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Uncertainty quantification 
of granular computing‑neural 
network model for prediction 
of pollutant longitudinal dispersion 
coefficient in aquatic streams
Behzad Ghiasi1,10, Roohollah Noori1,2,10*, Hossein Sheikhian3,10, Amin Zeynolabedin4, 
Yuanbin Sun5, Changhyun Jun6, Mohamed Hamouda7*, Sayed M. Bateni8 & 
Soroush Abolfathi9

Discharge of pollution loads into natural water systems remains a global challenge that threatens 
water and food supply, as well as endangering ecosystem services. Natural rehabilitation of 
contaminated streams is mainly influenced by the longitudinal dispersion coefficient, or the rate of 
longitudinal dispersion (Dx), a key parameter with large spatiotemporal fluctuations that characterizes 
pollution transport. The large uncertainty in estimation of Dx in streams limits the water quality 
assessment in natural streams and design of water quality enhancement strategies. This study 
develops an artificial intelligence-based predictive model, coupling granular computing and neural 
network models (GrC-ANN) to provide robust estimation of Dx and its uncertainty for a range of flow-
geometric conditions with high spatiotemporal variability. Uncertainty analysis of Dx estimated from 
the proposed GrC-ANN model was performed by alteration of the training data used to tune the 
model. Modified bootstrap method was employed to generate different training patterns through 
resampling from a global database of tracer experiments in streams with 503 datapoints. Comparison 
between the Dx values estimated by GrC-ANN to those determined from tracer measurements shows 
the appropriateness and robustness of the proposed method in determining the rate of longitudinal 
dispersion. The GrC-ANN model with the narrowest bandwidth of estimated uncertainty (bandwidth-
factor = 0.56) that brackets the highest percentage of true Dx data (i.e., 100%) is the best model to 
compute Dx in streams. Considering the significant inherent uncertainty reported in the previous 
Dx models, the GrC-ANN model developed in this study is shown to have a robust performance for 
evaluating pollutant mixing (Dx) in turbulent environmental flow systems.

Discharge of pollution loads into streams threatens the water and food supply, along with aquatic biodiversity 
at a global scale1,2. Natural rehabilitation of polluted streams is mainly characterized by the longitudinal disper-
sion coefficient, or the rate of longitudinal dispersion (Dx or Kx), a key parameter in river water quality models 
with large temporal and spatial variations. A challenging task in the study of the pollutant fate and transport in 
turbulent flow systems (e.g., streams) is determining Dx for numerical and analytical water quality models3,4. 
Dx is the most predominant factor influencing the pollutant concentration at the downstream of the point of 
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accidental pollution5–8. Starting from the late 1960s, the mechanism of Dx determination in streams was intro-
duced by Fischer9. Fischer10 proposed an analytical formula to estimate Dx that required detailed knowledge of 
the flow-geometric conditions of the system under study.

Given that the flow-geometric data for streams, especially in large meandrous channels, are highly variable 
in temporal and spatial scales, such data are not readily measured and available. Also, the complex numerical 
procedures required to solve Fischer10 equation, have led to introduction of several simplifications to determine 
Dx. Hence, the estimations of Dx from the simplified models can largely deviate from the field-based estimated 
measurements11,12. These simplifications are mainly exclusion of some variables which are difficult to access such 
as flow-geometric irregularities that influence dispersion mechanism in streams. Although in many cases the 
impact of the excluded variables is somewhat embedded in other variables used in Dx estimation models, they 
do not fully represent the complex interactions between the absent variables and Dx. For example, friction term 
(i.e., rate of flow velocity to shear velocity − U/U*), as a readily accessible input for Dx estimation models, to some 
extend can represent the impact of lateral and vertical irregularities in streams that affect the rate of dispersion13. 
However, these irregularities produce shear flows and secondary currents that can alternate the Dx. Simultane-
ously, the former causes an increase in Dx whilst the latter decreases Dx

14–18. The complex interactions between the 
flow-geometric data and dispersion mechanism prohibit reaching an accurate estimation of Dx in streams whilst 
some effective variables on dispersion mechanism are excluded (e.g., stream bed shape factor and sinuosity).

In recent decades, and with the advancement in artificial intelligence (AI) models, they became powerful 
tools to solve complex engineering problems19–27. A number of AI-based studies have been conducted to enhance 
the accuracy of Dx estimation in turbulent flow systems such as natural streams28–31. Given that AI techniques 
are able to map the complex non-linear input–output relationships even when some important information is 
missing32, their applications in estimating the Dx have been investigated by several studies28–31,33–43. However, 
complex nature of dispersion mechanism in turbulent flow systems with variations in both spatial and tempo-
ral scales, as well as the inevitable simplification assumptions that are needed for the modelling will result in 
uncertainty of Dx estimation using AI-based models. The uncertainty in the output of hydrological models is 
largely resulted by factors such as input-data uncertainty, model uncertainty and parameter uncertainty44–51. 
Intensive efforts have been made to investigate the uncertainty of physics-based hydrological models, which led 
to good understanding of the different sources of uncertainty and their quantification approaches in hydrological 
models44–51. However, there still remains a significant need to understand and quantify the uncertainty associated 
with AI-based hydrological models, especially for water quality modelling. In river water quality modelling, the 
majority of existing AI-based studies are conducted to find the best point estimation, without much attention 
towards the uncertainty quantification of the model predictions. AI-based models, as data-driven techniques, 
have not been elaborated to consider the physical mechanisms of the objective parameter under study. In contrast 
with the physics-based models, AI-based models discover and learn the underlying physical mechanisms that 
govern water quality parameters using a training process38,41,42. The performance of training procedure depends 
on the sampling patterns selected to tune the AI-based model. Therefore, given that the predictions of AI-based 
models are highly impacted by the data used for training, any changes in the selected training data can impose 
large uncertainty in the model output. In a study conducted by Noori et al.42, they reported that although the AI 
techniques outperform empirical-based models for estimation of Dx, their predictions are still subject to uncer-
tainty induced by changes in their training patterns. The inaccuracy in estimation of the Dx using AI models can 
limit water quality assessment and design of appropriate measures to improve the water quality of aquatic flows. 
Hence, developing a robust methodological framework to quantify the prediction uncertainty of the Dx from 
AI-based models is essential for developing appropriate AI-based water quality models.

Granular computing (GrC) model is a highly efficient AI-based model which has recently shown an excellent 
potential to solve complex engineering problems52–56. GrC model is a novel tool capable of applying the granules 
in the process of nonlinear problem solving52. In the GrC model, the natural rules between the data are extracted 
by means of the rule mining algorithm, operating on a set of information arranged as information table. The 
granule measures involved in the process of information mining, has made GrC as a powerful tool to map a 
set of inputs to a set of outputs in different fields of science and engineering52,53. However, similar to other AI 
models, the GrC performance can be adversely influenced by the selection of training patterns. Therefore, the 
effects of changes in training patterns on the performance of GrC model should be investigated, to understand 
and quantify the degree of uncertainty in the model’s prediction of Dx in water quality assessments. Previous 
studies which examined the application of GrC model for Dx estimation in natural streams did not investigate the 
prediction uncertainty introduced by the model training patterns39,43. In this study, we first coupled an artificial 
neural network (ANN) with rules information in the GrC (GrC-ANN) to improve the GrC model’s performance. 
Encoding the given information used in the GrC into a feed forward multi-layer structure, i.e. ANN, enhances 
the GrC model to use all information available in the dataset to decide about different presented patterns. Then, a 
Dx predictive model was developed using GrC-ANN modelling technique. Finally, a comprehensive uncertainty 
analysis method was proposed to compare the accuracy of Dx predicted by the GrC-ANN with other AI-based 
Dx models in the literature. Our proposed method quantifies the GrC-ANN prediction’s uncertainty based on 
the model response to change in the selected training patterns using a modified bootstrap method12.

Methods
Longitudinal dispersion.  Non-reactive pollutant mixing in aquatic systems is a complex three-dimen-
sional (3-D) flow process, consists of molecular and turbulent diffusion, and shear dispersion (referred to as 
“dispersion”) mechanisms. The dispersion is the net trace of velocity shear over the flow width and depth, and 
the turbulent mixing11. In the natural streams, which are specifically much longer than width or depth of the 
flow, the pollutants become well-mixed in the vertical and transverse directions rather than the longitudinal 
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mixing (Fig. 1). Therefore, pollutant fate and transport in streams is usually studied by the application of 1-D 
mixing model quantified by the advection–dispersion equation as follows57,58: 

In Eq. (1), C and U, are the averaged cross-sectional concentration and averaged longitudinal velocity, respec-
tively, t denotes time and x is the longitudinal coordinate in the stream-wise direction.

Ideally, vertical and (transverse) dispersion in streams takes place close to (in intermediate fields from) the 
pollutant discharge location, whilst the longitudinal dispersion occurs far from the pollutant discharge point, 
where solute become readily well-mixed in both vertical and transverse directions (Fig. 1). In streams, the 
longitudinal dispersion usually varies form 10–1 to 107 m2/s10,13,60,61 and the diffusion coefficient ranges from 
10–9 (molecular) to 10–2 m2/s (turbulent)5. Therefore, dispersion is the dominant mechanism of mixing process, 
by several orders of magnitude62, highlighting the necessity of developing robust methodological approach to 
quantify the dispersion and mixing coefficient in the streams.

Dx parametrization.  Pioneering work on quantification of dispersion mechanism in pipes date back 
to Taylor’s studies63,64. Thereafter, Taylor’s approach was used for quantifying dispersion in streams with the 
assumption of no limits for the width of the channel by Elder65. However, the Elder’s formula underestimates the 
dispersion in natural streams, as it does not consider the influence of the lateral velocity shear10,66. In streams, the 
lateral velocity shear mechanism plays a more dominant role in determining the mixing compared to the vertical 
shear. On this basis, Fischer9 derived an analytical formula for determining Dx as:

where, W denotes the local flow width, x is the longitudinal coordinate, y is the lateral coordinate, 
′
u
(

y
)

 . is the 
local velocity deviation, h

(

y
)

 represents the local flow depth, εt
(

y
)

 is local lateral mixing coefficient, and A rep-
resents the local flow cross-sectional area.

In Eq. (2), the flow is supposed to be 1-D, i.e., the pollutant is well-mixed in both vertical and lateral direc-
tions, a condition that is rarely satisfied in turbulent flow systems such as large meandrous streams and even in 
laboratory flumes, due to existence of secondary currents67. Fischer9 equation has been derived based on the 
assumption that the dispersion is controlled by lateral shear rather than the vertical shear, a condition that may 
not be well-satisfied for the narrow and deep rivers where the aspect ratio (i.e., river flow width to depth − W/H) 
is small5. These drawbacks of Eq. (2) lead to inaccurate estimation of Dx compared to those values determined 
from tracer measurements. The deviation between Dx values estimated by Eq. (2) and those true values is maxi-
mum for the case of non-uniform flow in real meandrous streams, albeit Fischer9 model can well approximate 
the dispersion for the case of uniform flows68. In addition to the inherent drawbacks in practical application of 
the Eq. (2), it also requires detailed information on the geometrical properties (i.e. cross-section, bathymetry) 
of stream, as well as the lateral flow velocity profiles. Collecting such information is rather costly and time con-
suming, and often requires very detailed flow measurements which are not readily available. Therefore, practical 
application of Fischer9 model is limited.

To address the difficulties in using Eq. (2), Fischer69 suggested a simplified empirical equation that correlates 
Dx with pertinent dimensionless variables of W/H and U/U* as follows:
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Figure 1.   Schematic of concentration profiles and pollutant mixing in streams. (adapted from Kilpatrick and 
Wilson59).
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Fischer69 modified empirical formula for determining the dispersion coefficient (Eq. 3), has been widely used 
and validated by other researchers11–13,28–31,70 and rely on the parameters which can be practically determined 
for natural streams.

Data collection.  This study aims to estimate Dx in streams using GrC-ANN model. In this regard, a global 
tracer database consisting of 503 observations from natural streams and laboratory flumes was used to develop 
the model and validate the performance of the proposed GrC-ANN model. This database was compiled by 
Riahi-Madvar et al.71, and include data on the friction term, aspect ratio, and with Dx ranging between ~ 0.00 
to ~ 1800 m2/s. Although the database used in this study is more comprehensive compared to other studies on 
Dx estimation, it does not fully include extreme high values of Dx

12. The reported Dx values in the literature 
are within the range of near to zero (in the laboratory flumes) to extreme high value of 6800  m2/s in large 
and irregular-shaped rivers72. The maximum Dx used in this study is ~ 1800  m2/s, which is related to disper-
sion in natural streams with irregular hydraulic-geometric characteristics, and dispersion values greater than 
what is used in this study are extremely rare in environmental hydraulics problems. Therefore, the extremely 
high Dx values were excluded from the database as outliers, given that they significantly impact the statistical 
analyses12. However, Dx/HU

∗ parameter in the database used here has a non-normal distribution as described 
by Noori et al.12. Using a preliminary investigation, it was found that no significant difference exists between the 
GrC-ANN model outputs with the normalized and raw Dx/HU

∗ data. Therefore, the raw data was considered 
for further investigations in this study.

GrC‑ANN model development.  In-depth description of the ANN, GrC and GrC-ANN approaches for 
Dx modelling in streams and the model development procedures are given in Noori et al.39 and Ghiasi et al.43, 
respectively. Further detailed information about these models documented in the literature52–55,73–75. Hence, we 
shortened the descriptions of GrC-ANN model developed in this study.

•	 GrC model
	   Granular Computing models are superset of the rough set theory, interval computations and the theory 

of fuzzy information granulation52. GrC model is a data processing method based on multiple levels of data 
granularity. In this method, the whole dataset is divided into granules and clusters (or subsets), which catego-
rizes individual elements of the whole dataset based on the existing similarity between objects to put them 
in different granules. Then, a set of rules is extracted over concepts ϕ and Ψ in the form of IF–THEN: “If an 
objective satisfies ϕ, THEN the object satisfies Ψ”. Here, concepts ϕ and Ψ are a set of attribute-values for a set 
of objects and the assigned output value, respectively. In the process of rule extraction, GrC algorithm forms 
all the possible granules to extract every relation between the patterns, i.e. extracted rules, regardless of their 
importance or accuracy. Following rules extraction procedure, the algorithm applies statistical measures on 
granules formed in order to select the best set of possible rules, i.e. pruned rules, to form the regression rule 
set52–55.

	   Generality (G), absolute support (AS), coverage (CV), and conditional entropy (CE) are the statistical 
measures used by the GrC to extract the rules. The generality of concept ϕ, i.e. G(ϕ), displays the relative size 
of constructive granule of this concept, defined by Eq. (4)76:

 where |m(φ)| is the size of the granule and |U | is the size of the entire domain. G(ϕ) varies between 0 and 1. 
Higher values of generality describe the rule as a more common concept, which is more probable to occur. 
On the other hand, high G(ϕ) can bias the model towards the patterns observed during the training process.

	   AS, as the conditional probability in the case that a randomly selected object satisfies both ϕ and Ψ, can 
be obtained from Eq. (5) and describes the strength of a rule in assigning similar outputs to a set of input 
values73. AS = 1, if and only if m(φ) ⊆ m(�).

	   CE, represented by H(� | φ) , reveals the uncertainty of formula ϕ based on formula Ψ and is defined by 
Eq. (6)73. CE ensures the model reliability and robustness, by filtering out the rules that are providing infor-
mation which is not supported by other rules in the rule set, even if these rules have misleading acceptable 
values for other statistical measures.
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	   CV denotes the conditional probability of a randomly selected object to satisfy ϕ, while satisfying Ψ73. This 
parameter shows the strength of a rule in predicting accurate output values if different training patterns are 
provided to the model.

	   In this study, GrC extracts the rules from the global tracer database consisting of 503 observations from 
natural streams and laboratory flumes based on the CE and AS statistical measures, so that the rules with 
the minimum CE value and the maximum AS are extracted from the database. To form a granular decision 
tree, the priority of rules in the tree is determined based on the G and CV.

•	 ANN model
	   An ANN consists of a set of neurons, as the smallest computational units of the model, organized in 

different layers joint by connection weights. The first and last layers are the input and output layers of the 
network, respectively. The layers in the middle of the network are hidden and contain computing neurons. To 
construct an ANN for a predictive modelling purpose, training data are introduced to the network. Then, the 
network starts the learning process by determining connection weights and biases based upon the resulting 
error at the output nodes77. Upon obtaining the connection weights and biases, the network is ready to do a 
classification or regression task.

•	 GrC-ANN model
	   A basic GrC model has two major deficiencies. First, it prioritizes rules based on their obtained parameters 

and uses the first rule satisfied by the input data to define its output. Second, it cannot make use of informa-
tion provided in the rule set and makes a prediction by only using one rule73–75. Hence, to compensate for 
these deficiencies, the GrC-ANN model proposed in this study uses an integration of GrC rule generation 
algorithm and ANN model (Fig. 2). The GrC-ANN approach allows the model to use the mentioned rule 
quality parameters (i.e. G, AS, CV, and CE) to construct the approximator structure, instead of common 
time-consuming iterative learning procedure used by ANN model48. Given the input patterns, the GrC-ANN 
model tunes the network by re-forming the granules and applying statistical measurements performed by the 
GrC approach. Re-forming the granules also re-forms the rules, which results in different number of rules 
and different statistical measurements. CE plays an important role in tuning the model. Keeping CE close 
to zero filters out inconsistent rules by removing them or giving them less importance. GrC-ANN tries to 
minimize the number of rules by minimization of CE and maximization of G, AS and CV52,53.

The GrC-ANN structure proposed in this paper, similar to the conventional neural networks, comprises of 
layers including the input layer, two computing layers, and the output (aggregation) layer (Fig. 3). The layers 
within the proposed GrC-ANN model are customized to ensure robust predictions of Dx. The number of nodes 
in the input layer are set equal to attributes of the data records (i.e., W/H, U/U*, and Dx/HU

∗ ). Computing lay-
ers are comprised of two inner-connected layers including pattern layer and rule firing layer. The computing 
layers receive values that are valid according to the criteria determined in the input layer. Computing layers’ 

(7)CV(φ → �) =
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Figure 2.   Procedure of integrating GrC and ANN for determining longitudinal dispersion coefficient.
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characteristics are fully data driven. Pattern layer nodes act as transformers, normalizing quantized valid values 
of the criteria in the input layer as the rule firing nodes expect. Rule firing nodes use the data provided from 
the measured and selected rules to aggregate the received values, turning them into predictions. The third layer 
contains the set of qualified extracted rules by GrC-ANN and embeds the classification rules. The aggregation 
layer assigns an output value to the input pattern of the data. The connection weights of the rule-firing layer and 
the aggregation layer are given by the statistical measure of absolute support provided by the corresponding rule 
to its output value, to consider the accuracy of the rules in determining that output value43,52,53.

The proposed GrC-ANN approach benefits from some advantages that are absent in both GrC and ANN 
models. Utilizing tangible information obtained from the rule measures in the form of neurons, layers and con-
nection weights improve the transparency of the constructed model43. Since the given information are encoded in 
a feed forward multi-layer structure, similar to ANNs, the GrC-ANN will be able to use all information available 
in the dataset to decide about each presented data pattern, which is an improvement to rule-based classifiers, 
such as GrC52. Replacing the learning part of an ANN with the information from rule quality measures ensures 
that no connections or nodes are remained without a transparent description. This is an improvement to the 
conventional ANNs which contain hidden neurons and obtain their connection weights and biases by learning 
through a black-box learning algorithm43. A conventional ANN provides results which is influenced by initial 
weights generated in a random manner, yielding to different results from the same set of training information, 
lacking the ability to describe them. GrC-ANN provides a robust network and can be manipulated by defining 
rule measure thresholds. Overall, these advantages improve the accuracy of the proposed GrC-ANN predictions 
compared to conventional GrC and ANN models43,52. Although GrC-ANN model reduces the computational 
time needed for model training by removing the learning procedure in the ANN model, it requires more compu-
tational cost than ANN model due to the procedure of extracting high-quality classification rules. In general, the 
computational cost for the GrC-ANN model is in the order of: O

(

n2 × p1 × a×m+×p2 × n× a× (l × r)
)

 , 
aggregating training and verification time, where n is the number of iterations, a is the number of attributes for 
the patterns, m is the number of GrC measure parameters, r denotes the number of rules used in prediction, l 
is the number of layers in the network, p1 and p2 are the number of input patterns for training and verification, 
respectively53,73–75.

Uncertainty quantification.  Similar to other data-driven models, the GrC-ANN model minimizes the 
error function based on the data fed with the aid of a supervised algorithm throughout the training process43. 
Hence, model training plays a vital role in quantification of the GrC-ANN model’s uncertainty caused by dif-
ferent tuning sets. In this study, the GrC-ANN model was tuned to map the input parameters, i.e. W/H and 
U/U*, to the target Dx/HU

∗ , based on finite training patterns resampled from 503 observations of the global 
tracer database. Probabilistically, each training pattern used for tuning the GrC-ANN model is different from 
others resampled from the global database. Thus, each training pattern could produce different set of GrC-ANN 
parameters, and predictive outputs for the estimation of Dx/HU

∗.
The modified bootstrap method suggested by Noori et al.12 was used to resample distinct training patterns 

for tuning the GrC-ANN model for Dx/HU
∗ predictions. This method ensures that the chosen training pat-

terns are fully representative of the statistical characteristics of the 503 tracer experiments of the global database 
used in this study. This is particularly important since the global database used in this study rarely has large Dx 
instances12, denoting that these large dispersion values are likely to be under-represented in the training pat-
terns chosen by the conventional bootstrap technique. This issue can result in poor training of the GrC-ANN 
model and consequently increases the model’s uncertainty in prediction of Dx/HU

∗ . Detailed description of 
the bootstrap method is given by Efron and Tibshirani78, while the modified the bootstrap method adopted in 
this study is described by Noori et al.12.
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Different outputs of the Dx/HU
∗ GrC-ANN model in the verification stage, i.e. due to the change in the train-

ing patterns, were used as a measure of the model’s uncertainty79. An interval band of the GrC-ANN estimations 
of Dx/HU

∗ was computed, with a level of significance of 95%. Then, two measures were introduced to assess the 
Dx/HU

∗ prediction variations in the different responses of the GrC-ANN model in verification stage including 
bandwidth-factor and the number of bracketed Dx/HU

∗ data using 95% of predicted uncertainties (NBD95PU) as 
shown in Eqs. (8) and (9), respectively80. Given these two measures, the uncertainty in estimation of the Dx/HU

∗ 
GrC-ANN model in verification stage was quantified.

where σx is the standard deviation of the target Dx/HU
∗ , and XU and XL are the maximum and minimum of the 

estimated Dx/HU
∗ for each training pattern, respectively.

Figure 3 illustrates a detailed description of the model development and uncertainty quantification process 
proposed for this study.

Results and discussion
Tuned GrC‑ANN models.  The correlation amongst the input parameters, i.e. W, H, U, U*, and Dx is shown 
in Fig. 4A. The correlation coefficients for the model variables in dimensionless format, i.e. W/H, U/U* and 
Dx/HU

∗ and the corresponding statistical significance level are illustrated in Fig.  4B. In dimensional form, 
Dx/HU

∗ is more correlated with the geometrical configuration W/H of the stream (correlation coefficient = 0.21, 
p-value < 0.1) than the flow characteristic U/U* (correlation coefficient = 0.002, p-value > 0.1), confirming the 
results reported by Noori et al.12.

To examine the GrC-ANN model, the database with 503 observations from natural streams and laboratory 
flumes were scaled between 0 and 1. 40 data instances were selected from the global tracer database for the model 
verification. Then, 100 distinct training patterns were randomly resampled from the remaining database, i.e. 463 
observations, with replacement to tune 100 different Dx/HU

∗ GrC-ANN models. Each training pattern consists 
of 80 data, and the 40 pre-assigned verification data. The model inputs include, aspect ratio and friction term, 
and dimensionless target Dx/HU

∗ were clustered based on their indiscernibility in the given attributes. To form 
the final rule network, GrC-based rule extraction algorithm was used to select the best granules of information 
by considering the CE, AS, G, and CV measures computed for each rule. In this regard, AS and CE indices were 
employed to extract the set of possible valid rules by considering minimum and maximum threshold values of 
0.75 and 0.5, respectively, in accordance to similar studies in the literature39,81,82. At this stage, if a rule caused 
redundancy in the rule set, it was considered as an active granule and was replaced with a granule that had more 
consistency in the set of rules. Using the proposed methodology led to extraction of a range of rules, varied from 
76 to 234, for tuning the GrC models based on the training patterns (Fig. 5A).

(8)bandwidth−factor =

{

(

1

n

) n
∑

i=1

(XU − XL)

}

/σx ,

(9)NBD95PU(%) = (1/n)count{Q|(XL ≤ Q ≤ XU ) },

Figure 4.   The correlation coefficient plots of (A) W, H, U, U*, and Dx, (B) W/H, U/U* and Dx/HU
∗.
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In the next step, the CV and G indices were applied to prioritize the rules that construct the final rule sets. For 
the models tuned based on the training patterns, the optimized rules varied from 10 to 38 (Fig. 5A). The mean 
values of quality indices for the final rules selected for each tuned model are illustrated in Fig. 5B. According to 
Fig. 5B, the G values ranged between 0 and 0.4, indicating the rules’ generality does not pertain to big values of G, 
confirming the results of previous GrC modelling studies39,74. The CV varied between 0 and 1, pertaining to the 
numbers of extracted rules by each class and the dataset covered by each rule, following Yao and Yao74 findings.

The 100 optimized rule sets computed correspond to one hundred distinct training patterns, which are then 
fed to the GrC-ANN modelling structure. In this regard, the rule quality indices were embedded into an ANN 
structure instead of initial weights, forming a GrC-ANN model corresponding to each optimized rule set. The 
best network structures describing the relations between the inputs (W/H and U/U*) and the output ( Dx/HU

∗ ) 
data were determined based on the quality index of root mean square error (RMSE) for each GrC-ANN model 
tuned by the distinct training patterns (Fig. 6A). Analysis of the results show the RMSE values for the tuned 
Dx/HU

∗ GrC-ANN models, in training and verification stages varied from 1251 to 2142 and 966 to 3826, 
respectively (Fig. 6A).

Figure 7 shows the difference between the true (field-estimated) Dx/HU
∗ values and those predicted by 

each tuned Dx/HU
∗ GrC-ANN model. The minimum (i.e., − 10,934) and the maximum (i.e., 7471) errors were 

produced by Dx/HU
∗ GrC-ANN models #42 and #100, respectively. In general, the GrC-ANN models over-

estimate the Dx/HU
∗ values for approximately 86% of the observations (Fig. 6B). Similar overestimation of Dx 

was reported by Etemad-Shahidi and Taghipour83 for the Dx models proposed by Liu61, Seo and Cheong13, Deng 
et al.57, and Sahay and Dutta84. In this study, the overestimation of Dx/HU

∗ could be associated with the RMSE 
values used as the objective function in the GrC-ANN model. RMSE is a scale-dependent parameter and could 
lead the model to predict values with lower relative error for large Dx values that rarely exist in the database. In 
addition, we defined a constraint for the GrC-ANN model to filter out the modeling result for the negative val-
ues, which are likely to contribute to the overestimation for small Dx/HU

∗ values that are the dominant feature 
of the database. However, using the overestimated Dx/HU

∗ values in 1-D ADE models give a lower maximum 
concentration rate for those locations which are far from the pollutant injection point12. Therefore, the tuned 
Dx/HU

∗ GrC-ANN model must be used with caution in hydro-environmental studies such as outfall design, 
and risk assessment studies for accidental hazardous pollution.

Comparative analysis of the tuned GrC-ANN models developed in this study, and other AI models including 
model tree (MTree), gene-expression programming (GEP), evolutionary polynomial regression (EPR), support 

Figure 5.   (A) Number of initial and optimized rules, and (B) the mean values of quality indices for the final 
rules for each tuned GrC models.
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Figure 6.   (A) Root mean square error (RMSE) values calculated for the tuned Dx/HU
∗ GrC-ANN models in 

training and verification stages, and (B) Dx/HU
∗ observations (%) with underestimation and overestimation in 

GrC-ANN models tuned by the distinct training patterns.

Figure 7.   Difference between the true Dx/HU
∗ values and those predicted using GrC-ANN models tuned by 

the distinct training patterns during the verification stage of the model.
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vector machine (SVM1), and multivariate adaptive regression splines (MARS), developed by Najafzadeh et al.85, 
highlights that the proposed GrC-ANN models are capable of better and more robust approximation of longitu-
dinal dispersion ( Dx/HU

∗ ) in streams (Fig. 8). Previous studies also confirmed the performance superiority of 
GrC compared to ANN and adaptive neuro fuzzy inference system (ANFIS) developed for Dx/HU

∗ predictions43. 
As shown in Fig. 8, the determination coefficient (R2) values determined for the GrC-ANN models in verifica-
tion stage, are much larger than those reported for ERP and MARS models. However, the computational cost of 
GrC-ANN model is more than that for ANN models. In this study, the computational time of GrC-ANN models 
was approximately 1.8 to 2.6 times greater than that for the ANN models.

GrC‑ANN uncertainty.  The Dx/HU
∗ values estimated during the verification stage by the 100 GrC-ANN 

models tuned under distinct training patterns were used to measure the model uncertainty. In this regard, pre-
diction intervals corresponding to each Dx/HU

∗ observation was computed by considering the level of signifi-
cance of 95% (Fig. 9). These prediction intervals show the deviation from the true Dx/HU

∗ values, denoting the 
uncertainty associated with the GrC-ANN predictions of longitudinal dispersion in streams.

Figure 9 shows that the true Dx/HU
∗ values are fully located between the lower and upper bands of the uncer-

tainty, concluding the appropriate performance of the GrC-ANN model based on the NDB95PU (%) index. Also 
the small value of the bandwidth-factor (= 0.56) indicates the small deviation of the predicted Dx/HU

∗ values by 
the GrC-ANN models from the measured values, leading to low uncertainty of the model. Figure 9 shows that 
the proposed GrC-ANN model has good performance in predicting both large and small Dx/HU

∗ values with 
a narrow bandwidth of uncertainty, highlighting the model superiority in predicting the Dx/HU

∗ compared to 
other AI models which are suffering from large uncertainty in estimation of Dx

12,42,85.

Figure 8.   Determination of coefficient (R2) values calculated for Dx/HU
∗ prediction during the verification 

step of the tuned GrC-ANN models developed in this study, and those reported for model tree (MTree), gene-
expression programming (GEP), evolutionary polynomial regression (EPR), support vector machine (SVM) and 
multivariate adaptive regression splines (MARS) by Najafzadeh et al.85.
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However, neither the GrC-ANN model nor other mathematical and statistical models can fully understand 
and predict the dispersion processes in real streams. Therefore, the results illustrated in Fig. 9 still contain some 
degree of uncertainty in the prediction of Dx/HU

∗ from GrC-ANN model. To compare the uncertainty of the 
predicted Dx/HU

∗ from GrC-ANN with other AI models, the bandwidth-factor and NDB95PU (%) values 
computed for these models are illustrated in Fig. 10. This figure shows that Dx/HU

∗ GrC-ANN model has the 
smallest bandwidth-factor value amongst the nine AI-based models examined in this study. Also, Dx/HU

∗ GrC-
ANN model has the largest NDB95PU (%) value compared to other AI models (i.e., EPR, MTree, GEP, SVM, 
MARS, ANN, and ANFIS). These measures suggest that the uncertainty in the prediction of Dx/HU

∗ from 
GrC-ANN model is far less than those reported for other well-established AI models for the case of pollutant 
transport in streams.

However, study of the Fig. 9 reveals that despite modified and enhanced training patterns adopted in this 
study, there remains some uncertainty in the prediction of the Dx/HU

∗ from GrC-ANN model, which can be 
considerable at times and leading to a wide confidence interval band for some samples. In fact, in the Dx/HU

∗ 
GrC-ANN modelling process, some rules are eliminated due to low criteria values (i.e., G, AS, CV, and CE). 
Therefore, the selected rules, which govern the final prediction of the model, do not fully represent the complex 
mechanisms of the longitudinal dispersion in streams, leading to inevitable uncertainty in the predictions by 
GrC-ANN model. In addition, diversity of streams and the irregularities in geometric characteristics and non-
linearity of the flow hydrodynamics add to the complexity of the mixing mechanisms in the streams. Therefore, 
full identification, quantification and inclusion of these intricate natural processes in a mathematical or statistical 
model is not possible. This is correct even for the non-simplified models for prediction of Dx, i.e. Equation (2), 
where estimated Dx values are still not in full agreement with those values measured in the field. For example, 
the minimum error between the estimated and field-measurement of Dx values occurs for the case of a uniform 
flow, that is usually less than 30%68. In the case of non-uniform flow in large meandrous streams with severe 
irregularities in bathymetry, and spatiotemporal variations in flow hydrodynamics, the estimated Dx using Eq. (2) 
largely deviates from the true values11. The problem of inaccuracy in modelling predictions raises up when 

Figure 9.   GRC-ANN model uncertainty for estimation of Dx/HU
∗ in streams.

Figure 10.   Comparison of the bandwidth-factor and the NDB95PU (%) values of the GrC-ANN model 
developed in this study (i.e., Dx/HU

∗ GrC-ANN), with ANN and ANFIS models42, SVM1, GEP, MTree, MARS, 
and EPR models85, and SVM2 model42.
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using Eq. (3), derived based on simplified assumptions for Eq. (2), and by exclusion of important parameters 
influencing Dx such as Sf and Sn

5,11,16,86–88. These excluded parameters are seldom monitored in natural streams 
due to the difficulties associated with their measurement. Another factor that contribute to the uncertainty in 
prediction of longitudinal dispersion from GrC-ANN model is the rare presence of very large Dx values in the 
dataset used in this study. Analysis of the dataset used in this study shows that only around 1% of the 503 global 
dataset of tracer experiments consists of Dx > 1000 m2/s, whilst the maximum value of Dx in the dataset is around 
1800 m2/s12. This absence of very large Dx in the dataset, is leading to uncertainty in the Dx/HU

∗ predicted by 
the GrC-ANN model.

Conclusions
Longitudinal dispersion coefficient (Dx) influences the transport and fate of pollutants in streams. Given the high 
spatiotemporal variability of Dx, previous AI models with single training pattern cannot capture the uncertainty 
associated with the predictive models for Dx in streams. This study provides rigorous methodological approach 
to examine and quantify the uncertainty in the prediction of Dx/HU

∗ from the proposed GrC-ANN model. The 
detailed analysis of the results highlights that although Dx/HU

∗ predicted by GrC-ANN model outperforms 
other AI-based dispersion models, there remains some uncertainty in the predicted Dx from the model which 
need careful consideration and evaluation. This finding suggests that river water quality assessments and envi-
ronmental management studies should consider the impacts of uncertainty associated with the Dx estimation 
on the pollutant concentrations, that could result in detrimental impacts on aquatic biodiversity, and ecosystem 
function in streams as well as the public health. Enhanced data on the flow hydrodynamics and the geometric 
features in streams (e.g., stream sinuosity and bed shape factor) for the Dx models can further reduce the uncer-
tainty in estimation of longitudinal dispersion parameter.

Data availability
The data used in this study can be obtained from https://​doi.​org/​10.​1007/​s11269-​018-​2139-6.
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