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ABSTRACT Multi-task learning (MTL) improves learning efficiency compared to the single-task coun-
terpart in that it performs multiple tasks at the same time. Due to the nature, it can achieve generalized
performance as well as alleviate overfitting. However, it does not efficiently perform resource-aware
inference from a single trained architecture. To address the issue, we aim to build a learning framework
that minimizes the cost to infer tasks under different memory budgets. To this end, we propose a multi-path
network with a self-auxiliary learning strategy. The multi-path structure contains task-specific paths in a
backbone network, where a lower-level path predicts earlier with a smaller number of parameters. To alleviate
the performance degradation from earlier predictions, a self-auxiliary learning strategy is presented. The self-
auxiliary tasks convey task-specific knowledge to the main tasks to compensate for the performance leak.
We evaluate the proposed method on an extensive set of multi-task learning scenarios, including multiple
tasks learning, hierarchical learning, and curriculum learning. The proposed method outperforms existing
multi-task learning competitors for most scenarios about by a margin of 1% ~ 2% accuracy on average while

consuming 30% ~ 60% smaller computational cost.

INDEX TERMS Multi-task learning, resource-efficient learning, multi-path network.

I. INTRODUCTION
Deep learning has achieved great success in domains such
as computer vision [1] and natural language processing [2].
A well-designed deep architecture is generally deployed for
a single task [3], such as object detection [4], pose estima-
tion [5] and image segmentation [6]. Despite the success in
various fields, it is well-known that the approach requires
heavy computational resources, especially when we address
multiple tasks. This is generally from a common practice
that a network is specialized for a single task. If the number
of tasks grows, the number of parameters required increases
accordingly. As a result, given a large number of tasks to be
performed, it will become an intolerable burden for resource-
constrained devices.

To overcome the limitation, one strategy is to learn tasks
jointly, which is referred to as multi-task learning (MTL) [7].
MTL executes multiple tasks at the same time and is more
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efficient than its single-task counterpart. Due to the nature
of exploiting knowledge of multiple different tasks, it can be
employed in various fields, [8]-[10], and natural language
processing [11], [12]. Despite its practical benefit, there
might be unavoidable issues. First, we may encounter task
interference during training when different tasks share the
same network. This is because, unlike a single task, multiple
knowledge from different tasks are learned using the same
set of parameters, decreasing learning efficiency. Second, if a
different computation budget is required, we usually need to
define a new network, which introduces additional training
effort. In other words, when we learn a network tailored
for a specific budget, it is difficult to directly transfer the
learned network to another one for a new budget. Therefore,
it would be desirable to perform more flexible inference under
different computation budgets in a learned network.

Many existing works try to solve one of the above two
challenges. Some recent works [13]-[15] have made efforts
to reduce the negative impact between tasks to prevent perfor-
mance degradation. [13], [16] propose a selection module so
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that relevant tasks are encouraged to share their features while
irrelevant tasks are disentangled. [14] utilizes task-specific
attention in a single shared backbone and [15] reparame-
terizes existing convolution modules into shared and task-
specific modules. However, the above works do not perform
budget-aware inference when different budgets are required,
thus they need to produce multiple individual networks for
different costs. Although [17] enables cost-aware inference
by building a nested structure containing multiple networks of
different sizes, it mainly focuses on a single task, not multiple
tasks.

In this work, we develop a new network containing differ-
ent inference paths, called a multi-path network, which learns
multiple tasks simultaneously under different computation
costs. The proposed architecture is structured hierarchically
and consists of multiple paths of different hierarchy levels.
The multiple paths correspond to internal networks of dif-
ferent sizes in the architecture, respectively (see Figure 1).
The path under a lower-level (resp., higher-level) hierarchy
enables earlier (resp., later) prediction with a smaller (resp.,
larger) number of parameters. The network possesses a nested
structure such that an internal network of an earlier path is a
subset of internal networks of later paths. Thus, the knowl-
edge of a lower-level path is shared by a higher-level path.
This is different from a common practice with multiple output
branches at the end of a network [7]. We note here that some
tasks are performed early with a partial set of parameters,
and the other tasks can occupy the rest of the parameters.
From this, tasks do not fully share the entire set of param-
eters, allowing different learning and inference flows and
mitigating the strong influence (connection) between tasks.
Besides, the multi-path network containing internal networks
of diverse sizes can meet the requirement of different com-
putation costs. Thus, it will reduce the effort to design and
train additional networks from scratch. Note also that tasks of
different natures can be efficiently addressed in the proposed
approach. For instance, it can apply lower-level paths to
easier tasks and higher-level paths to harder tasks. In addition,
to avoid the performance degradation risk that occurred in
the early prediction with a small number of parameters and
to boost the performance of all target tasks, a self-auxiliary
learning strategy is introduced through knowledge distilla-
tion [18]. The multi-path network receives rich task-specific
knowledge from the self-auxiliary tasks that can improve the
representation of the target tasks.

Additionally, to our knowledge, there is no comprehen-
sive study of multi-task learning from various views. It is
important to note that existing works in the multi-task learn-
ing literature have not extensively conducted a diverse set
of scenarios, so their analyses might be limited. In this
work, we study the proposed multi-task learning method
under a wide range of scenarios, including multiple tasks
learning, hierarchical learning, and curriculum learning (see
Section 1V). For those scenarios, we use three benchmark
datasets: CIFAR-10 and CIFAR-100 [19], and Celeb-A [20].
We show from the experiments that the proposed method
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FIGURE 1. A graphical illustration of the proposed learning framework
based on a multi-path network and self-auxiliary tasks. The network is
composed of hierarchically constructed subnetworks and their inference
paths, where the lower-level path (Path A) branches out at an earlier
layer to perform Task A and the higher-level path (Path B) outputs at the
end of the network to perform Task B. We also have auxiliary tasks
corresponding to the main tasks, which are called self-auxiliary tasks. The
self-auxiliary tasks (with their pre-trained networks) transfer task-specific
knowledge to the main network to boost the performance of all tasks.

performs better than other approaches in most scenarios while
effectively minimizing the harmful interference between
tasks. We also analyze the computation cost of compared
methods to verify that the proposed method is resource-
efficient.

In summary, the main contributions of the proposed
method are three folds:

o The proposed hierarchical structure can efficiently han-
dle multiple tasks, including hierarchical and curriculum
learning tasks.

o The proposed network contains multiple internal net-
works of different sizes and can address various com-
putation budgets from a single training phase.

o The self-auxiliary learning strategy mitigates the perfor-
mance leak by sharing the task-specific information with
the multi-path structure.

The organization of this paper is as follows. We intro-
duce related work in multi-task learning in Section II.
In Section III, we explain the proposed multi-path structure
and self-auxiliary learning strategy. In Section IV, we show
the effectiveness of our work with other methods. Finally, the
conclusion of this work is discussed in Section V.

Il. RELATED WORK

A. MULTI-TASK LEARNING

The goal of multi-task learning (MTL) is to learn multi-
ple tasks jointly [7]. MTL can be classified into two main
categories. The first category introduces multiple individual
networks proportional to the number of tasks with some
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FIGURE 2. A graphical illustration of the proposed framework; the multi-path network with self-auxiliary tasks. The multi-path network contains
hierarchical branches that are placed across the network, from shallow to deep layers. The lowest-level branch of the hierarchy (corresponding to Task 1)
allows the task to be performed the earliest, and the highest-level branch (corresponding to Task t) performs the last. To boost the performance of the
tasks, self-auxiliary learning is applied where self-auxiliary tasks are pre-trained and distilled to the main tasks.

constraints between the networks [21], [22]. [21] proposes
a cross-stitch module that enables to share the task knowl-
edge between individual networks. Likewise, [22] fuses the
features from the different tasks to train them jointly. The
other one learns multiple tasks using a single shared archi-
tecture [11], [17], [23]-[26]. [11], [23] utilize the auxil-
iary tasks to rich the feature representation. [24] suggests
a soft-attention module for learning task-specific features.
[25] attempts to hold important parameters for each task
by iterative pruning. [17] constructs a resource-aware struc-
ture that compresses the network by splitting each channel
into separated groups. Additionally, there are many studies
to solve multi-task learning from an optimization point of
view, such as Pareto optimal solution [27], multi-objective
optimization [28], task priority [29], gradient surgery [30].

In this work, we are particularly interested in learning on
a single shared structure since it is memory efficient. While
most existing methods need to be trained from scratch if
another computation budget is needed, the proposed method
does not require extra training efforts due to the internal net-
works in the proposed architecture. Besides, task interference
can be mitigated in the proposed method by allowing different
learning and inference flows for tasks.

B. KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a method that transfers knowl-
edge from a large-scale (teacher) network to a small-scale
(student) network [31]. The student network is trained to
mimic the teacher network by minimizing the difference of
the predictions between student and teacher from the last
layer [18], intermediate layers [32], [33], attention maps [34],
and so on. Knowledge distillation has been applied to face
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recognition [35], style transfer [36], and natural language pro-
cessing [37], [38] to compress the network, while maintaining
the performance. KD is used not only in single task learning
but also in multi-task learning [12], [39]. [12] suggests using
KD when addressing multi-task learning in natural language
processing. [39] employs KD to handle an imbalance problem
while optimizing the multiple losses.

Apart from the previous works, we deploy KD to accel-
erate the performance in multi-task learning while achieving
resource efficiency. To overcome the performance degrada-
tion that can arise with early predictions in the multi-path
network, we distill knowledge from self-auxiliary tasks with
pre-trained networks to learn the subnetworks in the proposed
architecture.

ill. METHOD

The proposed method aims to provide prediction at dif-
ferent computation costs from a single trained architecture
while alleviating destructive interference that can arise when
learning different tasks. To achieve this goal, we propose
a learning framework based on a multi-path structure with
a self-auxiliary learning strategy. The multi-path structure
performs multiple tasks under different paths. Self-auxiliary
learning assists the main tasks to make up for the performance
loss with earlier paths. We introduce the multi-path network
in Section III-B and the self-auxiliary learning strategy in
Section III-C. Additionally, the notations used in this work
are listed up in Table 1.

A. MULTI-TASK LEARNING
Multi-task learning (MTL) trains multiple tasks jointly,
which can improve the learning efficiency and generalized
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TABLE 1. The notations used in this work.

l Notation ‘ Meaning ‘

i Index of the task
DO Dataset of the i task
w Set of parameters
Weh Set of shared parameters
Wt(;s & Set of task-specific parameters of the ‘" task

Set of parameters of the ‘" task assigned to

(%)
Winain the main task.
"o Set of parameters of the it" task assigned to
aue the auxiliary task
an)um Loss of the i*" task for the main task
5(% Loss of the i*" task for the auxiliary task

performance. We define a task as learning an attribute in a
sample [40], [41], learning each hierarchy of hierarchically
constructed dataset (in hierarchical classification) [17], [42],
or learning a group of samples of different difficulty (in
curriculum learning) [43], in this work, but not limited to.

In the conventional MTL method [7], the set of datasets is
denoted as {D(i)} 1<i<t» where the number of tasks is ¢ and the
task indexisi € [1, 2, ..., t]. For the i task, the dataset D
consists of the set of data samples X and the corresponding
set of labels Y, ie., DV = (X® y®D). A single shared
network A(-) is a collection of the shared parameters Wy,
and the task-specific parameters { Wt & }1<i<r> and we define

= (W, (algk .. W({;gk} Given a collection of tasks,
the loss function L is defmed as follows:

mm Zﬁ(h(X(’) W), Y®). 1)
i=1

Note that task-specific classifiers for multiple tasks occupy
a small number of parameters in VV. There are studies [24],
[25] considering how to distribute parameters of each task
to Wi to overcome the limitation of learning with a sin-
gle fixed architecture. [24] introduces feature-level attention
modules applied to the shared parameters for different tasks.
In [25], the shared parameters are divided into task-specific
disjoint groups. However, [24] requires an additional number
of parameters, and it may be difficult for [25] to address many
tasks because all tasks are learned independently.

B. MULTI-PATH NETWORK

Multi-task learning generally addresses different tasks within
a single shared architecture, which reveals that the mixture
of knowledge can negatively influence each other. Moreover,
when different memory budgets or networks of different sizes
are required, it is common to define individual networks
corresponding to the requirements. To handle both problems,
the proposed method is built on a multi-path structure (see
Figure 2). The structure contains multiple different paths
constructed hierarchically in a way that an earlier path entails
a smaller number of parameters and a later path requires
a larger number of parameters. Note that the hierarchical
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structure of the multi-path network indicates a nested network
structure in such a way that an internal network correspond-
ing to an earlier prediction path shares its parameters (and
knowledge) with other internal networks corresponding to
later prediction paths. Hence, different inference paths from
the multi-path network may avoid negative task interference
because tasks do not fully share the entire network (i.e.,
partial sharing can reduce the chance of interference due to
different learning and inference flows). Besides, due to the
different sizes of internal networks, the proposed method can
handle diverse computation requirements.

The set of parameters for the i path (or the i internal net-
work) is Wr(nzlm The set of entire parameters of the multi-path
network is W,4in, Which is the same as the parameters in the
last task W Note that the internal networks included in

main*
the proposed model have the following hierarchical (nested)

property:

main — main’

m<nVm,nell,2, ..., 1] 2)

Given the proposed network, the loss function for the i task
is defined as:
Lo = HEX D, W00, YD), 3)

muln main

where 7(-) denotes a loss function (e.g., cross entropy), and
f() is the proposed multi-path network. By learning the
multi-path network, we can perform tasks under different
paths (and different computation costs). Moreover, if the
overall structure of the network g and f are the same, the
number of parameters for a task in the conventional MTL
method is equal to the number of parameters for the last
task in the proposed method. Thus, the proposed method can
contain the existing multi-task learning approaches sharing a
single network by adjusting the branches. It is a more general
framework that can cover existing MTL approaches and can
produce subnetworks of lower computation costs.

C. SELF-AUXILIARY LEARNING

We adopt knowledge distillation [18] to transfer the knowl-
edge from one network to another one (see Figure 2).
Since early prediction requiring fewer parameters may
occur performance degradation, the presented self-auxiliary
learning strategy overcomes the problem. Assume that we
have pre-trained networks g’s for the self-auxiliary tasks
(denoted as Aux i in Figure 2), respectively, before learn-
ing the multi-path network. In the proposed method, the
multi-path network receives task-specific knowledge from
the pre-trained networks using the distillation loss an as
follows:

£O _gp u<f ( X, Wr(nz:m)) H . (g(i)<X(i),W¢(ziu)x)) |

aux T T

4)

where KL(-) denotes the Kullback-Leibler divergence func-
tion and u(-) is the softmax function. W[(fu)x denotes the set of
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parameters for the i self-auxiliary task. The temperature T
controls the amount of transferred knowledge. We adopt the
self-auxiliary networks g with the same capacity as the main
network f. When it comes to inference, the auxiliary networks
are not used. This means the self-auxiliary learning tasks do
not require additional parameters on inference.

D. TOTAL LOSS

The loss of each task is computed by combining the losses
from the multi-path network (Eq. (3)) and self-auxiliary
learning (Eq. (4)). The multi-path network learns the set of
entire parameters Wi, by minimizing the total loss function
across all tasks, which is defined as

t
min Lo = Y Ly + (1= )LD, 5)
'main 1
@)

- multi
and Eg,lx. Note that the self-auxiliary tasks are pre-trained
before learning the multi-path network, and the pre-trained
networks g(i)’s (and W(Slu)x) are held fixed during training
with Eq. (5). The overall learning procedure of the pro-
posed method is described in Algorithm 1. Given a set of
datasets {D?V};;<,, we train the parameters of the proposed
multi-path network W4, with the pre-trained networks
{Wélu)x}l <i<s. For N iterations, we calculate the loss for the
multi-path structure as decribed in Eq. (3) and the loss value
for the self-auxiliary tasks is obtained according to the Eq.
(4). Then, the total loss is derived by adding the £9  and

g multi
Lf;ﬁ,x. We optimize the set of parameters Wi, by the gradi-
ent update from L.

where « is a balancing factor between the two losses £

Algorithm 1: Multi-Path Network

Input: the number of tasks #, dataset {D?}; <<,

Pretrained networks: {Wgu)x M<i<t

Initialize: Wi = (W), Vi<is

for iterations 1,2,...,N

forie{l,...,t}

Compute L'(?um using Eq. (3)
Compute Lui,ix using Eq. (4)

end for

Compute Ly, using Eq. (5)

total

Update Winain < Winain — 1 OWnain

end for

IV. EXPERIMENTS

A. SETUP

1) DATASETS

We used five datasets: CIFAR-10, CIFAR-100 [19], split
CIFAR-10, split CIFAR-100 and Celeb-A [20]. CIFAR-10
and split CIFAR-10 contain 50,000 training and 10,000 test
images of the 32 x 32 size. Split CIFAR-10 is originated from
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CIFAR-10 but its total classes (and the corresponding number
of samples) are partitioned into several groups (see below for
more details). CIFAR-100 and split CIFAR-100 have 50,000
training and 10,000 test images of the same image resolution
to CIFAR-10. We constructed split CIFAR-100 similar to split
CIFAR-10. Celeb-A is a face image dataset composed of
40 attributes and has 162,770 training and 39,829 test images
of the 218 x 178 resolution.

2) SCENARIOS

We constructed a range of scenarios to analyze the method
from diverse perspectives, including multiple tasks learn-
ing, hierarchical learning, and curriculum learning. Multi-
ple tasks learning handles different classes (tasks), and the
corresponding datasets are split CIFAR-10 and split CIFAR-
100. We split CIFAR-10 and CIFAR-100 into five disjoint
tasks so that each task includes 2 and 20 consecutive classes,
respectively. In addition, to show the robustness against
task order on multi-task learning, we conducted experiments
with respect to randomly produced task orders using the
split CIFAR-100. In hierarchical learning, we learned both
coarse- and fine-class tasks in CIFAR-100 that consists of
two levels of hierarchy: 20 coarse-classes and 100 fine-
classes. To introduce another hierarchical level of the dataset,
in this work, we further grouped the 20 coarse classes into
3 super classes. Accordingly, we renamed the coarse class
as the intermediate-class and the fine-class as the sub-class.
Since the coarse-class task includes less information than
the fine-class task, the internal network with smaller param-
eters for the coarse-class task is assigned. In curriculum
learning, we presume that the number of samples in data
indicates the difficulty of the task because it is well-known
that learning becomes easier (resp., harder) when many
(resp., small) samples are given. To conduct the scenario,
we allocated easy, normal, and hard tasks (attributes) from
Celeb-A (see Figure 5). We used a subset of the dataset
containing eight attributes out of 40 to ease the learning pro-
cedure while almost preserving the distribution of the original
dataset.

3) COMPARED METHODS

We compared six algorithms in the experiments: Hard param-
eter sharing [7] as a baseline method, NestedNet [17],
PackNet [25] with batch normalization, MTAN [24] and
AdaShare [44]. Most of the compared methods do not
increase the size of the network regardless of the number of
tasks similar to ours.

While NestedNet updates the set of parameters up to the
i-th task, PackNet does not update the parameters allocated
for the previous tasks. MTAN performs task-specific feature
level attention, and AdaShare suggests a task-adaptive shar-
ing approach that determines which layers to share between
tasks, while minimizing resource efficiency. We used the
same settings, such as network configuration and optimizer,
for all the compared approaches and trained them from
scratch.
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TABLE 2. Results of the multiple tasks learning scenario for split CIFAR-10 and CIFAR-100 on ResNet-18. Classification accuracy, the ratio of the number
of parameters, and FLOPs of the compared methods are provided. Bold font shows the best accuracy or the least computation cost for each dataset, and
underline gives the second best accuracy or the second least computation cost.

Dataset { CIFAR-10 I CIFAR-100 |
Task | Method | Acc (%) RPa ifg’?j) FLOPs (G) || Acc (%) Rl; ifgn(lj) FLOPs (G)
Bascline | 98.18 I 0.035 TRE I 0.035
PackNet | 98.85 0.4 0.012 78.52 0.4 0.012
Tusk | | NestedNet | 98.98 0.4 0.012 77.92 0.4 0.012
MTAN | 99.74 15 0.058 78.91 15 0.058
AdaShare | 98.30 i 0.035 78.12 1 0.035
Ours 95.05 02 0.027 78.65 02 0.027
Baseline | 94.79 1 0.035 78.65 1 0.035
PackNet | 91.88 0.6 0.020 79.57 0.6 0.020
Tusky | NestedNet | 92.42 0.6 0.020 80.75 0.6 0.020
MTAN | 96.88 15 0.058 75.78 15 0.058
AdaShare | 9215 1 0.035 80.59 1 0.035
Ours 95.05 0.4 0.028 73.96 04 0.028
Bascline | 95.05 I 0.035 83.85 I 0.035
PackNet | 94.08 0.7 0.026 76.65 0.7 0.026
a3 | NestedNet | 94.98 0.7 0.026 77.58 0.7 0.026
MTAN | 98.18 15 0.058 83.33 15 0.058
AdaShare | 95.30 1 0.035 78.20 1 0.035
Ours 95.57 0.6 0.030 83.59 0.6 0.030
Bascline | 98.44 I 0.035 75.78 I 0.035
PackNet | 97.97 0.8 0.029 70.67 0.8 0.029
Taks | NestedNet | 98.10 0.8 0.029 71.95 0.8 0.029
MTAN | 98.44 15 0.058 79.43 15 0.058
AdaShare | 98.41 | 0.035 77.30 | 0.035
Ours 97.92 0.8 0.033 7630 0.8 0.033
Bascline | 97.92 1 0.035 84.90 ] 0.035
PackNet | 96.07 1 0.035 76.63 1 0.035
Tusk s | NestedNet | 96.02 1 0.035 76.70 1 0.035
MTAN | 96.09 1.5 0.058 83.07 1.5 0.058
AdaShare | 97.66 | 0.035 82.50 | 0.035
Ours 96.88 I 0.035 8281 i 0.035

TABLE 3. Results of the hierarchical scenario using two backbones (a) ResNet-18 and (b) MobileNetV2. We also provide the computation information
such as the ratio of the number of parameters. The bold is the best accuracy or least computation. The underline is the second best accuracy or second
least computation.

Task ‘ Super-class (3) ‘ Intermediate-class (20) ‘ Sub-class (100) ‘
BackBone Method Acc (%) Rpa egin(nj) Acc (%) Rpa Egzr?j) Acc (%) Rpa Egir?j)
Baseline 93.45 1 76.49 1 64.27 1
PackNet 92.25 0.5 72.18 0.8 58.41 1
NestedNet 92.27 0.5 72.29 0.8 59.26 1
ResNet-18 MTAN 93.29 1.5 76.34 1.5 64.30 1.5
AdaShare 92.28 1 74.28 1 62.42 1
Ours 92.44 0.4 77.72 0.6 66.82 |
Ours w/o distill 92.31 75.62 63.85
Baseline 90.82 1 68.32 1 55.53 1
PackNet 88.95 0.5 64.78 0.8 51.08 1
NestedNet 89.60 0.5 66.82 0.8 53.17 1
MobileNetV2 MTAN 90.10 1.3 65.79 1.3 53.56 1.3
AdaShare 91.56 1 68.78 1 54.78 1
Ours 90.76 03 71.48 0.6 59.42 |
Ours w/o distill 91.56 69.91 57.25
B. IMPLEMENTATION DETAILS datasets, MobileNetV2 (with multiplier 0.5) was deployed

We built our method under ResNet and MobileNetV2 back- for ImageNet. Note that we did not downsize the CIFAR
bone architectures. While ResNet was used for the CIFAR images at the input layer for MobileNetV2, since the size of
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FIGURE 3. Results for split CIFAR-100 with random task orders on ResNet-18.

CIFAR is much smaller than that of ImageNet. We applied the
SGD optimizer with the Nesterov momentum of 0.9 for both
ResNet and MobileNetV2. The proposed network was trained
with an initial learning rate of 0.1 and the learning rate was
decayed by a factor of 10 when the training loss converges.
The batch size of 128 for CIFAR-10 and CIFAR-100 and
64 for Celeb-A were used in all experiments. For the proposed
method, we constructed five branches in the multiple tasks
learning scenario and three branches in other scenarios. The
branches take 25%, 36%, 58%, 79%, 100% of the number
of parameters in the multiple tasks learning scenario and
around 30%, 75%, 100% of the number of parameters in
other scenarios, respectively. Implementation of the proposed
method was conducted under the PyTorch library [45].

C. MULTIPLE TASKS LEARNING

For the first multiple tasks learning scenario, we used split
CIFAR-10 and CIFAR-100. We partitioned the classes into
five disjoint groups for both CIFAR-10 and CIFAR-100. Each
group has 2 successive classes for CIFAR-10 and has 20 suc-
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cessive classes for CIFAR-100. Accordingly, we assigned
the groups (tasks) to the branches by order of class labels,
respectively. We compared with Baseline and major com-
petitors sharing a similar idea to ours, PackNet, NestedNet,
MTAN and AdaShare. For self-auxiliary learning, we set the
temperature 7 to 2, and o was set to 1 to distill knowledge
from self-auxiliary tasks to main tasks.

Table 2 shows the results of the scenario for three mea-
sures: accuracy, the number of parameters, and FLOPs. First,
for split CIFAR-10, Baseline and MTAN show good perfor-
mance but the computation cost (the number of parameters
and FLOPs) is not efficient. Overall, the proposed method is
comparable to other methods while consuming less number
of parameters.

For split CIFAR-100, which is more challenging than split
CIFAR-10 due to the large number of classes, the proposed
method shows similar performance to Baseline, MTAN, and
AdaShare. When it comes to the computation cost, the com-
pared methods have twice as many parameters as the pro-
posed method on average. Note that there is no significant
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TABLE 4. Three-level class hierarchy of the CIFAR-100 dataset. The hierarchy contains 3 super-classes, 20 intermediate-classes, and 100 sub-classes.

Super-class (3) [ Intermediate-class (20) [ Sub-class (100)
Fish Aquarium fish, Flatfish, Ray, Shark, Trout
Insects Bee, Beetle, Butterfly, Caterpillar, Cockroach
Reptiles Crocodile, Dinosaur, Lizard, Snake, Small mammals, Turtle
Non-insect invertebrates Crab, Lobster, Snail, Spider, Worm
Aquatic mammals Beaver, Dolphin, Otter, Seal, Whale
Animals Large carnivores Bear, Leopard, Lion, Tiger, Wolf

Large omnivores and Herbivores

Camel, Cattle, Chimpanzee, Elephant, Kangaroo

Medium-sized mammals

Fox, Porcupine, Possum, Raccoon, Skunk

People

Baby, Boy, Girl, Man, Woman

Small mammals

Hamster, Mouse, Rabbit, Shrew, Squirrel

Food containers

Bottle, Bowl, Can, Cup, Plate

Household electrical device

Clock, Computer keyboard, Lamp, Telephone, Television

Household furniture

Bed, Chair, Couch, Table, Wardrobe

Things Large man-made outdoor things Bridge, Castle, House, Road, Skyscraper
Large natural outdoor scenes Cloud, Forest, Mountain, Plain, Sea
Vehicles 1 Bicycle, Bus, Motorcycle, Pickup truck, Train
Vehicles 2 Lawn mower, Rocket, Streetcar, Tank, Tractor
Flowers Orchid, Poppy, Rose, Sunflower, Tulip
Plants Fruit and Vegetables Apple, Mushroom, Orange, Pear, Sweet pepper
Trees Maple tree, Oak tree, Palm tree, Pine tree, Willow tree

performance drop in our method compared to them (1% ~
2% drop on average). The self-auxiliary learning strategy
enriches the task-specific knowledge of the multi-path archi-
tecture. However, the performance leak can be gained without
the self-auxiliary learning strategy since the tasks predicted
early consume a subset of the parameters. Consequently,
it can maintain the performance while requiring fewer com-
putations by applying the proposed method.

Furthermore, we demonstrated the proposed method under
different randomly shuffled task orders as shown in Figure 3.
Note that the number of parameters used to perform tasks
in our multi-path network does not change from the exper-
iment for the CIFAR-100 dataset. The results from the figure
indicate that even if the task order is different, the proposed
method performed better than other competitors, PackNet and
NestedNet, with the smaller number of parameters. In partic-
ular, the proposal achieved the highest accuracy for four out
of five tasks from the experiments, showing its excellence and
robustness against task order.

D. HIERARCHICAL LEARNING

In this scenario, we learn class hierarchy from the coarsest
to the finest in the proposed multi-path network. We used
CIFAR-100 and constructed three levels of hierarchy (super-
, intermediate-, sub-classes) as mentioned earlier (See more
detail in Table 4). We learn super-classes with the lowest-level
path, intermediate-classes to the intermediate-level path, and
sub-classes to the highest-level path, respectively, to make the
network learn the hierarchical structure of the dataset. The
proposed approach was compared with Baseline, NestedNet,
PackNet, MTAN, and AdaShare that can address class hierar-
chy. In this scenario, we used the same backbone architectures
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as the previous scenario. We set the temperature 7 to 2 and «
to 1.

Table 3 shows the classification accuracy and computation
cost among the compared methods for super-, intermediate-
, and sub-classes of the CIFAR-100 dataset. As we can
see in Table 3, the proposed method outperforms the other
methods on ResNet-18 and MobileNetV2 with multiplier 0.5,
respectively. Interestingly, although the competitors require a
larger number of parameters than the proposed method, the
performance of ours is higher than the other approaches.

We also performed another experiment to demonstrate the
effectiveness of the self-auxiliary task, denoted as ours w/o
distillation, in Table 3 denotes the accuracy with respect
to different numbers of parameters of the proposed method
without applying distillation (described in Section III-C).
The proposed method without distillation does not suffer
from a significant performance drop compared to ours with
distillation. The proposal without distillation still gives com-
petitive performance when compared to the other methods
on both architectures while consuming a smaller amount of
parameters. In addition, Table 3 reports the best performance
of the proposed method without self-auxiliary learning on
MobileNetV2 compared to other methods. The results indi-
cate that the proposed hierarchical structure enables learning
of the hierarchical knowledge better than the compared meth-
ods. At a lower-level path, the coarser knowledge is learned,
and at a higher-level path, the richer knowledge is attained
using the coarser knowledge, resulting in a performance gain.

E. CURRICULUM LEARNING
In the curriculum learning scenario, we experimented on
Celeb-A that has attributes (tasks) of different distributions.

VOLUME 10, 2022



S. Park et al.: Resource-Efficient Multi-Task Deep Learning Using Multi-Path Network

IEEE Access

ResNet-18 MobileNet-V2
2.25 1.6
2:00 14
1.75 === 0urs
2 —— Baseline / AdaShare 1.2
& 150 PackNet / NestedNet
E —e— MTAN 1.0
§12s :
© -
< 1.00 —~| 08
0.75 ~
' 0.6
" L
0.50 I
" 0.41%"
0.25
Easy Normal Hard Easy Normal Hard
Task Task Task Task Task Task

(a)

ResNet-18

100 100 MobileNet-V2

== 0urs

70 —e— Baseline 70
PackNet

—+— NestedNet

Average Accuracy (%)

60 *— MTAN 60
—»— AdaShare

5
Easy Normal Hard Easy Normal Hard
Task Task Task Task Task Task

(b)

FIGURE 4. (a) The ratio of parameters used to perform each task. (b) The average accuracy of the each task.

Easy Task Normal Task Hardl Task
r 1 r 1
ResNet-18

100 I ]

90 | | Ours
= 80 | | BN Baseline
& | | PackNet
S 70 | | BN NestedNet
< 60 I 1 B MTAN

50 | | mm AdaShare

40 ' '

Straight Wavy Wearing Wearing Wearing Goatee Mustache Sideburns
Hair Hair Earrings Necklace Necktie
MobileNet V2

100 i ]

90 | | Ours
- 80 | | BN Baseline
) I | PackNet
b 70 | | W NestedNet
< 60 | 1 . MTAN

50 [ I BN AdaShare

40 ' '

Straight ~ Wavy
Hair Hair

Wearing Wearing Wearing
Earrings Necklace Necktie

Goatee Mustache Sideburns

FIGURE 5. Results for the curriculum learning scenario on the Celeb-A using ResNet-18 and MobileNetv2.

For the scenario, we made three tasks according to diffi-
culty; each, normal and hard tasks that contain small to large
number of samples, respectively. Accordingly, the proposed
multi-path network contains three branches such that we
performed easy tasks in the early branch, normal tasks in the
middle branch, hard tasks in the last branch, respectively. The
temperature and « are set to 2 and 0.9 for both backbones.
The results of the curriculum learning scenario are sum-
marized in Figure 4. For ResNet-18, the proposed method
achieves the best or the second-best performance in the six
tasks out of eight and for MobileNetV2, the proposed method
maintains the best accuracy or the second best accuracy
among all tasks. Multiple inference paths at different dif-
ficulties of tasks make the proposed method distribute the
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importance of parameters for each task, which can reduce
the negative interference between tasks and thus yields better
results than the compared methods. When it comes to param-
eter usage, our approach is superior to Baseline, PackNet,
NestedNet, MTAN and AdaShare on average. Ours requires
less than half the number of parameters when compared to
Baseline, MTAN and AdaShare in the easy task on both
architectures.

Figure 4 reports the ratio of parameters and average accu-
racy on the curriculum learning scenario. As shown in Fig-
ure 4 (a), the proposed method requires the smallest number
of parameters, while MTAN consumes the largest number
of parameters among the compared methods. PackNet and
NestedNet also use a smaller amount of parameters compared
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to Baseline. However, they require a larger number of param-
eters compared to ours while showing poorer performance
shown in Figure 4. Figure 5 shows the accuracy of individual
tasks. It can be seen that the performance of ours is similar or
superior to the most methods on both architectures. Note that
the required resource is reported in Figure 4 (a).

V. CONCLUSION

In this work, we have proposed a multi-task learning frame-
work to resolve the combined problem of performing tasks
under different computation costs and avoiding task inter-
ference. The proposed method is realized by a multi-path
network with self-auxiliary learning. The multi-path network
is constructed hierarchically to perform tasks under different
levels of hierarchy (or prediction paths), resulting in the
mitigation of negative interference. Furthermore, since the
multi-path structure is composed of internal networks with
different sizes, diverse memory budgets can be handled with-
out extra training efforts. To boost the performance of the
network, self-auxiliary learning has been presented, which
supplements the task-specific knowledge to the main tasks.
The proposed method has been demonstrated under an exten-
sive set of experimental scenarios and has shown its efficiency
with respect to both task performance and computational cost
compared to other multi-task learning approaches. In future
work, we investigate the scalability of the method for more
challenging computer vision tasks other than classification
tasks.
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