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ABSTRACT Deep learning-based crowd density estimation can greatly improve the accuracy of crowd
counting. Though a Bayesian loss method resolves the two problems of the need of a hand-crafted ground
truth (GT) density and noisy annotations, counting accurately in high-congested scenes remains a challenging
issue. In a crowd scene, people’s appearances change according to the scale of each individual (i.e., the
person-scale). Also, the lower the sparsity of a local region (i.e., the crowd-sparsity), the more difficult it
is to estimate the crowd density. In this paper, we propose a novel congestion-aware Bayesian loss method
that considers the person-scale and crowd-sparsity. We estimate the person-scale based on scene geometry,
and we then estimate the crowd-sparsity using the estimated person-scale. The estimated person-scale and
crowd-sparsity are utilized in the novel congestion-aware Bayesian loss method to improve the supervising
representation of the point annotations. We verified the effectiveness of each proposed component through
several ablation experiments, and in the various experiments on public datasets, our proposed method
achieved state-of-the-art performance.

INDEX TERMS Crowd counting, crowd density estimation, convolution neural network, Bayesian loss.

I. INTRODUCTION
Crowd density estimation can be accomplished with a com-
puter vision-based algorithm to count the number of people
in an image, which is one of the challenging tasks for an intel-
ligent surveillance system. Using a crowd density estimation
algorithm, we can determine regions of interest where crowds
are forming.We can then reduce the computational resources
of various algorithms of surveillance system [1]–[3] by
concentrating specifically on the detected crowd regions.
Furthermore, a crowd density estimation algorithm can also
be utilized to count non-human objects, such as cells [4] or
vehicles [5].

A crowd density estimation algorithm mainly targets
congested scenes, such as the images shown in Fig. 1.
In a congested scene, many people are occluded by others.
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FIGURE 1. Examples of target scenes for crowd counting. Crowd counting
algorithms mainly target highly congested scenes with (a) an unevenly
distributed crowd and (b) a distribution of pedestrians of various scales.

Furthermore, when a crowd is located at a far distance from
the camera, each person may only be represented by a few
pixels in an image. Due to challenging issues like occlusion
and a small occupied region by individuals in a congested
scene, it is hard to count the exact number of people in a
crowd. Unlike early detection-based methods that counted
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FIGURE 2. Comparison of background probability map from Bayesian
Loss (BL) method and the proposed method. Given a crowd image of (a),
the yellow-colored region in (b) and (c) represents the background region
indicated by the background probability.

individuals one by one, regression-based density estimation
methods can efficiently learn a crowd density map by using
only point annotations that mark the location of each person
in the image [4], [6], [7].

Regression-basedmethods have show a large improvement
with the advancement of deep learning [8]. Among the deep
learning-based methods, the Bayesian loss (BL) method [9]
shows impressive performance in training a deep network for
crowd density map estimation. Instead of the conventional
method that evaluates loss with a desired density value at
each pixel, the BL method adopts a novel loss scheme using
only the positions of the head point annotations. In contrast to
providing the desired density map in conventional methods,
the BL method uses a probability that each pixel belongs to a
person or background.

In the BL method, the background probability at a pixel
is generated by using a fixed distance between the pixel and
the nearest head point annotation. However, due to the fixed
distance, this background probability model cannot adapt
itself to the variation of personal scales and the sparsity of
individuals, as shown in Fig. 2. The issue mentioned above
results in the limited performance for the various sizes of
people from a few pixels to a full face or more, which depends
on the scale of person. In addition, the BL method cannot
handle the varying degrees of occlusion that arise due to the
different sparsity of individuals in a certain region.

In this paper, to solve the issue above, we propose a
congestion-aware Bayesian loss method in which the esti-
mated scale is used to set up a background probability that
is adaptable to personal scale variations. To this end, we have
developed schemes to estimate the scale of each person and
the sparsity of a local region. These schemes are designed
under the assumption that the scale of a person is inversely
proportional to the distance the individual and the camera,
whereas the sparsity of a region is related to the ratio of
the scale and the inter-person distance of the region. Unlike
the existing scale-aware schemes [10]–[13], the proposed
scale inference method targets the situation where only point
annotations are given. Therefore, our method is suitable for
single-image crowd density estimation algorithms that pro-
vide training images and corresponding point annotations.
The estimated sparsity is used to reduce or amplify the loss to
adjust for the difficulty in heavily occluded regions. By using

the proposed loss, we can learn a diversity of crowd appear-
ances in a weakly supervised manner with only head point
annotations instead of density map annotations. Because a
diversity of appearances dependent on scale and sparsity are
learned in the training phase, estimations of scale and sparsity
are not needed at all in the testing phase, and therefore,
additional inference costs are not accrued.

Through various experiments, we validate the proposed
components including the scale and sparsity estimations of
the BL, which contribute to the performance improvement of
the proposed method in achieving the state of the art with
various benchmark datasets.

Contributions of this paper are summarized as follows:
• We develop schemes to estimate the scale of each person
(i.e., person-scale) and the sparsity of a local crowd
(i.e., crowd-sparsity) based on the scene geometry.

• Using the estimated person-scale and crowd-sparsity,
we propose an extended Bayesian loss method to learn
a variety of appearances in a crowd.

• Using the proposed Bayesian loss method, we improve
the supervising representation of the point annotations
and achieve state-of-the-art performance.

II. RELATED WORKS
A. DETECTION-BASED AND REGRESSION-BASED
CROWD COUNTING
Crowd counting methods can be roughly classified into two
groups: detection-based and regression-based methods [3].

Detection-based methods directly identify each target
of the count using appropriate pedestrian detectors. When
highly congested crowds are formed, however, the appear-
ance of individuals may not be preserved in images, which
results in poor algorithmic estimation. To resolve such occlu-
sion issues, some studies use other types of detection target-
ing, such as faces [14] or the head and shoulders [15]. Despite
such efforts, if the surveillance environment is changed,
missing or false detection might be caused. Detection-based
methods also have unnecessary computational costs that may
not require the exact location of people for the sole purpose
of counting crowds. Khan et al. [10] utilized the results of
a conventional head detector to accurately count people by
warping the image patch according to the scale of a per-
son. Also, Khan and Basalamah [16] proposed the method
using multi-scale fusion module for conventional pedestrian
detection [17].

Regression-based methods are more frequently utilized
because they perform better than detection-based methods
in high-congestion situations or when there is severe occlu-
sion. When regression-based methods were initially pro-
posed, many studies performedmapping of low-level features
directly to the size of the crowd [4], [6], [7]. However, these
methods that use direct mapping to the count lack spatial
information of the crowd so they cannot determine where
counting errors occur.

To resolve the limitation of losing spatial information,
Lempitsky and Zisserman [18] proposed a method that
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FIGURE 3. The scale estimation procedure of the proposed method. Given a crowd image (a), the distribution between the nearest neighbor distance and
image height of annotations is shown in (b). With the nearest neighbor distances (green points), we fit a line (blue line) using random sample
consensus (RANSAC) by sampling (red points) evenly within each section. The circles in (c) express the nearest neighbor distance (red) and the estimated
scale of the crowd after the fitting process (blue). If the estimated scale fits the nearest neighbor distance, it is colored blue; otherwise, it is colored white.

conducts a mapping of local features to an intermediate
density map. The density-map regression method has since
become the mainstream of crowd counting, enabling the
counting of individuals in any region by numerical integration
over a density map. Pham et al. [19] proposed a non-linear
mapping method using the random forest algorithm.
Wang and Zou [20] decreased ineffective computational
complexity by using subspace learning in the mapping of a
density map.

B. CNN-BASED CROWD COUNTING; NETWORK
STRUCTURE PERSPECTIVE
A convolutional neural network (CNN) was first applied
to estimate the crowd density map by Zhang et al. [11].
Motivated by this pioneering work, many studies have
been conducted in which a deep network has effectively
learned given pairings of an image and its density map.
Zhang et al. [21] proposed a multi-column network to esti-
mate crowds with varying scales trained in each network
column.

There have been several works that use multiple net-
works to address the multi-scale problem. Sam et al. [22]
proposed to switch a neural network that classifies image
patches according to scale and estimates the crowd density
separately. Onoro-Rubio and López-Sastre [5] proposed a
hydra-shaped network structure that resizes the image patch
to several scales and combines the estimated crowd density.
Sindagi and Patel [23] introduced an auxiliary classifier to
extract the scale features of an image patch then fused it to a
conventional density estimator. Jeong et al. [24] constructed
multiple network branches according to the sparsity of a
local crowds and adopted multi-level refinement network to
improve the density estimation accuracy. Hossain et al. [13]
defined ‘scale’ as the number of people in a local region
and proposed a density estimator using ‘scale’ as an addi-
tional feature. Khan and Basalamah [25] performed small-
and large-scaled crowd density estimation successively to
improve the accuracy of density estimation.

Several approaches use novel network modules that dif-
fer from basic components such as convolution and pooling
layers. Li et al. [26] used a dilated convolution to effectively
extract features of a large field of view. Liu et al. [27] used
spatial pyramid pooling to adaptively encode the scale as
contextual information. Ma et al. [12] used human scale
quantization at multiple scale levels and trained additional
networks to represent scale of a person with a combination
of pre-defined scales.

C. CNN-BASED CROWD COUNTING; TRAINING
OBJECTIVE PERSPECTIVE
There have been several works that address the limita-
tion of problem setting in crowd density estimation. They
tackle (1) the objective function for training and (2) the
generation process of the ground truth (GT) density map.

First, several studies pointed out the limitation of the L2
loss between the GT density map and the estimated density
map that there is a discrepancy that high-quality represen-
tation of density map does not lead to accurate counting.
Liu et al. [28] utilized the fact that the number of people
in a sub-region will always greater than that in the region
inside, and proposed what they described as a ranking loss.
Shen et al. [29] proposed a cross-scale consistency pursuit
loss method by using the fact that there is a relationship
in which the entire density map is the sum of the partial
density maps. Cheng et al. [30] designed a spatial awareness
loss method to generate a loss when the number of people
changes, not when the distribution of people is changed.

In contrast, some studies have tackled the limitations of
the definition of the GT density map. Zhao et al. [31]
utilized auxiliary tasks, such as the estimation of depth,
along with the density map to improve the performance.
Wan and Chan [32] proposed an adaptive density map gen-
eration process that generates learnable density map repre-
sentations to create sub-optimal density maps. Some works
employed segmentation maps [33], the number of people as
trainable sources [34], or pedestrian detection results [35].
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In particular, Ma et al. [9] successfully resolved issues for
the training objective and the need for the generation process
of a GT density map. They proposed a novel loss (i.e., the
Bayesian loss) using the probability of indicating each pixel
is included in each point annotation or background.

III. PROPOSED METHOD
In this section, we present the estimation procedures of the
scale of a person (i.e., person-scale) and the sparsity of a local
region (i.e., crowd-sparsity) and then describe the proposed
loss using the estimated person-scale and crowd-sparsity.
First, the person-scale estimation procedure is described in
Sec. III-A. The method for crowd-sparsity estimation is then
described in Sec. III-B. With the estimated person-scale and
crowd-sparsity, the proposed loss is described in Sec. III-C.

A. PERSON-SCALE ESTIMATION
To estimate a person-scale in an image, we use the fol-
lowing two scene characteristics. First, the person-scale is
represented as inversely proportional to the distance from
the person to the camera. We assume a typical surveillance
situation where only one ground plane exists, such as a scene
without additional layers. In that situation, every person at
the same image height is assumed to have the same scale.
Also, the person-scale is proportional to the image height that
is generally defined in ascending order from the top to the
bottom of the image. That is, as shown in Fig. 3(a), people in
the bottom region of an image are represented in a large scale,
and vice versa. Second, in a congested scene, where people
are distributed evenly, the person-scale is represented by the
nearest neighbor distance of each person..

Under the assumptions described above, we can esti-
mate the person-scale s(h) at the image height h using the
inter-person distance as

s(h) ≈
1
P

P∑
i=1

|pi − pN (i)|, (1)

where P is the number of head points at the image height h,
pi is the head position of the i-th person, and pN (i) is the head
position of the nearest neighbor of the i-th person.
However, in some cases, if we directly estimate the

person-scale using Eq. (1), the scale estimation results can
be noisy because outliers can exist with sparsely distributed
people. To resolve the outlier issue, we use a regression of
the height-scale relationship, as depicted in Fig. 3. From
Fig. 3(b), it can be observed that our assumption on the
relation between person-scale and image height is valid.
To fit the relationship between person-scale and the image
height, we (1) follow the aforementioned scene geometry and
(2) consider unevenly distributed crowds as outliers. Hence,
we conduct a second-order linear RANSAC (random sample
consensus) operation without fitting a constant of the first-
order variable, in other words, find a and b in ax2 + b such
that most of the points of x are satisfied. The fitted curve in
Fig. 3(b) for estimating the person-scale is obtained by the

RANSAC regressor, which models the observed data with lit-
tle influence of outliers. We utilize the estimated person-scale
in designing the congestion-aware Bayesian loss method
in Sec. III-C.

B. CROWD-SPARSITY ESTIMATION
We can utilize the estimated crowd-sparsity to improve the
learning capability of the crowd density estimation network.
When learning the crowd density map, in a densely crowded
region, it is difficult to distinguish the crowd from the back-
ground clutter. Thus, regions of low crowd-sparsity will
significantly affect the overall counting performance. Moti-
vated by the hard-negative mining in object detection algo-
rithms [17], we reduce the influence of loss on annotations in
sparsely crowded regions, and amplify the influence of loss
on annotations in densely crowded regions.

To estimate crowd-sparsity, we utilize the estimated
person-scale in Eq. (1). If a person has a greater distance
to his/her nearest neighbor than the estimated scale, we can
assume that the crowd in a local region around the person
is sparsely distributed, and vice versa. The crowd-sparsity
around a person is then defined by the ratio of the nearest
neighbor distance of the person to the estimated person-scale,
in other words,

Sn = s(hn)/s′(hn), (2)

where hn is the image height of the n-th person, s(hn) is the
distance to his/her nearest neighbor given by |pn−pN (n)|, and
s′(hn) is the estimated scale for the person. In the region under
the fitted curve in Fig. 3(b), the people are highly occluded,
so Sn is less than one. In contrast, the people in the region
above the curve are sparsely distributed, so Sn becomes larger
than one. Hence, using the crowd-sparsity Sn, we can reduce
or amplify the influence of the annotations depending on the
crowd-sparsity of a local region. In Sec. III-C, we describe
the derivation of the proposed loss including the estimated
person-scale and crowd-sparsity.

C. CONGESTION-AWARE BAYESIAN LOSS
Let xm (m = 1, 2, . . . ,M ) be a random variable that denotes
the spatial location, where M is the number of pixels. Given
N number of people, zn (n = 1, 2, . . . ,N ) is a head
point annotation. The label for zn is defined by a random
variable yn. Assuming that the likelihood of the head point
annotation follows a Gaussian distribution, the likelihood
probability of xm given label yn is given by

p(xm|yn) = N (zn, σ 2I2×2), (3)

where σ is a parameter that controls a region that is affected
by each head point annotation and I2×2 denotes an identity
matrix. In addition, given background label y0, the likeli-
hood probability of xm is set to a Gaussian kernel with a
centroid zm0 as

p(xm|y0) = N (zm0 , σ
2I2×2). (4)
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FIGURE 4. Dummy background annotation settings. For a pixel xm of a
density map, (a) the Bayesian loss method adopts a dummy background
annotation, zm

0 , at a distance d pixels from zm
n , which is the nearest

neighbor head annotation of xm. In contrast, (b) the proposed method
adopts an adaptable distance dn depending on the person-scale instead
of the fixed d .

In this paper, in contrast to the original Bayesian loss,
we propose an adjustable centroid zm0 depending on the
person-scale. As shown in Fig. 4, in the original work [9],
the centroid zm0 is located at a distance d pixels from the
nearest head annotation. In our method, the adjusted centroid
zm0 is located at a distance dn pixels from the nearest head
annotation, where dn depends on the person-scale s′(hn).
To this end, we define dn by

dn = d0 · sI · exp(
s′(hn)− s0

s0
), (5)

where sI is the shorter side length of the image, d0 (e.g., 0.15)
is a fractional scale of sI , and s0 is the average person-scale
of the dataset. When the person-scale s′(hn) becomes larger
than the average scale s0, we set dn to grow exponentially.
The adjusted centroid is then obtained by

zm0 = zmn + dn
xm − zmn∥∥xm − zmn ∥∥2 , (6)

where zmn denotes the nearest annotation point of xm.
Using the likelihoods, given the spatial position xm, the

posterior probability of each head point annotation or back-
ground is given by

p(yn|xm) =
p(yn)p(xm|yn)∑N

n′=0[p(yn′ )p(xm|yn′ )]
, (7)

where p(yn) = 1
N+1 denotes the prior probability with label

index n = 0, 1, 2, . . . ,N , including the background.
If the posterior probability of each head point annotation

in Eq. (7) is expressed as a map, it represents the contributed
region of each head annotation. Similarly, the posterior prob-
ability for the background annotation can represent the back-
ground region, as illustrated in Fig. 2(c). It can be seen that the

proposed method more accurately represents the background
according to the person-scale of annotations than the original
work in Fig. 2(b).

If an estimated crowd density at location xm is denoted as
Dest (xm), the Bayesian loss is derived as follows. Let cmn be
a count at xm contributed by yn, and cn is a count of n-th
annotation. Following [9], the expectation of cn is derived as

E[cn] = E[
M∑
m=1

cmn ] =
M∑
m=1

E[cmn ]

=

M∑
m=1

p(yn|xm)Dest (xm). (8)

The count value of each annotation cn should be one
and that of background c0 should be zero. Using the
crowd-sparsity for each annotation in Eq. (2), the proposed
congestion-aware Bayesian loss (CBL) is proposed by

LCBL =
N∑
n=1

1
Sn
|1− E[cn]| + |E[c0]|

=

N∑
n=1

1
Sn

∣∣∣∣∣1−
M∑
m=1

p(yn|xm)Dest (xm)

∣∣∣∣∣
+

M∑
m=1

p(y0|xm)Dest (xm), (9)

where Sn reduces or amplifies the influence of the annotations
depending on the crowd-sparsity of a local region. At infer-
ence time, we can obtain the number of people without the
posterior label probability p(yn|xm) as follows:

C =
N∑
n=1

E[cn] =
N∑
n=1

M∑
m=1

p(yn|xm)Dest (xm)

=

M∑
m=1

N∑
n=1

p(yn|xm)Dest (xm)

=

M∑
m=1

Dest (xm), (10)

where C denotes the number of people in the entire image.

IV. EXPERIMENTS
In this section, we describe the evaluation of the effectiveness
of the proposed components and illustrate that our method
was able to achieve the state-of-the-art on various benchmark
datasets.

A. DATASETS
As summarized in Table 2, we have evaluated the pro-
posed method on four challenging crowd counting datasets:
UCF_QNRF, ShanghaiTech Part A, ShanghaiTech Part B,
and UCF_CC_50.
• UCF_QNRF [36] is the latest and largest crowd count-
ing dataset, which includes 1,535 images crawled from
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FIGURE 5. Qualitative results of the ablation study: (a) Input image; (b) Estimated density maps from the baseline; (c) Estimated density maps after the
scale estimation; (d–h) Estimated density maps after sparsity estimation, varying the fraction of the shorter side of the input image, (d) d0 = 1.5,
(e) d0 = 2, (f) d0 = 2.25, (g) d0 = 2.5, and (h) d0 = 3.

TABLE 1. Network structure. The configuration of the convolution layer is
expressed as [kernel size]-[number of channels].

TABLE 2. Datasets for the experiments.

Flickr with 1.01 million point annotations. It is a chal-
lenging dataset because it has a wide range of counts,
image resolutions, light conditions, and viewpoints.
The training set has 1,201 images and the remaining
334 images are used for testing.

• ShanghaiTech [21] contains 1,198 images with a total
of 330,165 people and is divided into two parts: Part A
containing 482 images of congested scenes (300 images
for training and 182 images for testing), and Part B
containing 716 images of sparse scenes (400 images for
training and 316 for testing).

• UCF_CC_50 [36] contains only 50 gray-scale images
which are considered to be challenging due to the high
crowd density in the images. Its count value varies
from 94 to 4,543. Due to its small quantity, experiments

are conducted by 5-fold cross validation followed by the
original literature [36].

B. IMPLEMENTATION DETAILS
The proposed network consists of a VGG19 CNN model as
described in Table 1. We trained the network in an end-to-
end fashion. The first 19 convolutional layers were initial-
ized with a pre-trained VGG19. For the data augmentation
processes, we performed random flipping and the cropping of
the given images with a size of 512×512 for the UCF_QNRF,
ShanghaiTech Part A and UCF_CC_50 datasets and
256 × 256 for the ShanghaiTech Part B dataset. The param-
eters were updated by an Adam (adaptive moment estima-
tion) optimizer. All the experiments were performed on an
NVIDIA 1080Ti GPU.

C. EVALUATION METRICS
To evaluate our proposed method, we used both the mean
absolute error (MAE) and mean squared error (MSE) as
evaluation metrics:

MAE =
1
L

L∑
i=1

∣∣Ci − C ′i ∣∣, (11)

MSE =

√√√√ 1
L

L∑
i=1

∣∣Ci − C ′i ∣∣2, (12)

where L is the number of test images, Ci is the number of
people in the i-th image, and C ′i is the estimated number of
Ci. The number of people in the image is obtained by the
integration of the crowd density over all the image regions
as

Ci =
M∑
m=1

DGT (xm). (13)
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TABLE 3. Experimental results for the ablation study.

Similar to the approach used in Eq. (13), the estimated count
is obtained as follows:

C ′i =
M∑
m=1

Dest (xm). (14)

D. ABLATION STUDY
In this section, we describe the conduct of several experi-
ments to verify the extent to which each proposed compo-
nent contributed to performance improvement. The ablation
experiments were performed on the ShanghaiTech Part A
dataset because it could represent well the effectiveness of
the proposed method due to its diversity of person-scale and
crowd-sparsity within a relatively small quantity of images.
According to the configuration of the proposed method, the
following three cases were tested:
• Base was conducted the same way of Bayesian loss [9].
d0 in Eq. (6) was set to 0.15.

• Scale had the same setting as Base, including the pro-
posed person-scale estimation process.

• Sparsity trains the network with the proposed loss,
including the proposed crowd-sparsity estimation
in Eq. (9).

The proposed method has only one hyper-parameter, d0,
which is a guideline for estimating the person-scale.
If d0 varies, the represented scale also varies as the proposed
definition. Therefore, we also conducted a comparison exper-
iments varying d0 after adopting the Sparsity setting from the
ablation study, which was named Sparsity-d0.
The qualitative results of the ablation study are depicted

in Fig. 5, and the quantitative results are summarized in
Table 3. Among the testing cases, the best performance was
achieved when d0 was set to 2.25 while considering both the
person-scale and crowd-sparsity. The following analysis was
derived from the ablation study.
• Scale improved the representation of individual’s loca-
tions but slightly lost counting accuracy when compared
with Base. As shown in Figs. 5(a) and (c), estimated
density map of a large-scaled person in the front is
represented by a point-shape in Scale (c). The point-
shaped result means that the density estimation network
accurately estimated the location of a person; however,
it resulted in a slight loss of some of the counting per-
formance. A strict restriction of point annotation could
lead to an inaccurate estimation of the density map
around a person. As depicted in Fig. 2(c), performing
person-scale estimation concentrates more on the loca-
tion of the head point annotation than the original work.

It could falsely learn the density in more tightly crowded
regions containing noisy annotations.

• Sparsity-1.5 started to improve performance compared
to Base.When d0 in Eq. (6) was set to be 10 times larger
(i.e., d0 = 1.5) than the original work, the performance
became similar. In other words, when d0 was set to
1.5, the training started to consider the diversity of the
person-scale without losing the counting performance.
As shown in the first row of Figs. 5(c) and (d), false
positives were reduced at the top of the estimated map in
Sparsity-1.5 (d), compared to Scale (c). Also, Sparsity-
1.5 successfully estimated the density at the bottom of
the first row of (d), which was incorrectly estimated as
zero in (c) by Scale.

• Sparsity-2.25 showed the best performance.As depicted
in the first row of Fig. 5, a small-scaled individual at
the bottom of the image was hard to represent in the
density map, except for Sparsity-2.25. We can observe
the effect of the proposed method through the third row
of Fig. 5(f) in which the density in the background region
was successfully estimated to be zero; in the other cases,
false positives were shown in the background region.

• Sparsity settings except for d0 = 2.25 had similar den-
sity map representations. We can see that every setting
except for Sparsity-2.25 failed to learn the hard cases
mentioned above, such as missing small-scaled people
and the falsely estimated densities in the background
region. From the results, we confirm that only one
parameter setting (d0 = 2.25) improved both counting
accuracy and representation capability.

In the remaining experiments, d0 was set to 2.25 for all the
datasets according to the results from the ablation study.

E. COMPARISONS WITH STATE OF THE ART
For the four datasets (UCF_QNRF, ShanghaiTech Part A,
ShanghaiTech Part B andUCF_CC_50), we performed exten-
sive comparison experiments with 16 state-of-the-art algo-
rithms, including the early deep-learningmodels (CCNN [11]
and MCNN [21]), models with novel network structures
(CMTL [34], SCNN [22], CP-CNN [23], ACSCP [29],
DCNet [37], IG-CNN [38], IC-CNN [2], CL-CNN [40],
DA-Net [40], ISANet [41], and SDSP [25]), models with
network layers specialized in the crowd density estimation
(SANet [39], SAAN [13], CSRNet [26] and CAN [27]),
a model based on detection scheme [16], and BL method [9].
As summarized in Table 4, the proposed method CBL exhib-
ited the best performance on the MAE metric and also
showed a competitive result on the MSE metric. A noticeable
improvement was found in the UCF_QNRF, ShanghaiTech
Part A, and UCF_CC_50 datasets, in which at least thousands
of people were depicted in images. In contrast, it was limited
in finding a performance improvement in the ShanghaiTech
Part B dataset, which consisted of hundreds of people in rela-
tively simple surveillance environments with few occlusions.
• UCF_QNRF: Fig. 6 illustrates the qualitative results for

UCF_QNRF dataset. In the first column, false positives in
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FIGURE 6. Qualitative results with the UCF_QNRF. Top row: Input image; Middle row: Bayesian loss [9]; Bottom row: Our method.

FIGURE 7. Qualitative results with ShanghaiTech Part A. Top row: Input image; Middle row: Bayesian loss [9]; Bottom row: Our method.
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FIGURE 8. Qualitative results with ShanghaiTech Part B. Top row: Input image; Middle row: Bayesian loss [9]; Bottom row: Our method.

FIGURE 9. Qualitative results with UCF_CC_50. Top row: Input image; Bottom row: Our method.

the background were removed more in our method compared
to the BL method. It was because the foreground and the
background were well separated by the proposed person-
scale estimation. In the second and the fourth column, the
BLmethod provided an overestimation in a congested region,
while such errors were reduced in the proposed method. It is
inferred that the propose method provided more accurate
learning in the congested region to improve the counting

performance. In the third column, however, the localization
performance became degraded, resulting in a reduced resolu-
tion of crowd density in the grandstand region. It is because
people that are densely crowded and severely occluded made
the representation in the density map worse.
• ShanghaiTech Part A: Fig. 7 depicts the qualitative

results for the ShanghaiTech Part A dataset. In the first and
third column, the representation of the density map was
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TABLE 4. Experimental results for comparison with state-of-the-arts.

improved in the region where people were sparsely dis-
tributed. Density regions that were not counted in the BL
method were now expressed in detail, and the underestimated
regions were improved. In the second column, which was
a highly congested situation, our method more accurately
counted the crowd compared to the BL method by improv-
ing the crowd’s representation and reducing overestimations.
In the fourth column, the accuracy was improved from the
accurate separation of the foreground and the background.
The BL method often failed to count people near the top of
the image and on the railing with complex patterns because
of the errors made in these regions. Our method accurately
recognized not only the people on the railing but also people
in the congested region.
• ShanghaiTech Part B: Fig. 8 shows the qualitative

results from the ShanghaiTech Part B dataset. Because the
number of people was smaller than with the other datasets and
there were few crowded situation, performance improvement
with the proposed method was limited. There was no mean-
ingful difference between the BL method and the proposed
method. This was because the proposed method learns vari-
ous surveillance environments, while this dataset had almost
the same scale distribution over the sample images. A slight
improvement was achieved in partially crowded regions, such
as in the first and the third columns of Fig. 8. Although the
qualitative results looked similar, the counting accuracy was
improved for the whole case in the sample images in the
second and fourth column of Fig. 8.
• UCF_CC_50: Fig. 9 shows the qualitative results from

the UCF_CC_50 dataset. Since the qualitative results can be
slightly different depending on randomly selected samples
in the cross-validation setting of the UCF_CC_50 dataset,
only the qualitative results of the proposed method are pre-
sented. In the second column, the background area is clearly

represented by a small density value close to zero. The
positions of the people are accurately represented by a
point-shape in the last column. In the high-congested scene,
such as third column, the estimated density map is blurred,
as opposed to the last column, where the estimated density is
clearly represented.

F. DIFFERENCES FROM EXISTING PERSON-SCALE
INFERENCE
We discuss distinctive aspects of the proposed person-scale
inference in contrast to the existing methods as follows.

First, there are methods using the built-in person-scale
inference module similar to the proposed method. These
methods train the networks to infer the scale of a person along
with a learning crowd density. In [12], an additional network
module is used for data-driven person-scale inference that
requires predefined scale-levels for training scale-level-wise
branches in the network. Unlike ours, [12] has a limitation
that the scale-levelmust be defined in advance. Also, the addi-
tional network module for person-scale inference requires
additional computational overhead. In [13], ‘scale’ is defined
by a value inversely proportional to the number of people in a
local image patch. In addition, the ‘scale’ has to be learned
as additional feature. Since the ‘scale’ in [13] is defined
under the assumption that people are evenly distributed in the
image patch, even the same scale can be measured differently
depending on the sparsity of a local region, which leads to
inaccurate scale estimation. In contrast, our person-scale esti-
mation is based on the distance from the person to the camera
and so the estimation is robust to the sparsity of a local region.
Furthermore, [13] requires additional module for learning
person-scale, which increases computational overhead.

Second, there are methods to obtain an accurate
person-scale using external information such as head

VOLUME 10, 2022 8471



J. Jeong et al.: Congestion-Aware Bayesian Loss for Crowd Counting

detection results [10] or scene perspective information [11].
In [10], the scale inference module is based on head detection
results. In this detection-based framework, the person-scale
can be accurately inferred in the ideal case, but it is difficult
to apply the Bayesian loss framework if humans are falsely
detected or undetected. Even if detection performs well,
scale inference can depend on the performance of detector to
affect crowd density estimation performance. Reference [11]
targets scenarios where we provide scene information such
as region-of-interest and perspective information. However,
in the single-image crowd density estimation settings, scene
information is usually not accessible in the training phase.

To sum up, the proposed scale inference method can
be applied to various crowd environments. The proposed
person-scale inferencemethod enables the scale to be inferred
even if a small number of point annotations are given. Also,
we consider the limitation of single-image crowd density
estimation settings that only the position of the annotation is
given.

V. CONCLUSION
In this research, we tackled the problem of accurately esti-
mating crowd density in congested scenes for crowd count-
ing. We proposed a novel congestion-aware loss method that
considers the scale and sparsity of people. The scale of a per-
son (i.e., person-scale) was estimated from scene geometry.
The sparsity of a local region (i.e., crowd-sparsity) was then
estimated from the difference between the estimated scale
and the nearest neighbor distance. The estimated person-scale
and crowd-sparsity was utilized for the proposed congestion-
aware loss. We verified the effect of the proposed compo-
nents through ablation experiments. From the analysis of the
ablation study, the person-scale estimation helped to improve
the localization accuracy of the crowd density; however,
it degraded the counting performance. We found that utiliz-
ing the crowd-sparsity improved the counting performance
while maintaining the localization accuracy. Based on the
results from the ablation study, we conducted comparative
experiments between the proposed method and the state-of-
the-art methods. It was shown that the proposed method also
demonstrated the state-of-the-art performance. The proposed
method illustrated that the person-scale and crowd-sparsity
were important for crowd density estimation. In addition,
if these two properties were dealt with in a unified way,
we could show that both the counting performance and the
localization accuracy could be improved. In future works,
additional performance improvement is expected if a unified
method is developed.
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