
Received December 31, 2021, accepted January 28, 2022, date of publication February 7, 2022, date of current version February 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149598

Incremental Learning With Adaptive Model
Search and a Nominal Loss Model
CHANHO AHN 1, (Graduate Student Member, IEEE), EUNWOO KIM2, (Member, IEEE),
AND SONGHWAI OH 1, (Member, IEEE)
1Department of Electrical and Computer Engineering, ASRI, Seoul National University, Seoul 08826, South Korea
2School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Songhwai Oh (songhwai@snu.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by
the Korean Government, Ministry of Science and Information & Communications Technology (MSIT), ([SW Star Lab] Robot Learning
Efficient, Safe, and Socially-Acceptable Machine Learning) under Grant 2019-0-01190, in part by the Information & Communication
Technology (ICT) Research and Development Program of MSIT/IITP (Development of Cloud Robot Intelligence Augmentation, Sharing
and Framework Technology to Integrate and Enhance the Intelligence of Multiple Robots) under Grant 2020-0-00857, and in part by
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(2021-0-01341, Artificial Intelligence Graduate School Program (Chung-Ang University)).

ABSTRACT This paper addresses an incremental learning problem, in which tasks are learned sequentially
without access to the previously trained dataset. Catastrophic forgetting is a significant bottleneck to
incremental learning as the network performs poorly on previous tasks when it is trained on a new task.
We propose an adaptive model search method that uses a different part of the backbone network depending
on an input image to mitigate catastrophic forgetting. Our model search method prevents forgetting by
minimizing the update of critical parameters for the previous tasks while learning a new task. This model
search involves a trainable network that selects the model structure for an input image. We also propose
a method for approximating the loss function of previous tasks without the previous dataset. The critical
parameters for the previous tasks can be found, considering the relationship between the approximated loss
function and the parameters. The proposed framework is the first method of model search that can consider
the performance of both current and previous tasks in the incremental learning problem. Empirical studies
and theoretical analysis show that the proposed method outperforms other competitors for old and new tasks
while requiring less computation.

INDEX TERMS Artificial neural network, computer vision, incremental learning, model selection, object
recognition.

I. INTRODUCTION
Icremental learning sequentially trains incoming tasks with-
out accessing datasets of previous tasks. It has attracted
attention due to its wide range of practical applications [1],
[2], such as life-long learning and personalized learning.
Datasets for previous tasks may not be provided for various
reasons, such as the privacy, security, and massive size of
the dataset in real-world applications. Without the previous
dataset, the deep neural network has a chronic problem called
catastrophic forgetting; That is, the network quickly loses
existing information about the previous task while learning a
new task [3]. Catastrophic forgetting is easily solved by using
independent networks for each task, but this way is inefficient
in terms of memory and inference speed. Actually, mobile
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robots and embedded devices include lowmemory resources,
and loading a different network each time perform a task
entails unnecessary computation. This paper aims to develop
an incremental learning algorithm applicable to various per-
sonal devices. Therefore, this paper covers methods involving
a limited number of networks, regardless of the number of
tasks.

To alleviate the catastrophic forgetting problem with a few
networks, incremental learning researches preserve previous
knowledge through generative [4]–[6], architectural [7]–[9],
functional [10], [11], and structural regularized [12]–[14]
approaches. The generative approaches produce pseudo data
for previous tasks to derive the proxy loss function for the
previous tasks. However, the performance of these methods
depends on the quality of the pseudo data. Also, learning the
generative model is another challenging problem. The archi-
tectural approaches assign additional parameters to a new
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FIGURE 1. An overview of the proposed framework. We produce multiple internal
models from a backbone network. An attention network selects a proper internal
model for handling an input image. A proxy loss for the previous task is used to
train the attention network and the backbone network to preserve the previous
knowledge.

task while freezing the trained parameters for the previous
tasks. The functional approaches maintain input-output map-
pings using the outputs of the previously learned networks.
As the number of tasks increases, computationally intractable
problems arise with the architectural and functional methods;
A memory to store parameters or computation to calculate
outputs of the previous networks increases. The structural
regularized methods penalize parameter changes from pre-
viously learned parameters. It can handle sequential tasks
without increasing memory or computation. Nevertheless,
often this penalty interferes with learning new tasks.

Moreover, class-incremental learning has been studied to
solve incremental learning problems without task identifi-
cation. In the class-incremental learning problem, a weight
imbalance problem occurs in which the classifier more pre-
dicts recently learned classes. Recent advances [15]–[17] in
incremental learning resolve this problem by using sample
images of previous tasks. However, we only deal with situa-
tions where we do not use data from previous tasks. In addi-
tion, a recent study [18] shows that a network trained only
on sample images can achieve a comparable performance
to that of other class-incremental learning methods. This
result indicates that using sample images is more critical than
other techniques in the class-incremental learning problem.
Therefore, the class-incremental learning is outside the scope
of this paper, and we are focusing on the task-incremental
learning problem.

This paper proposes a task-incremental algorithm with
a fixed network size and training cost that does not grow
as the number of tasks increases. To this end, we propose
an adaptive model search that selectively uses and updates
the network parameters according to each input image

(see Figure 1). The proposed model search selects a model
structure suitable for learning a new task without compro-
mising the performance of previous tasks. The model search
is based on a trainable neural network, called an attention
network, which outputs a probability of model structure. The
attention network is trained to minimize the loss function
of the previous and current tasks. This learning strategy is
differentiated from existing incremental learning methods
[19], [20]. The existing methods find a model structure com-
posed of parameters that are rarely used or have little effect
on the previous tasks to learn the current task. This distinction
contributes to our model search avoiding catastrophic forget-
ting without losing too much ability to learn new tasks.

Since the previous datasets are not accessible, previous loss
functions can not be derived. To derive the proxy loss for the
previous task without the dataset, we propose a nominal loss
model for previous tasks inspired by a nominal plant model in
control theory [21]. The nominal loss model defines the nom-
inal parameter set, which is assumed to be an optimal point
for the previous task. Then, the proxy loss is calculated as the
difference between the current parameter set and the nominal
parameter set. Unlike similar methods using approximated
loss function for the previous task [12]–[14], the nominal
parameter set is designed to be free from interference with
other tasks. The proposed nominal parameter set has a lower
loss value than the learned parameter set, and we prove it
theoretically and empirically.

To the best of our knowledge, our work is the first model
search method which considers both the performance of the
previous and the current tasks. Since the proposed model
search can selectively update parameters for new tasks, it has
the potential to prevent catastrophic forgetting. Our method
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relieves losing the ability to learn new tasks by finding the
optimal network model, which minimizes a loss function for
whole tasks. Besides, a nominal loss model proposed to learn
the model search provides a nominal parameter set which
can more accurately approximate the previous loss function
than the existing incremental learning methods. Compared
to the existing works [12]–[14], [22], the proposed method
achieves outstanding performance on benchmark datasets
in incremental learning. Additionally, the proposed method
requires fewer computations (FLOPs) than other competing
algorithms while showing favorable performance.

In summary, the main contributions of our work are:

• We propose a model search method that enables selec-
tively using and updating the network parameters. It is
the first model search method considering the previous
and current tasks in the incremental learning problem.

• We provide a method to obtain an approximate loss
function that is more accurate than our competitors. The
superiority of the proposed approximation method is
demonstrated theoretically.

• The proposed framework shows outstanding perfor-
mance on the various incremental learning scenarios.
Our method achieves higher accuracy onmost tasks with
fewer computations than other competitors.

In Section II, we provide a literature review of related
work. Section III covers the proposed method, including a
network structure, a loss function, and an algorithm. Empiri-
cal demonstrations of the benefit of the proposed method are
presented in Section IV. Finally, Section V summarizes the
overall framework and mentions the future work.

II. RELATED WORK
Incremental learning methods with a generative model create
pseudo images of the previous tasks [4]–[6], or a parameter
set that correspond to the local minimum of the previous
task [23]. However, these methods are greatly affected by
the performance of the generative model, and learning the
generative model can be a challenging problem. Architectural
approaches [7], [8], [24] in incremental learning provide
additional parameters to train new tasks. As the number of
tasks increases, the network size gradually increases, making
it difficult to handle many tasks. Functional approaches [10],
[11], [25] preserve the previous knowledge by maintaining
the input-output mapping of the previously trained network.
They also introduce an additional computational overhead
by calculating the previous network’s input-output map-
ping for instances of the current task. Structural regularized
approaches [12]–[14] give a quadratic penalty on the dif-
ference between parameters for the current task and the old
task. While they are computationally tractable methods based
on Taylor quadratic approximation with diagonal Hessian
matrices [26], the quadratic penalty often hinders learning a
new task.

Network model search approaches based on the back-
bone structure exploit an efficient model consisting of a

subset of the backbone network’s parameters. Compared to
the conventional network architecture search method [27],
the backbone-based model search methods [28], [29] can
reduce the ample space of model structures to be explored.
The model structures are explored by removing certain fil-
ters of layers of the backbone architecture. Recent methods
[30]–[32] which allow for tighter model search, suggest a
strategy for selecting a model structure for each instance.
These studies have rarely been applied to incremental learn-
ing. There is a model selection method that deals with incre-
mental learning [20], which repeats the process of reducing
the parameters and continuously learning new tasks on the
removed parameters. However, this method cannot deal with
a large number of tasks since themodel has to be continuously
compressed each time it learns a new task.

III. METHODS
This paper addresses incremental learning (strictly, task-
incremental learning) problems in which multiple tasks are
given sequentially and assume a situation where previously
trained datasets are no longer accessible. We aim to provide a
scalable incremental learning method free from an increase
in memory or training cost even if the number of tasks
increases. To this end, we propose an instance-wise model
search method that refers to a backbone network and uses a
part of the network according to the input image. The pro-
posedmethod can prevent catastrophic forgetting by updating
an appropriate part of the backbone that can increase the
performance of the previous and current tasks. Tomeasure the
performance of the previous tasks, we propose a nominal loss
model which can approximate the loss function of the previ-
ous tasks without accessing previous datasets. The following
sub-sections describe the overall network architecture, the
nominal loss model, and the learning strategy in order. The
overall framework is illustrated in Figure 2.

A. NETWORK ARCHITECTURE
We propose a backbone-based model search method which
does not require more parameters or computation than the
backbone network. To design a backbone network from
which multiple internal models can be derived, we define an
internal model using some parameters of the backbone net-
work; We call this backbone network as a selective backbone
network (SBN). Since the combination of network param-
eters to define the internal model causes computationally
intractable cases, we divide the network parameters into mul-
tiple groups to define the internal model as a combination of
parameter groups. Besides, we define structurally clustered
parameters (i.e., convolution channels or layers) into groups
that can be considered for practical memory efficiency [33].

We divide the parameters of two consecutive convolution
layers into g groups. The channels of a hidden layer between
two convolution layers are split into g sets so that the original
convolution operation is represented as the sum of sepa-
rated convolution operations (we call them sub-convolutions)
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FIGURE 2. The attention network outputs the probability distribution for internal models for training and inference of the current
task. By sampling the internal model based on the probability distribution, the selected model structure is used to learn the input
image. To preserve the performance of the previous tasks, the proxy loss function for the previous tasks is also minimized. The
proxy loss function for the current task is derived to learn future tasks. The dotted arrows indicate elements required to update
the object it points to.

as follows:

σ (W 2
∗ σ (W 1

∗ I )) = σ

( g∑
i=1

W 2
i ∗ σ (W

1
i ∗ I )

)

→ σ

( g∑
i=1

Ii ·W 2
i ∗ σ (W

1
i ∗ I )

)
, (1)

where W 1 and W 2 are original two convolution layers, W 1
i

and W 2
i are i-th sub-convolution layers, σ is an activation

function, I is an input layer, and Ii denotes a binary value
that determines whether the i-th sub-convolution is used for
the internal model.Where there are p consecutive convolution
pairs in the backbone network, the SBN can produce 2p×(g−1)

internal models.1 The concept of the SBN can be applied
most well-known convolution networks and fully connected
networks by assuming a fully connected layer as a 1× 1 con-
volution layer.

In details, for two consecutive convolution layers, the out-
put of the first convolution layer is divided into g tensors as
follows:

σ (W 1
∗ I )

= cat
[
σ (W 1

1 ∗ I ), σ (W
1
2 ∗ I ) · · · σ (W

1
g ∗ I )

]
, (2)

where I ∈ Rh×w×ci , h, w, and ci are the size of height, width,
and the number of channels, respectively,W 1

∈ Rs×s×ci×f , s
is the size of convolution kernel, f is the number of output
channels, W 1

i ∈ Rs×s×i×fi is a divided convolution layer
which satisfies

∑g
i=1 fi = f , and cat[·] denotes a concatenate

operation with respect to the last dimension. Then, the output

1Cases where no sub-convolution is used are excluded.

of the second convolution layer is calculated as the sum of
divided convolutions on the separate inputs:

σ (W 2
∗ I ′) = σ

( g∑
i=1

W 2
i ∗ I

′
i

)
, (3)

whereW 2
∈ Rs×s×f×co , co is the number of output channels,

I ′ = σ (W 1
∗ I ), I ′i = σ (W 1

i ∗ I ), and W
2
i ∈ Rs×s×fi×co is

the divided convolution layer which refers divided layer (I ′i ).
In most case, fi = bf /gc for i < g, and fg = f −

∑g
i=1 fi.

We propose a trainable network model, called an attention
network (AN), to find a proper internal model by selecting
sub-convolutions to use. The AN returns probability values
for whether each sub-convolution is used based on the input
image; The output dimension of the AN is p(g − 1) and
the AN takes an image of the same size as the backbone
network. Note that our input-wise model selection can han-
dle tasks in a single-head network without task identifica-
tion (see Experiment Results). After the model structure is
determined through the AN, the task is performed using the
corresponding internal model. To build the whole framework
to be memory efficient, the AN is designed to be much
smaller than the SBN. Indeed, choosing a small internal
model from the SBN can reduce the actual computational
amount. We also design the AN identically to the structure of
the smallest-sized internal model from the SBN to alleviate
the difficulty of designing the AN (but the AN and the SBN
do not share parameters).

B. NOMINAL LOSS MODEL
We use proxy loss functions w.r.t. parameters of the network
to represent the sum of the loss functions for all tasks without
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accessing the previous datasets:

min
θ

T∑
t=1

Lt (θ;Dt ) ≈ LT (θ;DT )+ λ
T−1∑
t=1

Ltp(θ ), (4)

where Lt and Dt are the loss function and dataset for task
t , respectively, θ is a parameter set of the network, T is the
number of tasks,Ltp is the proxy function for the loss function
of task t , and λ is a weighting factor which controls the
strength of the proxy losses. The existing methods using the
proxy loss [12]–[14] assume that the proxy loss function has
a minimum value at the parameter set trained for the previous
task. Then, they define the proxy loss function as a quadratic
function which has a minimum value at the trained parameter
set for the previous task [12]–[14]:

Ltp(θ ) =
n∑
i=1

�i(θi − θ̂ ti )
2, (5)

where n is the number of parameters, �i ∈ R+ represents
an intensity for the i-th parameter, and θ̂ t denotes a trained
parameter set for task t . The proxy loss in (5) penalizes the
parameter set as it moves away from the trained parameter
set considering importance of the parameters. Although these
methods show computational ease and competitive perfor-
mance for incremental learning scenarios, the assumption
that the parameter set trained for the previous task has a
minimum proxy loss value may not be correct. In the incre-
mental learning scenarios, the parameter set is trained not
for the current task loss function but also for the proxy loss
function for the past tasks while learning the current task. The
proxy loss term for previous tasks may prevent the parameter
from reaching the minimum of the current task loss function.
Actually, learning with the proxy loss often results in lower
performance in the current task than single task training (see
Experimental Results).

Tomitigate the interference of proxy loss, we define a nom-
inal loss model that refers to a nominal parameter set closer to
the optimal point of the current loss function than the trained
parameter set. The proposed nominal loss model calculates
the proxy loss function by calculating the intensities for each
parameter and the nominal parameter set, as follows:

Ltp(θ ) =
n∑
i=1

�i(θi − θ̃ ti )
2, (6)

where θ̃ t is the nominal parameter set for task t .
The proposed nominal loss model reflects the amount of

change in the loss function according to each parameter
change. While learning task t from the trained parameter set
for task t − 1, the amount of change in the loss function for
each parameter change is accumulated as follows [14]:

Lt (θ̂ t−1;Dt )− Lt (θ̂ t ;Dt ) ≈
m∑
j=1

(∇θLt )Tj (1θ )j, (7)

where m is the number of iterations for training the task,
(∇θL)j and (1θ)j are the gradient and the amount of change in

FIGURE 3. Schematic diagram of the proxy loss function. The solid blue
line indicates the case where α = 0 (Case A), and the dotted lines
represent the function when the signs of the gradient and parameter
change are the same (Case B) and the function when the signs are
different (Case C). In Case B, the nominal parameter set (θ̃ t ) is between
θ̂ t−1 and θ̂ t . In Case C, θ̃ t exists outside the boundary.

the parameters at the j-th iteration, respectively. The amount
of change in the loss function according to the parameter
change determines the intensity of each parameter on the
proxy loss. The proxy loss is expressed as the sum of terms
independent of each parameter in (6) so that the proxy loss
can capture the characteristics of (7) by satisfying the follow-
ing condition for each parameter (Condition 1):

Ltp,i(θ̂
t−1
i )− Ltp,i(θ̂

t
i ) = 1Lti :=

m∑
j=1

(∇θiLt )j · (1θi)j,

s.t. Ltp,i(θ ) = �i(θi − θ̃ ti )
2. (8)

The nominal loss model also refers to the gradient value of
the current loss function at the trained parameter set to find
a parameter set that has a smaller loss function value for the
current task than the trained parameter set. Then, the proxy
loss preserves the gradient of the original loss function at the
trained parameter set (Condition 2):

∇θiLtp,i(θ̂
t
i ) = α∇θiL

t (θ̂ t ), (9)

where α ∈ [0, 1] is a scalar value which relaxes the gradi-
ent value. The relaxation is necessary to adjust the balance
between the first and second conditions. When the gradient
value is greater than the amount of change of the loss function
for the parameter,� in (5) is calculated as a negative number.

The nominal loss model which derives the proxy loss func-
tion satisfying two conditions includes the following nominal
parameter set and intensities:

�i =
1Lti + α∇θiL(θ̂ t )(1θi)

1θ2i
,

θ̃i = θ̂
t
i −

1θ2i α∇θiL(θ̂ t )
2(1Lti + α∇θiL(θ̂ t )1θi)

, (10)

where 1θi is θ̂ ti − θ̂ t−1i . The derivation of (10) is in the
appendix. According to (10), the nominal loss model includes
the SI [14] method as a special case (α = 0). When α > 0,
it can be interpreted that the each nominal parameter value
moves as much as a value proportional to ∇θiL(θ̂ t )/�i from
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the trained parameter values (θ̂ t ). Since this is identical to
the Newton method using an approximated Hessian (�), the
nominal parameter set can be interpreted as moving toward
decreasing the loss function value of the current task in the
trained parameter set. Besides, for a sufficiently small α, the
nominal parameter set θ̃ t is guaranteed to have a smaller loss
value than the trained parameter set θ̂ t :
Theorem 1: There exists α∗ > 0, where the following

equation is always satisfied for α smaller than α∗: Lt (θ̃ t ) <
Lt (θ̂ t ), s.t. θ̃ is calculated using (10).

The proof is in the appendix. This theorem illustrates that
the proposed method is less affected by the proxy loss func-
tion of the previous tasks, so that the nominal parameter set
which shows better performance in the current task can be
found. Figure 3 shows the proxy loss function and nominal
parameter values for several cases. As in Theorem 1, each
nominal parameter value has a loss value lower than Lt (θ̂ t )
(equality condition is when α = 0). Moreover, if the sign
of the gradient and the sign of the change of the parameter
value (θ̂ t−1i − θ̂ ti ) are the same, the nominal parameter value
is between θ̂ t−1i and θ̂ ti and the corresponding intensity (�i)
increases, and vice versa.

C. ALGORITHM
In this section, we introduce the learning strategy of the SBN
and the AN, using the nominal loss model. For the model
structure z ∈ {0, 1}p×(g−1) based on the output of the AN,
(4) is expanded as follows:

min
θ

E(x,y)∈DT

[
LT (θ, z; x, y)+ λ

T−1∑
t=1

Ltp(θ, z)
]

s.t. z ∼ f (φ; x), (11)

where x and y are an image and a label from the dataset DT ,
respectively, and φ is a parameter set of the AN (f ). Since
AN produces the probability value for the model structure,
we should minimize the following mean loss function:

min
θ,φ

E(x,y)∈DT ,z∼f (φ;x)

[
LTtot (θ; x, y, z)

]
, (12)

where LTtot indicates the total loss function including the loss
for the task T and the proxy losses for the previous tasks.
However, it is computationally intractable to calculate the
expected value for all possible z. Inspired by [34], we approx-
imate the expectation to the average of several examples
sampled from the probability distribution based on the output
of the AN:

min
θ,φ

E(x,y)∈DT

[∑
z∈Z

log p(z; f (φ; x))
LTtot (θ; x, y, z)

|Z |

]
,

s.t. Z ∼ f (φ; x), (13)

where Z is a set of the sampled model structures from the
probability f (φ; x), and p(z; f (φ; x)) is the probability value
for themodel structure z under f (φ; x). The derivation is in the
appendix. (13) can be computed efficiently and differentiated

Algorithm 1 Continual Learning With Adaptive Network
Model Search and Nominal Loss Model
1: Input: D1:T , S, λ
2: Initialize: θ , ϕ← Xavier-initializer
3: update θ , φ minimizing only a task loss function
4: for t = 2 to T do
5: Initialize 1L = 0, 1θ = 0
6: for s = 1 to S do
7: Update θ minimizing only a task loss function
8: end for
9: repeat
10: Update φ w.r.t. (13)
11: until Convergence
12: repeat
13: Save θ s← θ

14: Update θ w.r.t. (13)
15: Update 1L← 1L−∇θLt · (θ s − θ )
16: Update 1θ ← 1θ + (θ − θ s)
17: until Convergence
18: Derive �t and θ̃ t using (10)
19: Online update �1:t and θ̃1:t using (14)
20: end for

TABLE 1. Summary of the datasets.

for φ and θ to be minimized with a broad optimizer of a deep
neural network.

Since storing all the nominal loss models for the previous
tasks is a waste of memory, we provide an online update
method of the nominal loss model. It is enough to show that
we can express two nominal loss models as one nominal loss
model by mathematical induction. Assuming that�1:t−1 and
θ̃1:t−1 represent the nominal loss model of the previous tasks
and �t and θ̃ t are the nominal loss model of the current task,
the sum of two models can be represented as a single nominal
loss model, as follows:
n∑
i=1

�1:t−1
i (θi − θ̃

1:t−1
i )2 +�t

i (θi − θ̃
t
i )
2
+ Const.

=

n∑
i=1

(�1:t−1
i +�t

i )

(
θi −

�1:t−1
i · θ̃ t−1i +�t

i · θ̃
t
i

�1:t−1
i +�t

i

)2

.

(14)

The algorithm of the proposed framework is summarized in
Algorithm 1. For the first task, we train the SBN and the AN,
alternately. When a new task comes in, to derive reasonable
performance for the new task, the SBN is trained for a few
epochs (less than 5), and then the AN is trained. Finally, the
SBN is trained based on the learned AN.
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TABLE 2. Summary of setup for the scenarios.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
We evaluated the proposed framework on several bench-
mark datasets in incremental learning scenarios: per-
muted MNIST [35], SVHN [36] / MNIST, 11-split
CIFAR-10/100 [37], and 10-split mini-ImageNet.2 Detailed
information for each dataset is shown in Table 1, where #
dataset is the number of images in the train and test sets,
and # c.p.t. denotes the number of classes per each task.
For the permuted MNIST scenario, we randomly generated
a permutation matrix that changes the order of pixels in an
image for each task. We tested two incremental learning
problems involving 10 and 20 tasks in the permuted MNIST
scenario. In the SVHN / MNIST scenario, the SVHN and
MNIST datasets were trained sequentially. Since these two
scenarios deal with similar classification problems for each
task, we used a single-head network which shares the last
fully-connected layers over the different tasks in the sce-
narios. The classes in the dataset were divided into n tasks
in n-split scenarios. In particular, in the 11-split CIFAR-
10/100 scenario, CIFAR-10 was learned as the first task and
10 classes extracted from CIFAR-100 were learned from the
second task. The proposed method (OURS) was compared
with our method without model search (OURS-), structural
regularized approaches including EWC [13], SI [14], and
MAS [12], a functional approach: LwF [11], a generative
approach: GR [6] and a baseline (Base) which independently
learns each task.

Table 2 shows the detailed experimental settings for learn-
ing the proposed algorithm, where # task is the number of
tasks in the scenario. Permuted MNIST created several tasks
by zero-padding a 28× 28 image with a size of 32× 32 and
changing the order of pixels (i.e., 10-permuted MNIST con-
tains 10 permutation matrices). The backbone network used
the same network model in the previous study [14]. The
selective backbone network (SBN) was first trained for one
epoch, and then the attention network (AN) was trained by
considering the loss function of the current task and the
nominal loss model for previous tasks. The AN was learned
faster than SBN, so it was possible to learn with a small
training cost of 1 or 2 epochs. We fixed the relaxation degree
of the gradient (α) as 1e − 2. Also, we set λ, which controls
the balance between the current loss function and the proxy
loss function for previous tasks, as 1e− 1 or 1e− 2.

2https://github.com/yaoyao-liu/mini-imagenet-tools

B. EXPERIMENTAL RESULTS
We measured the average performance (ACC) after learning
all tasks and the ability to learn new tasks (AL) in the incre-
mental learning scenarios. The AL is defined as the difference
in performance between the method which learns each task
independently (Base) and the method which learns a new task
along with previous tasks (incremental learning method):

AL =
T∑
t=2

Ct − Bt
T − 1

, (15)

where Bt represents the accuracy of the task t using Base, Ct
is the accuracy of the task t measured after learning task t
using the incremental learning method, and T is the number
of the tasks. Note that Ct denotes the accuracy before it is
reduced by learning newer tasks (> t). If the knowledge of
the previous tasks has a positive effect on learning the new
task, the AL is measured as a positive number.

1) PERMUTED MNIST
For this scenario, the backbone network consisted of
two 2000-dimensional fully connected layers and the 10-
dimensional fully connected layer. ReLU activation was used
after each layer. To configure the backbone network as the
SBN, we divided the first two fully connected layers into
eight sub-fully connected layers with 250-dimensional hid-
den layers. We set λ in (11) to 0.1. The results on the per-
muted MNIST with 10 and 20 tasks are in Table 3. In the
scenario with 20 tasks, the proposed method has outstanding
performance compared to othermethods, whilemostmethods
show similar performance for 10 tasks. The proposed method
is robust for cases with large numbers of tasks in the scenario.
Besides, the regularization-based methods have low AL val-
ues. It is evidence that regularization of penalizing changes
in parameters often hinders learning new tasks. Nevertheless,
the proposed method has the highest AL value among regu-
larization methods.

2) SVHN/MNIST
From this scenario, we used a backbone network consisting
of four convolution layers and two fully connected layers.
The first two convolution layers output 32 channels and the
after two convolution layers output 64 channels. After every
two convolution layers, max-pooling and dropout were per-
formed. The sizes of output dimensions of fully connected
layers are 512 and 10, in order. The first and subsequent two
convolution pairs are each split into four sub-convolutions
to design the SBN, and we set λ to 0.1. Table 3 shows the
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TABLE 3. Comparison of average accuracy (ACC) and learning ability (AL) on five incremental learning scenarios.

experimental results for SVHN / MNIST. OURS and OURS-
exhibit the best performance. In the case of the AL, GR shows
the best performance. The positive AL value of GR indicates
that the generated SVHN images improve the learning ability
of the MNIST dataset.

3) 11-SPLIT CIFAR-10/100
This scenario used the same backbone network as the previ-
ous scenario. However, this scenario was not configured as a
single-head network; Each task has its own the last fully con-
nected layer. We set λ to 0.01. In Table 3, OURS and OURS-
show the best results in both ACC and AL. The proposed
method even has outstanding performance compared to Base.
The positive value of the AL with our methods represents
that the previously trained network has a positive effect on
learning new tasks in this scenario.

4) 10-SPLIT mini-ImageNet
In this scenario, we experimented with larger-sized images.
We used the same backbone network and λ as the previ-
ous scenario. In Table 3, the proposed method shows the
highest performance. The proposed method shows the best
AL among regularization-based methods and the best ACC
in the overall scenarios. The performance of GR is much
lower compared to other methods. It is interpreted to be
because mini-ImageNet is challenging to generate, unlike
simple images which are relatively easy to learn a generative
model.

C. ANALYSIS
1) FLOPs
To verify the efficiency of the proposed model search,
we listed the FLOPs of the network for all scenarios in
Table 4, where S.M. is the FLOPs of the selected model
and C.R. is the compression ratio compared to the backbone
network. Since the proposed method has to pass both the AN
and the selected model, the compression ratio was calculated
by comparing the sum of the FLOPs in the two networks
with the FLOPs in the backbone network. The proposed
method can perform tasks with average FLOPs of 64.28% to
82.61%. Interestingly, there is a positive correlation between
the difficulty of a task (measured as average performance)
and the compression ratio. Note that other competitors have
the same or more FLOPs than backbone.

TABLE 4. FLOPs of networks in incremental learning scenarios.

TABLE 5. Ablation results for permuted MNIST and split CIFAR dataset.

2) INPUT-WISE MODEL SEARCH
We compared the proposed input-wise model search with
random-wisemodel search (randommodel structure for every
input instances) and task-wise model search. We evaluated
the experiment on 20-permuted MNIST and 11-split CIFAR-
10/100 scenarios. The ACC for the methods is shown in
Table 5. The random-wise model search shows comparable
performance with the task-wise model search in the split
CIFAR scenario. This indicates that training the network
with all parameters at all times is not a favorable condition
for preventing catastrophic forgetting. Besides, compared to
the task-wise model search, our method shows much higher
accuracy.

3) PERFORMANCE ACCORDING TO α

We compared the performance of the proposed methods with
different α to verify whether gradient relaxation is necessary
for the proposed algorithm and can increase the performance
of each task. We measured the average performance for all
tasks using the method without performing a model search
for comparison with SI [14] (α = 0). The experimental result
is shown in Figure 4. If α does not sufficiently alleviate the
gradient value (α > 0.2), it can be seen that catastrophic
forgetting cannot be prevented. In this case, as described in
the paper, α is higher than the amount of change in the current
loss function, so� is incorrectly calculated. For a sufficiently
small α, the proposed method shows a consistently reliable
performance, and as the α decreases, we verify that the per-
formance is similar to that of SI.
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FIGURE 4. Comparison of average accuracy on 11-split CIFAR-10/100
dataset. We measured the accuracy for the proposed methods with
different α. In this experiment, the proposed method did not contain the
model search.

FIGURE 5. Comparison of average accuracy on 10-split mini-ImageNet
dataset. We measured the accuracy for the proposed methods with
different λ.

4) PERFORMANCE ACCORDING TO λ

We investigated the relationship between model selection and
λ which controls the balance between the proxy loss for the
previous tasks and the loss function for the current task. The
FLOPs and average performance for each λ are shown in
Figure 5. In this experiment, λ was set to 0.1 when learning
SBN to confirm the relationship between model selection and
λ clearly; Like other structural regularized methods, SBN’s
performance is sensitive to λ. It can be seen that the larger
λ, that is, the more emphasis is placed on the proxy loss
for the previous tasks, and the fewer parameter groups are
selected when learning a new task. The original backbone
network includes 366.24M FLOPs, and the proposed method
can perform tasks using only 81% to 87% of the FLOPs
of the backbone network. When λ is 0.1, it shows the best
performance while using a smaller-sized model than when
λ = 0.01, and 0.001. This result suggests that using a small
model can be effective for incremental learning.

FIGURE 6. Correlation of model structure of sample images belonging to
each task in 10-split mini-ImageNet.

5) CORRELATION OF MODEL STRUCTURES
We calculated the correlation for images sampled from mini-
ImageNet (see Figure 6). The model structures are obtained
by the trained AN in the 10-split mini-ImageNet scenario.
Images belonging to the same task and images belonging
to consecutive tasks have a high correlation. Since images
belonging to the same task refer to the same nominal loss
model and the nominal loss model is accumulated in sub-
sequent tasks, it can be seen that similar models are often
selected to prevent catastrophic forgetting.

V. CONCLUSION
In this study, we have proposed an adaptive model search
method for incremental learning. The proposed framework
consists of a selectable backbone network which can instan-
tiate multiple internal models and an attention network (AN)
which selects a suitable internal model according to a given
input image. The AN is trained to select the internal model
that minimizes the loss function of the current and previous
tasks. The proposed model search is the first model search
method which considers the current task performance so
that our method can preserve the ability to learn new tasks
compared to other methods. Meanwhile, we have designed a
nominal loss model which derives the proxy loss function of
the previous task without the previous dataset. The nominal
loss model refers to the parameters with a lower loss value
than the previously trained parameters, which has been ana-
lyzed theoretically. Besides, since the proposed framework
performs the task using the internal model smaller than the
backbone network, it enables memory-efficient inference.
The proposed approach has been validated on incremental
learning scenarios, while it has shown outstanding perfor-
mance compared to existing incremental learning methods.

Future research should consider the potential effects of
using rehearsal images from previous tasks. The proposed
model search method can be applied to class-incremental
learning problems using rehearsal images. Rehearsal images
can be assisted in designing the approximated loss function
and determining the importance of each parameter.
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APPENDIX A
DERIVATION OF EQUATION (10)
According to the paper, the two conditions that the proxy loss
for θi satisfies are:

• Ltp,i(θ̂
t−1
i )− Ltp,i(θ̂

t
i ) = 1Lti

• ∇θiLtp,i(θ̂
t ) = α∇θiLt (θ̂ t ). (16)

Ltp,i(θi) whose quadratic coefficient is �i with the gradient
value of the above condition at θ̂ ti is expressed as the follow-
ing quadratic function:

Ltp,i(θi) = C+ α∇θiLt (θ̂ t )(θi − θ̂ ti )+�i(θi − θ̂ ti )
2, (17)

where C is a constant value independent of θi. Substituting
(17) for the first condition in (16), �i is calculated as:

1Lti = C− α∇θiLt (θ̂ t )1θi +�i1θ
2
i − C

�i =
1Lti + α∇θiLt (θ̂ t )1θi

1θ2i
, (18)

where 1θi is the amount of change in the parameter (θ̂ ti −
θ̂ t−1i ). The nominal parameter set, θ̃i, is derived by substitut-
ing (18) for (17):

Ltp,i(θi) = �i((θi − θ̂ ti )
2
+
α∇θiLt (θ̂ t )

�i
(θi − θ̂ ti ))+ C

= �i(θi − θ̂ ti +
α∇θiLt (θ̂ t )

2�i
)2 + C′

= �i(θi − θ̃ ti )
2
+ C′

s.t. θ̃ ti = θ̂
t
i −

α∇θiLt (θ̂ t )
2�i

, (19)

where C′ is the another constant value independent of θi.�

APPENDIX B
PROOF OF THEOREM 1
The loss function for task t can be expressed by Taylor
expansion as follows:

Lt (θ ) = Lt (θ̂ t )+∇θLt (θ̂ t )T (θ − θ̂ t )

+
1
2
(θ − θ̂ t )TH (η)(θ − θ̂ t ), (20)

where H (·) is a hessian and η is a point on the line segment
joining θ to θ̂ t . Then, we can derive the loss value on θ̃ t as
following as:

Lt (θ̃ t )

= Lt (θ̂ t )−
α

2
∇LTG−1∇L+

α2

8
∇LTG−TH∗G∇L

= Lt (θ̂ t )−
α

2
(∇LTG−TGTG−1∇L

−
α

4
∇LTG−TH∗G−1∇L)

= Lt (θ̂ t )−
α

2
vt (GT −

α

4
H∗)v, (21)

where ∇L = ∇θLt (θ̂ t ), H∗ = H (η), G is a diagonal matrix
whose i-th element is �i, and v = G−1∇L. Since H∗ is

bounded and G > 0, GT − αH∗/4 > 0 for sufficiently small
α > 0. Then, L(θ̃ t ) < Lt (θ̂ t ) for sufficiently small α.�

APPENDIX C
DERIVATION OF EQUATION (13)
For θ , minimizing (12) is equal to minimizing the following
objective function:

argmin
θ

E(x,y)∈DT ,z∼f (φ;x)

[
LTtot (θ; x, y, z)

]
≈ argmin

θ

E(x,y)∈DT

[∑
z∈Z

LTtot (θ; x, y, z)
]
. (22)

Since (12) is not differentiable with respect to φ, we intro-
duce a log-trick method [34], inspired by [30]:

∇φE(x,y)∈DT ,z∼f (φ;x)

[
LTtot (θ; x, y, z)

]
= E(x,y)∈DT

[∑
∀z

∇φp(z, φ)LTtot (θ; x, y, z)
]

= E(x,y)∈DT

[∑
∀z

∇φp(z, φ)
p(z, φ)

LTtot (θ; x, y, z)p(z, φ)
]

= E(x,y)∈DT

[∑
∀z

∇φ log p(z, φ)LTtot (θ; x, y, z)p(z, φ)
]

= E(x,y)∈DT ,z∼f (φ;x)

[
∇φ log p(z, φ)LTtot (θ; x, y, z)

]
≈ E(x,y)∈DT

[∑
z∈Z

∇φ log p(z, φ)LTtot (θ; x, y, z)
]
, (23)

where p(z, φ) = p(z; f (φ; x)). �
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