ~ Scaling Evaluation Bootstrapping
A Weight Degree Q 0 Prime Factor Level Level
111.6 64 216 1450 bits 60 bits 60 bits 50 bits 11 13

3) DATA RANGE AND PRECISION

Any polynomial can approximate continuous functions only
in certain bounded sets. If even one value in the message slots
exceeds this bounded set, the absolute value of the output
diverges to a large value, leading to complete classification
failure. Because FHE can only handle arithmetic operations,
polynomial approximation should be used for non-arithmetic
operations, such as the ReLU function, bootstrapping, and
Softmax functions. Therefore, the inputs for these procedures
should be within the bounded approximation region. We ana-
lyze the absolute input values for ReLU, bootstrapping, and
Softmax when performing ResNet-20 with several images.
Because the observed maximum absolute input value for
these procedures is 37.1, we conjecture that the absolute input
values for these procedures are less than 40 with a very high
probability. This observation is used in the implementation of
each procedure. We also empirically find that the precision of
the approximate polynomial or the function should be at least
16bits below the decimal point; thus, we approximate each
non-arithmetic function with 16-bit average precision.

VOLUME 10, 2022

4) OPTIMIZATION FOR PRECISION OF HOMOMORPHIC
OPERATIONS

We apply several methods to reduce the rescaling and relin-
earization errors and ensure the precision of the resultant
message, such as scaling factor management in [30], lazy
rescaling, and lazy relinearization [31], [32]. Lazy rescaling
and relinearization can also be applied to reduce the com-
putation time, as they require significant computation owing
to the number-theoretic transformation (NTT) and gadget
decomposition.

C. CONVOLUTION AND BATCH NORMALIZATION

Most of the operations in ResNet-20 are convolutions with
zero-padded inputs to maintain their size. We use the
packed single-input single-output (SISO) convolution with
stride 1 used in Gazelle [21]. Strided convolution with
stride 2 is also required to perform downsampling, and
it is performed by the method proposed in Section III-B.
Algorithm 4 shows the detailed algorithm for convolution,
which includes both non-strided convolution and strided

30047

lEEEACC@SS J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

(8]
o
o
E]
C|B| |R|B C|B| |R|B C B R|B
o|o|Blelo olo|Blelo o o|(B elo
- +
nlo|N|Lio n|o|NfL|o n o[N Lo
vit| (Ut vit| |Ut v t Ut
[\))
Y
Convl Conv2_1 Conv2_3
8]
o
o
t
C|B| |R(B (o B R(B
o|o|B|e|o o o|B + elo
njo|N[L o n o|N Lo
vit| |Ut \ t Ut
L)
Y
Conv3_1 Conv3_3
s >
>
C(B| |R|(B C R|B °\B|(B[|B||,
o|o|B|e|o o + elo Iooo§ 10-Tuple
nio[N/Lio n Lio mollol|o| | Vector
vit| [U[t v U/t altf|t]|t]]!
s >
L J

2\ Y
Conv4_1 Conv4_2

FIGURE 4. Proposed structure of ResNet-20 over RNS-CKKS scheme.

convolution. Non-strided convolution is performed when str
is 1, and strided convolution is performed when str is 2. Each
rotation step is multiplied by the value of slotstr, as discussed
in Section III-B.

Because the batch normalization procedure is a simple lin-
ear function with constant coefficients, it can be implemented
using homomorphic addition and homomorphic scalar
multiplication.

D. ReLU

For the first time, we implement the ReLU function in
ResNet-20 with the RNS-CKKS scheme using the compo-
sition of the minimax polynomial approximation proposed
by Lee et al. [14]. To find an appropriate precision value,
we repeatedly perform a ResNet-20 simulation over the
RNS-CKKS scheme while changing the precision, and we
find that the minimum 16-bit precision shows good perfor-
mance on average.

To synthesize the sign function for the ReLU approx-
imation, we generate the composition of the small min-
imax approximate polynomials with precision parameter
o = 12 using three minimax approximate polynomials
with degrees 7, 15, and 27. Algorithm 5 generates com-
posite polynomials approximating the sign function [26].
GenMinimax(f,d,D) in Algorithm 5 is an algorithm
that generates the minimax approximate polynomial with
degree d for function f on domain D, and we implement

30048

2\
Conv4_3

Algorithm 4: Conv(Tensorct, W, stride)

X N N AW N -

10
11
12
13
14
15
16

—
2

Input : An encrypted tensor
Tensorct = ({Cl }x=0.... .1—1, £, Slotstr, 1),
weight parameters W € RO (¢ is an odd
integer), and the stride of the convolution
operation Str

Output: An output encrypted tensor Tensorct’

L <« ¢ - slotstr
forh=0tot —1do
ct, < 0
fork =0tor—1do
for (i,j)) =(0,0)to(c—1,c—1)do
w < 0 e R
for (/,j/)=(0,0)to (£ — 1,£ — 1) do
ifO<i/+i—|c/2]<f—1and0 <
j +j—1lc/2] <£—1then
w[(i - L +j') - slotstr - str] <
WIi,j, k, h]
end
end
re(i—1e/2)) - L+ (- Lc/2])
cty, < ct), & (w © rot(ck, r - slotstr))
end
end
end
return ({Ct, };—o,... /—1, £/str, slotstr - str, ¢)

VOLUME 10, 2022

J.-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

Algorithm 5: GenSignPoly(w, {d;};)
Input : Precision parameter of sign function «,
sequence of composite polynomial degrees
{di}i=0,... s—1
Output: Sequence of composite polynomials for sign
function {p;}i—o.... s—1 Where
Ps—10 -0 po(x) ~ sign(x)
1 fori=0tos—1do
2 if i = O then
3 \ Dy < [—1,-27%TU[27%, 1]
4 else
5 | Di < Range(pi_1, Di—1)
6
7
8

end
pi < GenMinimax(sign, d;, D;)
end

Algorithm 6: ReLU(Tensorct, {p;};)
Input : An encrypted tensor
Tensorct = ({Clg }k=0,... .11, £, slotstr, 1),
sequence of composite polynomials for sign
function {p;}i=0.... s—1
Output: An activated encrypted tensor with ReLU

Tensorct/
1 fork=0tor—1do
2 | ot «ct
3 fori=0tos— 1do
4 | ctj, « oddPolyEval(cty,p;)
5 end
6 | ¢t < (050ctk)®1+ct))
7 end

this algorithm using the multi-interval Remez algorithm [10].
Range(f, D) denotes the range of f in the domain D.

Algorithm 6 shows the homomorphic evaluation method
for the ReL.U function using the composite polynomials gen-
erated by Algorithm 5 as the input. After homomorphically
evaluating the p;’s in order, we homomorphically evaluate
x(1 + sign(x))/2.

This composition of polynomials ensures that the aver-
age approximation precision is approximately 16-bit preci-
sion. The homomorphic evaluation of the polynomials is
performed using the odd baby-giant method in [25] and the
optimal level consumption method in [9]. Because the homo-
morphic evaluation of polynomial compositions consumes
many depths, it is impossible to complete it without boot-
strapping. Thus, we use bootstrapping twice in a layer, once
in the middle, and once at the end of evaluating the ReLU
function.

E. BOOTSTRAPPING

Because we have to consume many depths to implement
ResNet-20 in the RNS-CKKS scheme, many bootstrapping
procedures are required to ensure sufficient homomorphic

VOLUME 10, 2022

TABLE 3. Boundary of approximation region given key Hamming weight
and failure probability of modular reduction.

Pr(JI;| >K) || h=64 h=128 h=192
2723 9] 12 17 21
2—30 14 20 24
2—40 16 23 28

multiplications. For the first time, we apply the bootstrap-
ping technique to perform deep neural networks such as
ResNet-20 on encrypted data and prove that the FHE
scheme with state-of-the-art bootstrapping can be success-
fully applied to privacy-preserving deep neural networks.
Because the SEAL library does not support any bootstrapping
technique, we implement the most advanced bootstrapping
with the SEAL library [9]-[11]. CoeffToSlot and SlotToCoeff
are implemented using a collapsed FFT structure [7] with
a depth of 2. The ModReduction is implemented using the
composition of the cosine function, two double-angle formu-
las, and the inverse sine function [8], [10], where the cosine
function and the inverse sine function are approximated using
the multi-interval Remez algorithm as in [10].

The most crucial issue when using bootstrapping in the
RNS-CKKS scheme is bootstrapping failure. More than a
thousand bootstrapping procedures are required in our model,
and the result of the entire neural network can be largely
distorted if even one of the bootstrapping procedures fails.
Bootstrapping failure occurs when one of the slots in the
input ciphertext of the ModReduction procedure is not within
the approximation region. The approximation interval can
be controlled by bootstrapping parameters (K, €), where the
approximation region is UlK: :1(,(,])[1' — €,1 + €] [6]. While
parameter € is related to the range and precision of the input
message data, parameter K is related to the values composing
the ciphertext and is not related to the input data. Because the
values contained in the ciphertext are not predictable, we must
investigate the relationship between the bootstrapping failure
probability and the parameter K .

We describe how bootstrapping failure affects the entire
ResNet evaluation and propose a method to reduce the
bootstrapping failure probability. As CKKS bootstrapping is
based on the sparsity of the secret key, there is a failure
probability of bootstrapping.

The decryption formula for a ciphertext (a, b) of the CKKS
scheme is given as a - s + b = m + e (mod R,) for secret
key s; hence, a - s +b =~ m + g -1 (mod Rp), where the
Hamming weight of s is /. As the coefficients of a and b are
in [-%, D), the coefficients of a - s + b have an absolute
value less than w. However, based on the ring-LWE
assumption, the coefficients of a - s + b follow a scaled
Irwin-Hall distribution and it is assumed that the coefficients
of] < K = O(«/Z) [32]. Because the modular reduction
function is approximated in the domain UlK: :1(K—1) [i—e, i+€],
If a coefficient of I has a value greater than or equal to K, the
modular reduction returns a useless value and thus fails. This
is why the approximated modular reduction in the previous
CKKS bootstrapping has a certain failure probability.

30049

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

Even though O(+/h) is a reasonable upper bound for a
single bootstrapping, it is not sufficient when the number of
slots is large and there are many bootstrappings. Let p be the
probability of modular reduction failure, Pr(|/;| > K). If there
are n slots in the ciphertext, then there are 2n coefficients to
perform modular reduction. Hence, the failure probability of
single bootstrapping is 1 — (I — p)*" ~ 2n - p. Similarly,
when N}, bootstrappings exist in the evaluation of the entire
network, the failure probability of the entire network is 2V, -
n - p. As there are many slots in our ciphertext and thousands
of bootstrapping are performed, the failure probability is very
high when using previous approximate polynomials.

In Table 3, we present several bounds for the input message
and its failure probability. A larger bound means that a higher
degree of the approximate polynomial is required; hence,
more computations are required. Using the new bound for the
approximation in Table 3, we can offer a trade-off between the
evaluation time and failure probability of the entire network.
Following [9], [32], the approximated modular reduction in
the CKKS bootstrapping thus far has a failure probability
~ 2723 but it is not sufficiently small because we have to per-
form many bootstrapping procedures for ResNet-20. Thus,
the bootstrapping failure probability is set to less than 2740
in our implementation. The Hamming weight of the secret
key is set to 64, and (K, €) = (17, 2710y The corresponding
degree for the minimax polynomial for the cosine function is
45, and that of the inverse sine function is 1, which is obtained
using the multi-interval Remez algorithm [10]. The number
of double-angle formulas £ is set to two.

F. AVERAGE POOLING AND FULLY CONNECTED LAYER
The size of the tensor after all convolutional layers are per-
formed is 8 x 8 x 64. We perform average pooling on each
channel to obtain a vector of length 64 and a fully connected
layer to obtain a vector of length 10. The form of the output
for average pooling is an array of ciphertexts with a length
of 64, and each element of the ciphertext array has corre-
sponding data in the first slot. Because all data are separated
into other ciphertexts, no rotation operation is required when
we perform the fully connected layer. Algorithm 7 shows
the detailed procedures for average pooling and the fully
connected layers.

G. SOFTMAX
We use the Softmax method proposed in Section III-C. The
bound parameters B and R are set to 64 and 10%, respectively,
and the Gumbel Softmax parameter A is set to 4. The approx-
imation parameter in Goldschmidt’s division algorithm is set
to 16. Although a parameter B greater than 40 is sufficient,
as discussed in Section III-C, we use 64 because a power-
of-two B is better for implementation. 7 is the number of
classification types, which is 10 for the CIFAR-10 dataset.
Algorithm 8 shows the detailed procedure for the Softmax
function.

Because the Softmax function consumes many depths,
several bootstrapping operations are used in the middle of the

30050

Algorithm 7: AvgPoolFullCon(Tensorct, W)
Input

: An encrypted tensor
Tensorct = ({Ctk}k=0.... 11, £, slotstr, 1),
weight parameters for fully connected layer
W e RTXt

Output: An array of ciphertexts {Ct} }x—o,... 7—1

1 fork=0tor— 1do

2 étk <« Cty,

3 fori =0tolog?¢—1do

4 tmpct < rot(cty, slotstr - 2%)
5 5tk <~ 6tk @ tmpct

6 end

7 forj=0tolog¢ —1do

8 tmpct < rot(cty, slotstr - £ - 2)
9 cty < ct; @ tmpct

10 end

11 end

12 foru=0toT — 1do

B | ct <0

14 fork =0tor —1do

15 | ct, < ct, ®(W[u, k]l ©ct)
16 end

17 end

18 return {Ct) }i—o,... 7—1

process. Bootstrapping is performed for each ciphertext just
before the beginning of the Softmax function, just before the
inverse function, and after eight iterations of the Goldschmidt
division process.

VI. SIMULATION RESULT

A. SIMULATION SETTING AND MODEL PARAMETERS

We implement the proposed model using the SEAL
library [13] released by Microsoft, equipped with our imple-
mentation of RNS-CKKS bootstrapping. Our simulation
environment is a dual Intel Xeon Platinum 8280 CPU (112
cores) with 512GB memory. We allocate one thread per
channel in each layer using the OpenMP library to improve
the execution speed of ResNet-20. The memory required for
this simulation is 172GB.

The model parameters are prepared using the following
training method: we use 32 x 32 RGB images, subtract
the mean of the pixels in the training dataset, and adopt a
data augmentation method, such as shifting and mirroring
horizontally, for training. We adopt He initialization [33] as
weight initialization with no dropout. We train the model with
32 x 32 mini-batches and a cross-entropy loss function. The
learning rate start at 0.001 divided by 10 after 80 epochs
and 100 after 120 epochs during training. The classification
accuracy with the trained model parameters is 91.89% and is
tested using 10,000 images.

B. PERFORMANCE
Table 4 shows the agreement ratio between the classifica-
tion results of the implemented privacy-preserving ResNet-20

VOLUME 10, 2022

J.-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

TABLE 4. Classification accuracy of the ResNet-20 for plaintext and ciphertext and agreement ratio.

Model ResNet-20!

ResNet-202

PPML ResNet-20 Agreement

Accuracy 91.89%

92.95% + 2.56%

92.43% + 2.65% 98.43%=+ 1.25%

! Classification accuracy verified with 10,000 images.
% (lassification accuracy verified with 383 images which are used to test ResNet-20 on encrypted images.

TABLE 5. The running time of the ResNet-20 and the percentage of time spent in each component relative to total time.

Layer Conv BN ReLU

Boot AP +FC Softmax Total time (s)

Time ratio 17.44% 13.55% 34.61%

31.55%

0.04% 2.81% 10,602

Algorithm 8: Softmax(Tensorct, B, R, 1)

Input : An array of ciphertext {Cty }x=o,... 7—1, bound
parameter B, R (B is a power-of-two integar),
power-of-two Gumbel parameter A,
Goldschmidt approximation parameter d

Output: An encrypted one-hot vector {Ct}c}kzo,..‘ T—1

Pexp < GenApproxPoly(e*, [—1,1])

ct <0

fork=0to7 —1do

ct, < 1/BOct;

ct, < polyeval(Cly, pexp)

for i = 0 to logB — log A do
| oty <ot ®ct;

end

ct < ctact,

e IR N7 T O JC R S

end
ct<—201/ROct
tmpct < cto 1
forj=0tod — 1do
tmpct < tmpct ® tmpct
ct < ct® (1 @ tmpct)
end

L i < e~
A R W N =D

17 fork =0to7T — 1do
18 ‘ et < chh ®ct
19 end

|3
=3

return {Ct; }r—o,... 71

and that of the original ResNet-20, which shows almost
identical results. We test the inference on 383 encrypted
images, and the 95% confidence interval is suggested for
each result. The classification accuracy of the ResNet-20
for the encrypted data is 92.43%=+ 2.65%, while that of the
original ResNet-20 for the corresponding plaintext image is
92.95%=+ 2.56%. We also measure the agreement ratio, which
is the percentage of the case when the output of the clas-
sification in the proposed PPML model is the same as that
in the original ResNet-20 model. Our agreement ratio is
98.43%=+ 1.25%, which is a sufficiently high. Thus, we verify
that the ResNet-20 can be successfully carried out using the
RNS-CKKS scheme with sufficient accuracy for classifica-
tion and the proper bootstrapping operation.

VOLUME 10, 2022

TABLE 6. Comparison of the running time of ResNet-20 for two positions
of the bootstrapping.

After ReLU
14,694

After conv
10,602

Bootstrapping position
Total Time (s)

Table 5 shows the running time for the whole ResNet-
20 and the portion for each component in the model. Note
that we include the running time of the bootstrapping oper-
ation in BN or ReLU when the bootstrapping operation
is performed in the middle of each operation. In other
words, the regular bootstrapping for each layer is counted
for the running time of the bootstrapping. The proposed
model takes about 3 h to infer one image, and the most
time-consuming components are the convolution, ReLU, and
bootstrapping.

Table 6 shows the running time of ResNet-20 when the
bootstrapping operation is performed after convolution oper-
ation and after ReLU function, respectively. The running time
of the case when the bootstrapping is performed after convo-
lution operation is reduced by 27.8% compared to the case
when the bootstrapping is performed after ReLU function.
This supports the analysis of the bootstrapping position in
Section I'V.

C. DISCUSSION

1) RUNNING TIME

The running time for the proposed model, which is about
3 h, is somewhat large for practical use. This study first
shows the possibility of applying FHE to standard deep learn-
ing models with high accuracy, but it has to be optimized
and improved in various ways to reduce the running time.
Therefore, the essential future work is achieving an advanced
implementation of ResNets with the RNS-CKKS scheme
with various accelerators using a GPU, FPGA, or ASIC.
Because research on implementing the state-of-the-art FHE
scheme is advancing rapidly, ResNet-20 over encrypted data
will soon be more practical. In addition, we implement the
PPML model for only one image, and the running time per
image can be significantly improved by properly using the
packing method of the RNS-CKKS scheme. We leave this
optimization for many images for future work.

30051

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

2) SECURITY LEVEL

The security level of the proposed model is 111.6-bit secu-
rity, which is a marginal security level that can be con-
sidered secure. Because the standard security level in most
applications is 128 bits, this security level can be regarded
as insecure, and we may want to raise the security level.
However, this 111.6-bit security is not a hard limit of our
implementation; we can easily raise the security level by
changing the parameters of the RNS-CKKS scheme. This
creates a trade-off between security and running time, and
thus, we can reach a higher security level at the cost of longer
running time.

3) CLASSIFICATION ACCURACY

Even if ML models are trained with the same hyper-
parameters, the ML models have different performances
because weights are initialized to random values for each
training session. Thus, the ML model performance, such as
the accuracy, is the average value obtained over several train-
ing sessions. However, because we focus on implementing
ResNet-20 for homomorphically encrypted data, we train
this model only once. Nevertheless, we have shown that
the encrypted ResNet-20 operation is possible with almost
the same accuracy as in the original ResNet-20 paper [34].
Furthermore, because it is implemented in the FHE with
bootstrapping, it is expected that the same result will be
obtained for a deeper network than Resnet-20.

VIi. CONCLUSION

For the first time, we applied the RNS-CKKS scheme, a state-
of-the-art FHE scheme, to the standard deep neural network
ResNet-20 to implement PPML. Because the more precise
approximations of the ReLU function, bootstrapping, and
Softmax functions have not been applied to the PPML models
until now, we applied these techniques with various fine-
tuned parameters. We then showed that the implemented
ResNet-20 with the RNS-CKKS scheme achieved almost the
same result as the original ResNet-20 as well as the highest
classification accuracy among the PPML models with the
word-wise FHE scheme introduced so far. This work first
suggested that the word-wise FHE with the most advanced
techniques can be applied to a state-of-the-art machine learn-
ing model without re-training it.

ACKNOWLEDGMENT
(Joon-Woo Lee and HyungChul Kang contributed equally to
this work.)

REFERENCES

[1]1 Q. Lou and L. Jiang, “SHE: A fast and accurate deep neural network for
encrypted data,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2019,
pp- 1-9.

[2] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptol. ePrint Arch., Bellevue, WA, USA,
Tech. Rep. 2012/144, 2020. [Online]. Available: https://eprint.iacr.org/
2012/144

[3] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘““Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. ASTACRYPT, 2017,
pp. 409-437.

30052

[4]

[5]
[6]

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

(26]

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant
of approximate homomorphic encryption,” in Proc. Int. Conf. Sel. Areas
Cryptogr. (SAC), Calgary, AB, Canada, 2018, pp. 347-368.
C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2009, pp. 169-178.
J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” in Proc. EUROCRYPT, 2018,
pp. 360-384.
H. Chen, 1. Chillotti, and Y. Song, “Improved bootstrapping for approxi-
mate homomorphic encryption,” in Proc. EUROCRYPT, 2019, pp. 34-54.
K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Proc. Cryptogr. Track RSA Conf., 2020, pp. 364-390.
J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and A.-P. Hubaux, “Effi-
cient bootstrapping for approximate homomorphic encryption with non-
sparse keys,” in Proc. EUROCRYPT. Manhattan, NY, USA: Springer,
2021, pp. 587-617.
J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision boot-
strapping of RNS-CKKS homomorphic encryption using optimal minimax
polynomial approximation and inverse sine function,” in Proc. EURO-
CRYPT. Manhattan, NY, USA: Springer, 2021, pp. 618-647.
W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric
optimization with GPUs,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2021, no. 4, pp. 114-148, Aug. 2021.
A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON,
Canada, 2009.
Microsoft. (2021). Microsoft SEAL. [Online]. Available: https:/github.
com/microsoft/SEAL
J.Lee, E. Lee,J.-W. Lee, Y. Kim, Y.-S. Kim, and J.-S. No, “‘Precise approx-
imation of convolutional neural networks for homomorphically encrypted
data,” 2021, arXiv:2105.10879.
F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in Proc. 15th Int. Conf. Availability, Rel. Secur., Nov. 2020,
. 1-10.
PRP Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
A.J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2016, pp. 201-210.
E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
CryptoNets: Leveraging sparsity for real-world encrypted inference,”
2018, arXiv:1811.09953.
T. van Elsloo, G. Patrini, and H. Ivey-Law, “SEALion: A framework for
neural network inference on encrypted data,” 2019, arXiv:1904.12840.
A. A. Badawi, C. Jin, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan, X. Nan,
K. M. M. Aung, and V. R. Chandrasekhar, ‘“Towards the AlexNet moment
for homomorphic encryption: HCNN, the first homomorphic CNN on
encrypted data with GPUs,” IEEE Trans. Emerg. Topics Comput., vol. 9,
no. 3, pp. 1330-1343, Jul. 2021.
E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.
C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low
latency framework for secure neural network inference,” in Proc. 27th
USENIX Secur. Symp., 2018, pp. 1651-1669.
B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H.-S. Lee, G.-Y. Wei, and
D. Brooks, ““Cheetah: Optimizing and accelerating homomorphic encryp-
tion for private inference,” in Proc. IEEE Int. Symp. High-Performance
Comput. Archit. (HPCA), Feb. 2021, pp. 26-39.
F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, ‘“‘nGraph-HE:
A graph compiler for deep learning on homomorphically encrypted data,”
in Proc. 16th ACM Int. Conf. Comput. Frontiers, New York, NY, USA,
Apr. 2019, pp. 3-13.
F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “nGraph-
HE2: A high-throughput framework for neural network inference on
encrypted data,” in Proc. 7th ACM Workshop Encrypted Comput. Appl.
Homomorphic Cryptogr., 2019, pp. 45-56.
J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “Optimal min-
imax polynomial approximation of modular reduction for bootstrap-
ping of approximate homomorphic encryption,” Cryptol. ePrint Arch.,
Tech. Rep. 2020/552, 2nd Version, 2020. [Online]. Available: https://
eprint.iacr.org/2020/552/20200803:084202
E. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No, “Minimax approximation of
sign function by composite polynomial for homomorphic comparison,”
IEEE Trans. Dependable Secure Comput., early access, Aug. 18, 2021,
doi: 10.1109/TDSC.2021.3105111.

VOLUME 10, 2022

http://dx.doi.org/10.1109/TDSC.2021.3105111

J-W.

Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

IEEE Access

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

R. E. Goldschmidt, “Applications of division by convergence,”
Ph.D. dissertation, Dept. Elect. Eng., Massachusetts Inst. Technol.,
Cambridge, MA, USA, 1964.

J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical
method for comparison on homomorphically encrypted numbers,” in Proc.
ASIACRYPT, 2019, pp. 415-445.

J. H. Cheon, M. Hhan, S. Hong, and Y. Son, ““‘A hybrid of dual and meet-in-
the-middle attack on sparse and ternary secret LWE,” IEEE Access, vol. 7,
pp. 89497-89506, 2019.

A. Kim, A. Papadimitriou, and Y. Polyakov, “Approximate homomorphic
encryption with reduced approximation error,” in Proc. Cryptogr. Track
RSA Conf., 2022, pp. 120-144.

M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan,
“Optimized homomorphic encryption solution for secure genome-wide
association studies,” BMC Med. Genomics, vol. 13, no. S7, pp. 1-13,
Jul. 2020.

Y. Lee, J. Lee, Y.-S. Kim, H. Kang, and J.-S. No, “High-precision
and low-complexity approximate homomorphic encryption by error
variance minimization,” Cryptol. ePrint Arch., Bellevue, WA, USA,
Tech. Rep. 2020/1549, 2022. [Online]. Available: https://eprint.iacr.org/
2020/1549

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026-1034.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

JOON-WOO LEE received the B.S. degree in
electrical and computer engineering from Seoul
National University, Seoul, South Korea, in 2016,
where he is currently pursuing the Ph.D. degree.
His current research interests include homomor-
phic encryption and lattice-based cryptography.

HYUNGCHUL KANG received the B.S. degree in
industrial system and information on engineering
and the Ph.D. degree from the Graduate School
of Information Security, Korea University, Seoul,
South Korea, in 2010 and 2018, respectively. He is
currently a Staff Researcher at Samsung Advanced
Institute of Technology, Suwon, South Korea. His
research interests include symmetric cryptogra-
phy, hash functions, homomorphic encryption, and
privacy preserving machine learning.

YONGWOO LEE received the B.S. degree in
electrical engineering and computer science from
the Gwangju Institute of Science and Technol-
ogy, Gwangju, South Korea, in 2015, and the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from Seoul National University,
South Korea, in 2017 and 2021, respectively. He is
currently working as a Staff Researcher at Sam-
sung Advanced Institute of Technology. He is also
a submitter for a candidate algorithm (pgqsigRM)

in the first round for the NIST Post Quantum Cryptography Standardization.
His current research interests include homomorphic encryption and code-
based cryptography.

VOLUME 10, 2022

WOOSUK CHOI received the B.S. degree in elec-
trical engineering from Inha University, Incheon,
South Korea, in 2016, and the M.S. degree
in electrical engineering from KAIST, Daejeon,
South Korea, in 2019. His current research inter-
ests include homomorphic encryption and privacy
preserving machine learning.

JIEUN EOM received the B.S. degree in mathe-
matics and the M.S. and Ph.D. degrees in infor-
mation security from Korea University, Seoul,
in 2010, 2012, and 2019, respectively. She is cur-
rently a Staff Researcher with Samsung Advanced
Institute of Technology. Her research interests
include cryptography, information security, and
homomorphic encryption.

MAXIM DERYABIN received the B.S. and M.S.
degrees in mathematics and the Ph.D. degree
in computer science from North Caucasus Fed-
eral University, Stavropol, Russia, in 2011, 2013,
and 2016, respectively. He held various research
and teaching positions at North Caucasus Fed-
eral University, from 2013 to 2020, including an
Associate Professor in 2017. He is currently a
Staff Researcher at Samsung Advanced Institute
of Technology, Suwon, South Korea. One of the

major topics of his research was residue number system and its applications.
His current research interests include lattice-based cryptography, homomor-
phic encryption, computational algebra, and number theory.

EUNSANG LEE received the B.S. and Ph.D.
degrees in electrical and computer engineer-
ing from Seoul National University, Seoul,
South Korea, in 2014 and 2020, respectively.
He is now a Postdoctoral Researcher at the Insti-
tute of New Media and Communications, Seoul
National University. His current research inter-
ests include homomorphic encryption and lattice-
based cryptography.

JUNGHYUN LEE (Graduate Student Member,
IEEE) received the B.S. degree in statistics and
the M.S. degree in mathematics from Seoul
National University, Seoul, South Korea, in 2018
and 2021, respectively, where he is currently pur-
suing the Ph.D. degree in electrical and com-
puter engineering. His current research interests
include homomorphic encryption and lattice-
based cryptography.

30053

IEEE Access

J-W. Lee et al.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network

DONGHOON YOO received the M.S. and Ph.D.
degrees in information and communication tech-
nology from the Gwangju Institute of Science and
Technology, Gwangju, South Korea, in 1999 and
2005, respectively. He is currently working as
a Research Master in privacy preserving com-
puting and high-performance computing at Sam-
sung Advanced Institute of Technology. His
current research interests include homomorphic
encryption, hardware acceleration, supercomputer
architecture, and SW stack.

YOUNG-SIK KIM (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engi-
neering and computer science from Seoul National
University, in 2001, 2003, and 2007, respectively.
He joined the Semiconductor Division, Samsung
Electronics, where he worked in the research and
development of security hardware IPs for various
embedded systems, including modular exponenti-
ation hardware accelerator (called Tornado 2MX2)
for RSA and elliptic-curve cryptography in smart-
card products and mobile application processors, until 2010. He is currently
a Professor with Chosun University, Gwangju, South Korea. He is also a sub-
mitter for two candidate algorithms (McNie and pqsigRM) in the first round
for the NIST Post Quantum Cryptography Standardization. His research
interests include post-quantum cryptography, the IoT security, physical-layer
security, data hiding, channel coding, and signal design. He is selected as one
0f2025’s 100 Best Technology Leaders (for Crypto-Systems) by the National
Academy of Engineering of Korea.

30054

JONG-SEON NO (Fellow, IEEE) received the
B.S. and M.S.E.E. degrees in electronics engi-
neering from Seoul National University, Seoul,
South Korea, in 1981 and 1984, respectively, and
the Ph.D. degree in electrical engineering from the
University of Southern California, Los Angeles,
CA, USA, in 1988. He was a Senior MTS with
Hughes Network Systems, from 1988 to 1990.
He was an Associate Professor with the Depart-
ment of Electronic Engineering, Konkuk Univer-
sity, Seoul, from 1990 to 1999. He joined the Faculty of the Department of
Electrical and Computer Engineering, Seoul National University, in 1999,
where he is currently a Professor. His research interests include error-
correcting codes, cryptography, sequences, LDPC codes, interference align-
ment, and wireless communication systems. He became an IEEE Fellow
through the IEEE Information Theory Society, in 2012. He became a member
of the National Academy of Engineering of Korea (NAEK), in 2015, where
he served as the Division Chair for Electrical, Electronic, and Information
Engineering, from 2019 to 2020. He was a recipient of the IEEE Information
Theory Society Chapter of the Year Award, in 2007. From 1996 to 2008,
he served as the Founding Chair of the Seoul Chapter of the IEEE Informa-
tion Theory Society. He was the General Chair of Sequence and Their Appli-
cations 2004 (SETA 2004), Seoul. He also served as the General Co-Chair
for the International Symposium on Information Theory and Its Applications
2006 (ISITA 2006) and the International Symposium on Information Theory
2009 (ISIT 2009), Seoul. He served as the Co-Editor-in-Chief for the IEEE
JourNAL OF COMMUNICATIONS AND NETWORKS, from 2012 to 2013.

VOLUME 10, 2022

