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Pre‑procedural determination 
of device size in left atrial 
appendage occlusion using 
three‑dimensional cardiac 
computed tomography
Iksung Cho1,7, William D. Kim1,7, Oh Hyun Lee2, Min Jae Cha3, Jiwon Seo1, Chi Young Shim1, 
Hui‑Nam Pak1, Boyoung Joung1, Geu‑Ru Hong1, Heidi Gransar4, Seung Yong Shin5* & 
Jung‑Sun Kim1,6*

The complex structure of the left atrial appendage (LAA) brings limitations to the two-dimensional-
based LAA occlusion (LAAO) size prediction system using transesophageal echocardiography. The LAA 
anatomy can be evaluated more precisely using three-dimensional images from cardiac computed 
tomography (CT); however, there is lack of data regarding which parameter to choose from CT-based 
images during pre-procedural planning of LAAO. We aimed to assess the accuracy of measurements 
derived from cardiac CT images for selecting LAAO devices. We retrospectively reviewed 62 patients 
with Amplatzer Cardiac Plug and Amulet LAAO devices who underwent implantation from 2017 to 
2020. The minimal, maximal, average, area-derived, and perimeter-derived diameters of the LAA 
landing zone were measured using CT-based images. Predicted device sizes using sizing charts 
were compared with actual successfully implanted device sizes. The mean size of implanted devices 
was 27.1 ± 3.7 mm. The perimeter-derived diameter predicted device size most accurately (mean 
error = − 0.8 ± 2.4 mm). All other parameters showed significantly larger error (mean error; minimal 
diameter = − 4.9 ± 3.3 mm, maximal diameter = 1.0 ± 2.9 mm, average diameter = − 1.6 ± 2.6 mm, area-
derived diameter = − 2.0 ± 2.6 mm) than the perimeter-derived diameter (all p for difference < 0.05). 
The error for other parameters were larger in cases with more eccentrically-shaped landing zones, 
while the perimeter-derived diameter had minor error regardless of eccentricity. When oversizing was 
used, all parameters showed significant disagreement. The perimeter-derived diameter on cardiac 
CT images provided the most accurate estimation of LAAO device size regardless of landing zone 
eccentricity. Oversizing was unnecessary when using cardiac CT to predict an accurate LAAO size.

Atrial fibrillation (AF) is the most common sustained arrhythmia and can lead to several life-threatening com-
plications including ischemic stroke, systemic thromboembolism, and heart failure1. The prevention of ischemic 
stroke in patients with AF is essential, and oral anticoagulation (OAC) is considered the standard treatment2. The 
majority (> 90%) of thrombi develop within the left atrial appendage (LAA) of patients with AF3; therefore, per-
cutaneous left atrial appendage occlusion (LAAO) is an alternative non-pharmacological treatment for patients 
with contraindications to OAC or those who experience recurrent stroke despite OAC treatment4–6.

The size and shape of the LAA widely vary among individuals7. A deeper understanding of the anatomy of 
a patient’s LAA is essential before performing LAAO, as faulty device sizing or improper device positioning 
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may result in peri-device leakage or device embolization3. The usual pre-procedural evaluation of the LAA is 
accomplished using two-dimensional trans-esophageal echocardiography (TEE) in order to assess the orifice and 
landing zone diameter, and to exclude the presence of a thrombus within the appendage8,9. Amplatzer Cardiac 
Plug (ACP) or Amulet devices (Abbott Vascular, Santa Clara, CA, USA) are commonly used for percutaneous 
LAAO, and the proper device size is determined by measuring the maximum width of the landing zone via TEE9. 
However, the complex structure of the LAA limits the sizing accuracy of two-dimensional imaging, leading to 
unfavorable outcomes10.

Cardiac computed tomography (CT) provides accurate three-dimensional images of the heart and can be 
electrocardiography (ECG)-gated, which allows for the detailed visualization of cardiac structures during sys-
tole and diastole11. Recent studies have reported that CT helps improve device sizing and contributes to a more 
efficient and safer LAAO procedure than the use of TEE to predict the device size11–14. However, CT-based pre-
procedural planning for LAAO is still under development, as there is still a need for identification of the optimal 
diameter to use in device sizing in each device type15. This study aimed to assess the accuracy of pre-procedural 
device sizing using three-dimensional cardiac CT, and to identify the parameter that predicts the most accurate 
LAAO device size.

Methods
Patient enrollment.  A total of 166 patients who underwent a percutaneous LAAO device implantation pro-
cedure between January 2014 and June 2020 were identified from a Korean multicenter LAAO registry. Patients 
with a successfully implanted ACP or Amulet device (St. Jude Medical, Minneapolis, MN, USA) (n = 104) were 
included in the study, whereas patients with Watchman devices implanted were excluded due to the difference 
in sizing method. Exclusion criteria included the following: (1) patients without pre-procedural cardiac CT 
(n = 35); and (2) significant peri-device leakage > 3 mm in width, diagnosed on color doppler or an inappropriate 
position of the device diagnosed on TEE 36 weeks after procedure (n = 7). The final analysis included data from 
62 patients who underwent an anatomical and functionally successful LAAO device implantation (Fig. 1). All 
experiments and methods were performed in accordance with relevant guidelines and regulations. This study 
was approved by the institutional review board of each institution (Chung-Ang University Hospital, Severance 
Hospital) and complied with the Declaration of Helsinki. The institutional review board of each institution 
(Chung-Ang University Hospital, Severance Hospital) waived the requirements of informed consent due to the 
retrospective nature of this analysis.

Pre‑procedural CT image acquisition.  Pre-procedural multi-phasic CT was performed using Philips 
iCT 256 scanner (Philips Healthcare, Cleveland, OH, USA) (slice collimation = 64 × 0.625, tube voltage = 120 kV, 
and gantry rotation time = 270 ms) with retrospective ECG-gating and ECG-based tube current modulation. 
Patients with a heart rate > 65  bpm were administered oral ß-receptor blockers (atenolol 50  mg; Tenormin®, 
AstraZeneca, Sweden) before CT scan is performed. All the patients received 0.8 mg of nitroglycerin sublin-

Figure 1.   Patient flowchart. LAAO: Left ATRIAL appendage occlusion; ACP: amplatzer cardiac plug; CT: 
computed tomography.
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gually. Using the bolus tracking technique (Bolus Pro Ultra; Philips Healthcare), the contrast-enhanced scan-
ning was initiated after 10 s of triggering with a trigger threshold of 110 Hounsfield Units (HU) ascending aorta. 
Approximately 50–70 mL of contrast agent (Iomeron 400, 400 mg iodine/mL; Bracco Imaging SpA, Milan, Italy) 
was injected through the antecubital vein (injection rate = 4.5–5 mL/s) followed by 50 mL of 1:1 mixed contrast 
saline chaser (4 mL/s) using a dual-head power injector (Stellant; Medrad, Pittsburgh, PA, USA). The presence 
or absence of an LAA thrombus was assessed using a delayed scan performed 1 min after the contrast injection 
using prospective ECG-gating centered at 40% of the R-R interval. Images were reconstructed at 0–90% of the 
R-R interval in 10% increments with a 20-cm field of view, 512 × 512-pixel matrix, 0.9 mm slice thickness, and 
0.45-mm image increments with hybrid iterative reconstruction (iDose4; Philips Healthcare) using a medium 
soft-tissue convolution kernel (XCB, Philips Healthcare, Cleveland, OH, USA).

CT image analysis and measurement.  CT images were saved as Digital Imaging and Communications 
in Medicine (DICOM) files and imported into a commercially available software package (3mensio Worksta-
tion version 10.1, Pie Medical Imaging, Maastricht, The Netherlands). The images were analyzed by experienced 
imaging cardiologists (Supplement Fig. 1). In detail, the LAA was automatically located, and landmarks were 
placed at the left circumflex artery and coumadin ridge to locate the LAA ostium. After adjusting the plane 
angle, the landing zone was set as 10 mm distal to the ostium. The following ostium and landing zone measure-
ments were automatically obtained: the minimal diameter, maximal diameter, average diameter, area-derived 
diameter, and perimeter-derived diameter. The maximal diameter was defined as the largest distance observed 
after repeating the measurements between each point. The minimal diameter was the shortest distance that 
was found in this process, and the average diameter was the mean value of the two. The landing zone area was 
measured using the shoelace algorithm, summing the divisions of voxels within the area16,17. The perimeter was 
calculated using the length along the lumen line, which is a direct result of lumen segmentation. The area and 
perimeter-derived diameters were calculated using the equation for the circumference of a circle, dividing each 
measurement by pi (π) . Supplement Fig. 2 shows representative cases with eccentric or circular landing zones. 
The eccentricity index (EI) of the landing zone was calculated for each patient as [1 − (minimal diameter/maxi-
mal diameter)], assuming that the shape was similar to an ellipse.

Device size prediction and evaluation.  The device size was predicted using each parameter by choos-
ing the closest lobe size from the observed diameter value. The accuracy of each device size prediction method 
based on the minimal, maximal, average, area-derived, and perimeter-derived diameters was evaluated by using 
the size of actually implanted devices as reference. This fulfilled all of the following criteria: (1) optimal position; 
(2) optimal shape (tire-shape); (3) no leakage on the follow-up TEE; and (4) no thrombus on or adjacent to the 
LAAO on the follow-up TEE. The mean and mean absolute errors between the predicted size and reference were 
compared. The mean error was defined as the mean difference between predicted device size and actual device 
size, and the mean absolute error is the mean value of absolute differences between the two sizes.

To assess the association of eccentricity on the discrepancy in the sizing methods, the error of device size 
prediction was analyzed in accordance with EI. Previous studies have shown that EI > 0.15 predicts significant 
residual leak after LAAO procedure, and sizing discrepancy was significant at EI = 0.1914,18. We divided the total 
cases into subgroups (EI > 0.2 and EI ≤ 0.20) and compared the error in device size prediction.

The size prediction method with oversizing used the conventional oversizing system with sizing charts (Fig. 2, 
Supplement Fig. 3). The mean and mean absolute errors were calculated to evaluate the accuracy of oversizing 
when CT-based images are used to predict the device size.

Figure 2.   Device size prediction using landing zone measurements. (A) The landing zone of the left atrial 
appendage is located, and five different parameters are acquired: minimal, maximal, average, area-derived, 
and perimeter-derived diameter. Analysis was performed by 3mensio Workstation version 10.1 (Pie Medical 
Imaging, Maastricht, The Netherlands). (B) Device size is predicted by choosing the closest size to each 
parameter. Device size prediction with oversizing is performed by choosing the corresponding device size 
according to sizing charts.
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Statistical analyses.  The absolute error was tested to verify whether perimeter-derived diameter was sta-
tistically different from other measurements, using paired t-test. In addition, the agreement between the device 
size, predicted using CT measurements, and actual device size was evaluated using Bland–Altman analysis.

Categorical variables are presented as percentages, and continuous variables are presented as means ± standard 
deviations. All tests were two-sided, and p-values < 0.05 were considered statistically significant. All analyses were 
performed using MedCalc statistical software (version 14.12.0, MedCalc Software Inc., Mariakerke, Belgium) 
and STATA statistical software (version 14.2, StataCorp LLC, College Station, TX).

Results
Baseline characteristics.  The baseline characteristics of the 62 patients included in this study are shown in 
Table 1. The mean patient age was 71 ± 9.8 years, and 39 patients (62.9%) were males. A history of major bleeding 
incidence or predisposition to bleeding was found in 35.5% of the patients. Nearly 64.5% patients had recurrent 
stroke episodes despite the use of OAC. Twenty-six patients (41.9%) had a history of stroke, and their mean 
CHA2DS2-VASc score was 4.0 ± 1.8. Amulet devices were implanted in 37 patients (59.7%) and ACP devices in 
25 (40.3%). The mean lobe size of the implanted devices was 27.1 ± 3.7 mm.

Device sizing from landing zone measurements.  The parameters of the LAA ostium and landing 
zone were measured, and the mean values are shown in Table 2. The mean minimal diameter of the landing 
zone was 22.1 ± 4.5 mm, while the maximal diameter was 29.0 ± 5.0 mm. The perimeter-derived diameter of the 
landing zone was 26.3 ± 4.3 mm, being slightly larger than average (25.5 ± 4.3 mm) and area-derived diameters 
(25.3 ± 4.3 mm). The predicted device size was determined for each measured parameter; the minimal diam-
eter gave the smallest size of 22.2 ± 4.3 mm, while the maximal diameter gave the largest size of 28.1 ± 4.3. The 
perimeter-derived diameter estimated a device size of 26.3 ± 3.9 mm, which was again larger than predicted sizes 
from average (25.5 ± 4.1 mm) and area-derived diameters (25.0 ± 4.2 mm).

Table 1.   Patients’ clinical characteristics.

Characteristics Value

Age 71 ± 9.8

Sex, male 26 (41.9%)

Body mass index 24.1 ± 3.4

Hypertension 26 (83.9%)

Diabetes mellitus 18 (29.0%)

Heart failure 22 (27.7%)

Stroke 26 (41.9%)

Vascular disease 25 (40.3%)

Major/minor bleeding 22 (35.5%)

HAS-BLED score 2.6 ± 1.1

CHA2DS2VASc score 4.1 ± 1.8

Indication

Prior major bleeding or predisposition to bleeding 22 (35.5%)

Recurrent stroke despite OAC 40 (64.5%)

Device

Amplatzer cardiac plug 25 (40.3%)

Amulet 37 (59.7%)

Implanted device size 27.1 ± 3.7

Table 2.   Diameters and predicted device sizes. Data are reported as means ± SDs. *The mean of the differences 
between predicted device size and actual device size. † The mean of the absolute differences between predicted 
device size and actual device size.

Diameter

Measurements and device size prediction Prediction accuracy

Ostium (mm) Landing zone (mm)
Predicted device size 
(mm) Mean error* (mm)

Mean absolute error† 
(mm)

Minimal 25.1 ± 5.8 22.1 ± 4.5 22.2 ± 4.3 − 4.9 ± 3.3 5.0 ± 3.1

Maximal 35.6 ± 5.9 29.0 ± 5.0 28.1 ± 3.8 1.0 ± 2.9 2.1 ± 2.2

Average 30.4 ± 5.7 25.5 ± 4.3 25.5 ± 4.1 − 1.6 ± 2.6 2.1 ± 2.2

Area-derived 30.1 ± 5.7 25.3 ± 4.3 25.0 ± 4.2 − 2.0 ± 2.6 2.4 ± 2.3

Perimeter-derived 30.9 ± 5.7 26.3 ± 4.3 26.3 ± 3.9 − 0.8 ± 2.4 1.6 ± 1.9
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Accuracy of predicted device size compared with actual implanted device.  The accuracy of the 
device sizing method was evaluated by comparing mean and mean absolute errors between predicted and actual 
implanted device sizes (Table 2) and also by the Bland–Altman method (Fig. 3). The perimeter-derived diameter 
showed the highest accuracy in predicting device size with minimal error (mean error = − 0.8 ± 2.4 mm, mean 
absolute error = 1.6 ± 1.9 mm), while device size predicted from the minimal diameter showed the most sig-
nificant error (mean error = − 4.9 ± 3.3 mm, mean absolute error = 5.0 ± 3.1 mm). The maximal diameter led to 
overestimation of device size (mean error = 1.0 ± 2.9), while all other parameters showed underestimated results.

As the perimeter-derived diameter resulted in a minimal error in device sizing, the absolute value of the differ-
ences was tested to verify whether it was statistically different from other measurements (Table 3). The predicted 
device sizes determined using the perimeter-derived diameter were significantly different from the predicted 
sizes when the minimal (mean error = 3.42 ± 3.25, p < 0.001), average (mean error = 0.52 ± 1.36, p = 0.004), and 
area-derived diameters (mean error = 0.77 ± 1.77, p = 0.001) were used. The predicted device sizes determined 
using the perimeter-derived diameter were not significantly different from the predicted sizes determined using 
maximal diameter (mean error = 0.44 ± 2.51, p = 0.177).

Eccentricity index and device size selection.  The mean EI was 0.23 ± 0.11 (range: 0.05–0.5). Approxi-
mately half of the patients (48.4%) had an EI > 0.2, while only 6.5% had an EI < 0.1. The difference between 
predicted device sizes obtained using each parameter and actual device size according to EI is shown in Fig. 4. 
When the EI was > 0.2, the perimeter-derived diameter showed the least absolute error in device size prediction, 
and all other parameters showed significant difference from it (all p for difference < 0.05). When the EI was ≤ 0.2, 

Figure 3.   Bland–Altman plot comparing the predicted size using each parameter and actual device size of each 
parameter.

Table 3.   Differences between size recommendations obtained using the perimeter-derived diameter and other 
diameters.

Variables

Paired differences

P-valueMean ± SD S.E. mean

95% CI

Lower Upper

Perimeter—minimal 3.42 ± 3.25 0.41 2.59 4.25  < 0.001

Perimeter—maximal 0.44 ± 2.51 0.32 − 0.20 1.07 0.177

Perimeter—average 0.52 ± 1.36 0.17 0.17 0.86 0.004

Perimeter—area 0.77 ± 1.77 0.22 0.33 1.22 0.001
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the minimal diameter alone showed significant error, while the other parameters showed no difference. Overall, 
the perimeter-derived diameter predicted the device size most accurately, regardless of EI.

Device size prediction with oversizing.  The predicted lobe sizes determined using the conventional 
TEE oversizing method are shown in Table 4 and Supplement Fig. 4. Oversizing resulted in a mean device size 
of 3.0 ± 1.9 mm larger than the prediction without oversizing. The minimal diameter still underestimated the 
device size (mean predicted device size = 25.3 ± 4.2 mm; mean error = − 1.8 ± 3.5 mm) with oversizing. All the 
other parameters overestimated device sizes; the area-derived diameter showed the smallest error but was still 
significantly large (mean error = 1.4 ± 3.0, mean absolute error = 2.3 ± 2.4).

Discussion
In this multicenter study, using three-dimensional cardiac CT image-based measurements to predict the size of 
LAAO devices, the perimeter-derived diameter of the landing zone was found to be the most accurate predictor 
of device size. The perimeter-derived diameter was advantageous when the cross-sectional shape of the LAA was 
eccentric (EI > 0.2). Additionally, oversizing based on the TEE sizing chart was unnecessary due to the superior 
spatial resolution of CT imaging.

LAAO planning with CT measurements.  TEE is a conventional pre-procedural method for evaluating 
the LAA. It is used to measure the width of the ostium and landing zone in multiple planes; the maximal diam-
eter of the landing zone is used to determine the ACP or Amulet device size8. However, CT images have higher 

Figure 4.   Error of device size prediction according to eccentricity index. (A) Error in the predicted device sizes 
from each parameter according to eccentricity index. (B) Absolute error of device sizing from each parameter in 
eccentric (EI > 0.2) and non-eccentric (EI ≤ 0.2) groups.

Table 4.   Predicted device sizes using oversizing. Data are reported as means ± SDs. *The mean of the 
differences between the predicted device size and actual device size. † The mean of the absolute differences 
between the predicted device size and actual device size.

Diameter

Measurements and device size prediction Prediction accuracy

Ostium (mm) Landing zone (mm)
Predicted device size 
(mm) Mean error* (mm)

Mean absolute error† 
(mm)

Minimal 25.1 ± 5.8 22.1 ± 4.5 25.3 ± 4.2 − 1.8 ± 3.5 2.8 ± 2.8

Maximal 35.6 ± 5.9 29.0 ± 5.0 30.7 ± 3.2 3.6 ± 3.6 3.8 ± 3.4

Average 30.4 ± 5.7 25.5 ± 4.3 28.6 ± 3.7 1.5 ± 3.1 2.4 ± 2.5

Area-derived 30.1 ± 5.7 25.3 ± 4.3 28.5 ± 3.5 1.4 ± 3.0 2.3 ± 2.4

Perimeter-derived 30.9 ± 5.7 26.3 ± 4.3 29.2 ± 3.5 2.1 ± 3.1 2.8 ± 2.5
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spatial resolution than TEE images and can be reconstructed into three-dimensional images, thereby providing 
the operator with a better understanding of the morphology of the LAA and its surrounding structures11,13,15. 
Therefore, CT is being used increasingly for the pre-procedural assessment of other percutaneous procedures, 
including transcatheter aortic valve replacement19. Recent studies have reported that CT provides better accu-
racy for LAAO planning than TEE13,20–22, whereas it is still unclear which parameter should be used for sizing 
when using CT measurements to plan LAAO15. Therefore, our study aimed to establish a practical method of 
successfully using CT-based parameters to predict LAAO device sizes for ACP and Amulet.

Perimeter‑derived diameter.  The ACP and Amulet devices both have eight different sizes in 2–3 mm 
increments. In this study, the mean difference of the perimeter-derived diameter and actual device width was 
significantly smaller than 2 mm (− 0.8 ± 2.4 mm), indicating a minimal error and excellent match. Previous 
studies have suggested that the perimeter is the most dependable parameter for evaluating the LAA ostium. An 
expert recommendation by Korsholm et al. suggested the need for identification of the optimal use of the perim-
eter-derived diameter in different devices15. Wang et  al. compared the different parameters during different 
cardiac phases and found that the perimeter-derived diameter had minimal changes (1–2 mm) and was reliable 
for reproducing the ostium23. However, this study compared the parameters measured using two-dimensional 
oblique and three-dimensional measurement methods, focusing on the reproducibility of the LAA ostium rather 
than the accuracy of the sizing. In our study, we used successfully implanted devices as the reference to com-
pare predicted device sizes based on CT measurements and were able to present the superior accuracy of the 
perimeter-derived diameter compared with other parameters. More recently, Jia et al. compared the parameters 
measured using three-dimensional printed models and found a good correlation between the perimeter of the 
LAA orifice and LAmbre™ device size24. However, the ability of 3D printing to reflect actual cardiac anatomy may 
be limited, as the volume within the chambers changes throughout the cardiac cycle. Thus, our findings were 
consistent with previous studies that suggested the perimeter-derived diameter as the most accurate parameter 
in reproducing the LAA ostium, while further showing the optimal use of it in CT-based LAAO planning with 
ACP and Amulet devices.

Underlying mechanism of superior accuracy in sizing with perimeter‑derived diameter.  In 
the current study, the minimal, average, and area-derived diameters underestimated the size of the LAAO 
device. Significant undersizing may lead to complications, including device malpositioning, embolization, or 
peri-device leakage. A comparison of the parameters in this study is shown in Supplement Fig. 5. The average 
diameter was calculated as the arithmetic mean of the minimal and maximal diameters ( D1+D2

2
 ). When the 

minimal diameter was significantly smaller than the maximal diameter, or when the shape was more eccentric, 
the average diameter was relatively a small value. The area-derived diameter of an ellipse can be calculated as the 
geometric mean of the minimal and maximal diameters ( 

√
D1 ∗ D2) . Inequality of the two mean values indi-

cates that the geometric mean is always less than or equal to the arithmetic mean, leading to an underestimation 
of size when using area-derived diameters.

The EI was identified as the important factor when comparing the results of device size for each parameter. 
The cross-sectional shape of the LAA ostium and landing zone is typically elliptical or irregular, while the occlud-
ing device is circular25–27. This difference may lead to a discrepancy between the predicted sizes and actual device 
sizes. EI can be used to determine the shape of the LAA ostium and landing zone, as the shape is more circular 
when the EI is approximately 0. When the occluding devices are inserted, the shape of the landing zone deforms 
to adapt to the device23. This adaptation does not lead to significant changes in the LAA parameters in patients 
with more circular EI. However, in patients with more eccentric landing zones, the adaptation significantly 
changes the minimal, maximal, average, and area-derived diameters, while the perimeter-derived diameter does 
not change significantly. In our study, the discrepancy between the predicted device size was greater when the EI 
was > 0.2. Almost half of the patients in this study (48.4%) had an EI > 0.2, indicating that using diameters other 
than the perimeter-derived diameter may lead to a mismatch in the device selection.

The maximal diameter measured in this study was similar to the actual implanted device size and not sig-
nificantly different from the perimeter-derived diameter. The LAA is a relatively distensible structure within 
the heart, serving as a volume reservoir during the systolic phase28. This anatomical characteristic may allow 
for the maximal diameter to remain as an important measurement in LAAO, along with the perimeter-derived 
diameter. However, the insertion of grossly large devices may lead to malpositioning of the device and post-
procedural complications, including device embolization, peri-device leakage, thrombus formation, and cardiac 
tamponade18,29. Additionally, in more eccentric cases with EI > 0.2, the maximal diameter showed significant error 
compared with the perimeter-derived diameter, leading to overestimation of device size. Therefore, in patients 
with highly eccentric LAA ostium shapes, the perimeter-derived diameter may be the most accurate parameter 
for device size selection.

Unnecessity of oversizing with CT‑based measurements.  Our study also assessed the need for 
oversizing when planning for LAAO using CT. Sizing charts provided by the device manufacturer were used 
to determine the ideal device size correlating to the obtained measurements6. These charts typically suggest 
oversized device disc diameters due to an underestimation of the dimensions when two-dimensional TEE is 
used30. Three-dimensional TEE has improved the accuracy for the assessment of the true LAA orifice compared 
with two-dimensional TEE31; however, the measurements were smaller than those obtained using cardiac CT30.

When the oversizing method was used with CT-based measurements, each parameter was significantly mis-
matched with the actual device size. Oversizing improved the accuracy of the predicted device size when the 
minimal diameter was used from a mean error of − 4.8 ± 3.3 mm to − 1.8 ± 3.5 mm. However, the minimal 
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diameter underestimates the lobe size irrespective of oversizing, and this improvement is clinically irrelevant as 
the minimal diameter is not used independently for the sizing of LAAO devices. All other parameters signifi-
cantly overestimated the device size when oversizing was used. Therefore, oversizing may be unnecessary when 
CT images are used for pre-procedural LAAO planning.

Limitations
This study has a few limitations. First, only patients who underwent LAAO with no complications or device size 
mismatching were included, and our results were not directly compared with those obtained using the conven-
tional TEE method. However, we used the actual implanted devices as reference to compare the device sizes 
predicted using different parameters. Second, this was a retrospective study and may have been influenced by 
unobserved confounders and selection or referral biases. Thus, the clinical feasibility and usefulness of this sizing 
method, such as the improved success rate, decreased procedure time, and decreased number of attempts, must 
be verified in future prospective studies. Lastly, this study only included patients implanted with ACP or Amulet 
devices, which led to the exclusion of a significant number of patients with Watchman devices. This exclusion 
criterion was based on the different sizing techniques used for Watchman devices. As the use of perimeter-derived 
diameter without oversizing may be considered for other devices including the Watchman device, further studies 
regarding the use of parameters from CT-based images for the pre-procedural planning of other LAAO devices 
may help establish optimal guidelines for each device.

Conclusion
When using cardiac CT-based measurements for LAAO planning, the perimeter-derived diameter is the most 
accurate parameter to predict the device size. The eccentricity of the LAA ostium is a critical factor responsible 
for the discrepancy among the CT-based measurements, and the perimeter-derived diameter is advantageous in 
patients with a highly eccentric LAA ostium. Future prospective studies should consider evaluating the clinical 
utility of the perimeter-based size determination method.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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