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ABSTRACT Many lattice-based cryptographic schemes are constructed based on hard problems on an
algebraic structured lattice, such as the short integer solution (SIS) problems. These problems are called
ring-SIS (R-SIS) and its generalized version, module-SIS (M-SIS). Generally, it has been considered that
problems defined on the module lattice are more difficult than the problems defined on the ideal lattice.
However, Koo, No, and Kim showed that R-SIS is more difficult than M-SIS under some norm constraints
of R-SIS. However, this reduction has problems in that the rank of the module is limited to about half of the
instances of R-SIS, and the comparison is not performed through the same modulus of R-SIS and M-SIS.
In this paper, we propose the three reductions. First, we show that R-SIS is more difficult than M-SIS with
the same modulus and ring dimension under some constraints of R-SIS. Also, we show that through the
reduction from M-SIS to R-SIS with the same modulus, the rank of the module is extended as much as the
number of instances of R-SIS from half of the number of instances of R-SIS compared to the previous work.
Second, we show that R-SIS is more difficult than M-SIS under some constraints, which is tighter than the
M-SIS in the previous work. Finally, we propose that M-SIS with the modulus prime qk is more difficult than
M-SIS with the composite modulus c, such that c is divided by q. Through the three reductions, we conclude
that R-SIS with the modulus q is more difficult than M-SIS with the composite modulus c.

INDEX TERMS Lattice-based cryptography, learning with error (LWE), module-short integer solution (M-
SIS) problem, ring-short integer solution (R-SIS) problem, short integer solution (SIS) problem.

I. INTRODUCTION
Many cryptographic schemes are based on problems that
are difficult to solve on computers, including the RSA
based on prime factor decomposition and the elliptic curve
cryptographic (ECC) scheme based on the discrete logarithm
problem (DLP). Since the prime factor decomposition
problem and DLP take a long time to solve on computers,
cryptographic schemes based on these problems have been
considered secure. However, due to the quantum computer’s
development, it is known that many cryptographic schemes
can be broken using quantum algorithms operated on
quantum computers [1]. Therefore, candidates of crypto-
graphic schemes that are resistant to quantum computers
have been actively researched. The representative candidates
are lattice-based cryptography, code-based cryptography,
multivariate polynomial-based cryptography, isogeny-based
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cryptography. Among them, the diverse forms of lattice-
based cryptography such as public-key cryptographic
schemes, signature schemes, and key encapsulation mech-
anisms are submitted in NIST post-quantum cryptogra-
phy (PQC) standardization competition for the advantages
of small-sized key and efficiency as well as security [2].

Lattice-based cryptographic schemes are based on hard
problems such as the shortest independent vector problem
(SIVP), which is known to reduce to short integer solution
(SIS) problem and learning with error (LWE) problem.
The SIS problem introduced by Ajtai [3] has been used to
construct many lattice-based cryptographic schemes. The SIS
problem is defined as follows: Let Z and R denote the sets of
integers and real numbers, respectively. Let Zq denote the set
of integers modulo q. For any positive integers m, n, given
positive real number β ∈ R, and positive integer q, the SIS
problem is to find solution z ∈ Zm such that A · z = 0
mod q and 0 < ‖z‖ ≤ β for uniformly random matrix
A ∈ Zn×mq . A one-way function can be constructed from the
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SIS problem [7], and then many cryptographic schemes can
be constructed from one-way function [4]–[6].

However, cryptographic schemes based on SIS are inef-
ficient since the size of the key of the signature scheme
or commitment scheme is too large. Many cryptographic
schemes based on structured lattices such as the ideal
and module lattices have been proposed to overcome this
problem. The ideal lattice is defined on the lattice with a
polynomial ring structure, and the module lattice is defined
on a module structure, which is an algebraic structure that
generalizes ring structure and vector space. Then we can
define the SIS problem over the structured lattices. The SIS
problem defined over an ideal lattice is said to be ring-SIS
(R-SIS) [8], and the SIS problem defined over a module
lattice is said to be module-SIS (M-SIS) [9]. It is shown that
R-SIS and M-SIS are as hard as SIVP defined on the ideal
lattice and the module-lattice, respectively [9], [10].

A. PREVIOUS WORKS
Generally, it has been considered that M-SIS is a more
difficult problem than R-SIS in the polynomial ring. For
example, suppose that there is an algorithm A for solving
M-SIS. The instances of R-SIS can be embedded in M-SIS
since the polynomial ring defining R-SIS is considered
the module with rank one. Then the algorithm A can be
used to find the solution of R-SIS. Thus, in lattice-based
cryptographic schemes [11]–[13], [14], M-SIS is preferred
due to the fundamental difficulty as well as the reduced
key-size and thus, we do not work on the existence of an
algorithm to solve the R-SIS.

However, the problems over the module lattice are not
always more difficult than the problems over the ideal lattice.
In the case of SIS over structured lattices, Koo, No, and Kim
showed that the R-SIS problem is more difficult than M-SIS
for some specific parameters [15]. In other words, there
exists a reduction from M-SISqk ,mk ,β ′ to R-SISq,m,β , where

β ′ = m
k
2 (d−1)βk(2d−1). To show this, they assign a specific

constraint to the upper bound of the norm of the solution of
R-SIS. In particular, due to this constraint, the possible range
of module rank that can be reduced to R-SIS is limited to
d < m+1

2 for sufficiently large modulus q. Also, this
reduction showed the relationship between R-SIS with m
instances and modulus q and M-SIS with mk instances and
modulus qk for some k > 1. In other words, this reduction
cannot be said to be established for the same modulus and
the same instances. Also, we can infer tight rank-modulus
trade-off reduction from R-SIS to M-SIS through [18]–[20].
First, let nd be a ring-dimension defining R-SIS. Refer-
ence [19] proposed that there exists a quantum reduction
from R-SIS to R-LWE. Since [18] proposed a tight rank-
modulus trade-off reduction from R-LWE to M-LWE with
ring dimension n and module-rank d . Finally, we use the dual
attack reduction [20] fromM-LWE toM-SIS, preserving rank
and ring dimension. All these steps preserve the modulus q.
However, this reduction does not preserve the ring dimension,
that is, not the same ring.

B. CONTRIBUTIONS
In this paper, we propose the improved reduction fromM-SIS
to R-SIS compared to the previous work [15]. Similar to
the previous work, the proposed reduction considers some
conditions of the upper bound β on the norm of the solution
of R-SIS. However, there are three differences between the
previous work and the proposed reduction.

First, we propose a newmethod to findm distinct solutions
of instances of R-SISq,m,β . Using this method, we obtain
the reduction from M-SISq,m,β1 to R-SISq,m,β , where β1 =
(t ·
√
m)d−1βd in Theorem 3 and t is a positive integer.

This reduction preserves the modulus q and ring-dimension
n. In particular, we can see that the possible range of module
rank that allows the reduction from M-SIS to R-SIS is
doubled compared to that in the previous work [15].

Second, we propose that M-SISq,m,β1 is more difficult than
M-SISqk ,mk ,β3 , where β3 = m

k
2 (d−1)βk(2d−1) for k ≥ 1.

To show this, first, we show the reduction fromM-SISqk ,mk ,βk
to M-SISq,m,β in Theorem 4, where there is no constraint on
β; that is, β can be t ·

√
m ·β as in Fig. 1. From this reduction,

the modulus and the number of instances of M-SISqk ,mk ,β2
are matched with M-SISqk ,mk ,β3 as in Fig. 1. Then, we show
a reduction from M-SISqk ,mk ,β3 to M-SISq,m,β2 for some
k ≥ 1 by comparing the upper bound of M-SIS solutions
in Theorem 5.
Third, we propose a reduction between M-SIS prob-

lems with different modulus. There is a reduction from
M-SISc,mk ,γ to M-SISqk ,mk ,β2 , where c is a composite integer
with a factor qk and γ = c

qk β2 for some k ≥ 1 in
Theorem 6. Thus, as the modulus of M-SIS becomes large,
M-SIS becomes less secure. Combining three reductions, that
is, Theorems 3, 4, and 6, we propose the following main
result, Theorem 7 (See Subsection IV-C for details):
Main Result 1 (Theorem 7): Let m be a positive integer.

Let t be positive integers and q be a prime such that

t ≤
√
n · m · q

1
m <

q
t
.

Let c be a composite integer such that c is divided by qk

for some k ≥ 1. Choose a module rank d ∈ Z>0 such that
√
n · m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

.

Let a positive real number β be an upper bound on the norm
of the solution of R-SISq,m,β such that

√
n · m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Assume that an algorithmA exists for solving R-SISq,m,β .
Then there exists an algorithm B for solving M-SISc,mk ,γ ,
where γ = c

qk (t ·
√
m)k(d−1)βkd .

As mentioned in [15], when constructing M-SIS based
cryptographic scheme, the algorithm for solving R-SIS for
certain parameters should be considered. When we construct
the cryptographic scheme based on M-SIS, through the
proposed work, it means that we need to consider the tighter
parameters compared to the previous work [15].
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FIGURE 1. Relationship of reductions between R-SIS and M-SIS for various parameters.

For example, we assume that M-SISq,m,β1 , where m =
10, n = 28, log(q) ≈ 40, log(β1) ≈ 50, d = 3, and
consider the collision-hash function defined over the module
as follows: Let A = (a1, . . . , am) ∈ Rdq , where R is a
polynomial ring. We define the function fA : Rm → Rdq as
fA(x) =

∑m
i=1 ai · xi, where x = (x1, . . . , xm) with ‖x‖ ≤

β1
2 .

Collision x 6= x′ ∈ Rm, where fA(x) = fA(x′), yields the
solution z = x − x′ with ‖z‖ ≤ β1. Assuming M-SISq,m,β1 ,
it is difficult to find a solution ‖z‖ ≤ β1. If we assume
that there exists an algorithm for solving R-SISq,m,β , where
β ≈ 10, a solution ofM-SISq,m,β1 could not be found through
previous work [15]. However, due to the tighter parameters
of the proposed work, we may be able to find a solution of
M-SISq,m,β1 for the same case.

C. ORGANIZATION
The remainder of this paper is organized as follows: In
Section II, SIS problems on ideal and module lattices and the
results of the previous works are introduced. In Section III,
we propose a new method to find m distinct solutions
for R-SIS. Using this method, we derive the reduction
from M-SISq,m,(t·√m)d−1βd to R-SISq,m,β . Also, we show the
possible range of module rank of the proposed reduction. And
it shows the comparison with the range in [15]. Section IV
proposes the various reductions among the M-SIS problems,
which lead to the reduction from M-SISc,mk , c

qk
(t·
√
m)k(d−1)βkd

to R-SISq,m,β for the modulus c such that qk |c for some
k ≥ 1. Finally, the conclusion and suggested future works
are provided in Section V.

II. PRELIMINARIES
A. STRUCTURED LATTICES
1) NOTATIONS
LetD be a distribution over some finite set S, and then x ← D
means that x is chosen from the distribution D. Let A be an

algorithm, and then x → Ameans thatA inputs x and y← A
means that A outputs y.

2) IDEALS AND MODULES
Let 8(X ) be a monic irreducible polynomial of degree n and
Q be the set of rational numbers. We use the 2n-th cyclotomic
polynomial 8(X ) = Xn + 1 with n = 2s for some positive
integer s because many lattice-based cryptosystems use the
2n-th cyclotomic polynomial 8(X ). Let K be a number field
as Q[X ]/〈8(X )〉 and define R as the ring Z[X ]/〈8(X )〉.
Conveniently, we refer to R as the polynomial ring. A non-
empty set I ⊆ R is an ideal of R if I is an additive subgroup
of R and for all r ∈ R and all x ∈ I , r · x ∈ I . The quotient
ring R/I is the set of equivalence classes r + I of R modulo
I . Let q be the positive integer and define Rq = R/qR. Define
M ⊆ K d as an R-module, where R is the ring of integers of
K and K is a number field if M is closed under addition and
under scalar multiplication by elements of R. It is known that
M/qM is isomorphic to Rdq [9]. The element of Rdq is denoted
by the vector a, whose entry is an element of the polynomial
ring, that is, a = (a1(X ), . . . , ad (X )) ∈ Rdq . A matrix is
denoted by an uppercase letter in bold.

3) CANONICAL EMBEDDING
In [9], the canonical embeddings are the n ring homomor-
phisms σj : K → C for all j = 1, . . . , n, where C is the set of
the complex numbers. They are defined by σj(X ) = ξ j, where
ξ is the solution of Xn + 1 for any j ∈ Z×2n with n = 2r for
some positive integer r , where Z×2n denotes the set of integer j
module 2n such that gcd(j, 2n) = 1. We define the canonical
embedding vector as the ring homomorphism σC : K → Cn

as σC (x) = (σj(x))j∈Z×2n under component-wise addition and
multiplication. For any a ∈ K , we define the norm of a as

‖a‖ = ‖σC (a)‖ =

∑
j∈Z×2n

|σj(a)|2


1/2

.

VOLUME 9, 2021 157085



Z. Koo et al.: Improved Reduction Between SIS Problems Over Structured Lattices

Also, for any a = (a1, . . . , ad ) ∈ K d , we define the norm
of a as

‖a‖ =

(
d∑
i=1

‖ai‖2
)1/2

=

 d∑
i=1

∑
j∈Z×2n

|σj(ai)|2


1/2

.

4) LATTICES
An n-dimensional lattice is a discrete subgroup of Rm,
where R is the set of real numbers. Specifically, for
linearly independent vectors {b1, . . . ,bm}, bi ∈ Rm, for all
i = 1, . . . ,m, the set

L = L(b1, . . . ,bm) =
{

n∑
i=1

xibi : xi ∈ Z

}
is a lattice in Rm with the basis {b1, . . . ,bm}. Also the dual
lattice of L∗ is defined as

L∗ = {x ∈ span(L) | ∀v ∈ L, 〈x, v〉 ∈ Z}.

A lattice is an ideal lattice if it is isomorphic to some ideal
I of R. Similarly, a lattice is amodule lattice if it is isomorphic
to some R-module M [9].

B. SHORT INTEGER SOLUTION PROBLEMS
First, we define the short integer solution (SIS) problem over
the lattice used in many lattice-based cryptographic schemes
such as signature schemes and commitment schemes. This
problem was first defined by Ajtai [3].

This problem is extended to the structured lattices, which
are ideal lattices and module lattices. Since the instances of
R-SIS are polynomial, the key size of the signature scheme
based on R-SIS can be smaller than that of a signature scheme
based on SIS. The module structure is a generalized structure
of the ring, and the R-SIS problem can be extended to the
problem over module lattice, termed M-SIS. These problems
are defined as follows:
Definition 1 ([8], [9], [16]): The problem R-SISq,m,β is

defined as follows: Given a1, . . . , am ∈ Rq chosen
independently from the uniform distribution, the R-SIS
problem is to find z1, . . . , zm ∈ R such that

∑m
i=1 ai · zi = 0

mod q and 0 < ‖z‖ ≤ β, where z = (z1, . . . , zm)T ∈ Rm.
Definition 2 ([8], [9]): Similarly, the problemM-SISq,m,β

is defined as follows: Given a1, . . . , am ∈ Rdq chosen
independently from the uniform distribution, the M-SIS
problem is to find z = (z1, . . . , zm)T ∈ Rm such that∑m

i=1 ai · zi = 0 mod q and 0 < ‖z‖ ≤ β.

C. REDUCTION FROM M-SIS TO R-SIS
Generally, theM-SIS problem ismore difficult than the R-SIS
problem. Indeed, suppose that an algorithm A exists for
solving M-SIS and let a1, . . . , am ∈ Rq be independently
uniform instances of R-SIS. Also, we choose a(j)2 , . . . , a

(j)
d ∈

Rq from uniform distribution over Rq for all j = 1, . . . ,m,
where d is a module rank. Then aj = (aj, a

(j)
2 , . . . , a

(j)
d ) and

a1, . . . , am are instances of M-SIS. Using the algorithmA for

solving M-SIS, we obtain a solution z = (z1, . . . , zm)T such
that

m∑
i=1

ai · zi = (
m∑
i=1

ai · zi,
m∑
i=1

a(i)2 · zi, . . . ,
m∑
i=1

a(i)d · zi)

= 0 mod q

with ‖z‖ ≤ β. Since
∑m

i=1 ai · zi = 0 mod q and ‖z‖ ≤
β, we find the solution of the instance of R-SIS. However,
Koo, et al., showed that R-SIS is more difficult than M-SIS
under norm constraints of R-SIS [15]. To show the reduction
fromM-SIS to R-SIS, Koo, et al., showed it in two steps. The
first step is that there exists a reduction from R-SISqk ,mk ,βk to
R-SISq,m,β as follows:
Theorem 1 [15]: Let m be a positive integer and q be a

prime. Choose the upper bound of the norm, β ∈ R such
that β ≥

√
n · m · q

1
m and q ≥ β

√
nω(log n). Assume

that there exists an algorithm A for solving the R-SISq,m,β
problem. Then there exists an algorithmA′ for solving the R-
SISqk ,mk ,βk for any integer k ≥ 1, which corresponds to the
reduction from R-SISqk ,mk ,βk to R-SISq,m,β .

In the second step, we need to find as many distinct
solutions as the number of instances for the same instances
of R-SIS. However, finding distinct solutions for the same
instances of R-SIS is not straightforward since details of
the algorithms’ process for solving R-SIS are unknown.
To resolve this problem, we use the following lemma.
Lemma 1 [15]: Let m and k > 1 be positive integers, and

q be a prime. Let β be a real number such that max(q,
√
n · m·

q
k
m ) ≤ β. Assume that an algorithm A′ exists for solving

R-SISqk ,m,β such that A′ outputs a solution z ∈ Rm with
gcd(z, q) = 1. Let a1, . . . , am ∈ Rqk be instances of R-
SISqk ,m,β . Then we can find m distinct solutions z̄(j) =
(z̄(j)1 , . . . , z̄

(j)
m )T ∈ Rm with ‖z̄(j)‖ ≤ β2 such that

∑m
i=1 ai ·

z̄(j)i = 0 mod qk for all j = 1, . . . ,m.
The following theorem shows the second step: a reduction

from M-SISqk ,m,β ′ to R-SISqk ,m,β using Lemma 1.
Theorem 2 [15]: Let m be a fixed positive integer. Let

k > 1 be a positive integer and q be a prime. Choose a module
rank d ∈ Z such that

max(q,
√
n · m · q

k
m ) < 2d−1

√
qk/(
√
m)(d−1).

Let a positive real number β be an upper bound of the norm
of the solution of R-SISqk ,m,β such that

max(q,
√
n · m · q

k
m ) ≤ β,

where β < 2d−1
√
qk/(
√
m)(d−1). Assume that an algorithm

A′ exists for solving the R-SISqk ,m,β problem such that A′
outputs a solution z ∈ Rm with gcd(z, q) = 1. Then an
algorithm A′′ exists for solving the M-SISqk ,m,β ′ problem

with module rank d , where β ′ = m
1
2 (d−1)β(2d−1); that is,

there exists a reduction from M-SISqk ,m,β ′ to R-SISqk ,m,β .
Combining Theorems 1 and 2, we can show that there

exists the reduction from M-SISqk ,mk ,β ′ to R-SISq,m,β with

β ′′ = m
k
2 (d−1)βk(2d−1) as in the following corollary.
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Corollary 1 [15]: Let m be a fixed positive integer. Let
k > 1 be a positive integer and q be a prime. Choose a module
rank d ∈ Z such that

√
n · m · q

1
m <

2d−1
√
qk/(
√
m)(d−1). (1)

Let a positive real number β be an upper bound on the norm
of the solution of R-SISq,m,β such that

√
n · m · q

1
m ≤ β,

where β < 2d−1
√
qk/(
√
m)(d−1). Assume that an algorithm A

exists for solving the R-SISq,m,β problem. Then an algorithm
A′′ exists for solving M-SISqk ,mk ,β ′′ problem with module

rank d , where β ′′ = m
k
2 (d−1)βk(2d−1); that is, there exists

a reduction from M-SISqk ,mk ,β ′′ to R-SISq,m,β .

D. RANGE OF MODULE RANK FOR PREVIOUS WORK
The module rank d is determined by (1) in Corollary 1. Since
n is the dimension of the polynomial ring R and m is the
number of instances of R-SIS, these parameters are fixed.
Thus, the module rank d depends only on the modulus prime
q, with fixed parameters n and m. By modifying (1), we have
the range of module rank, where the reduction in Corollary 1
is possible, as follows:

d <
2(m+ 1) log q+ 2m logm+ m log n

4 log q+ 2m logm+ 2m log n
. (2)

Then we have

d <
m+ 1
2

for sufficiently large q [15]. Thus, the possible module
rank d which enables the reduction from M-SISqk ,mk ,β ′′ to
R-SISq,m,β is upper bounded by m+1

2 for sufficiently large q,
where β ′′ = m

k
2 (d−1)βk(2d−1).

III. IMPROVED REDUCTION FROM M-SIS TO R-SIS
In this section, we propose a new method to find m distinct
solutions for instances of R-SIS. In particular, the m
distinct solutions are linearly independent over Rq. Using m
distinct solutions, we obtain the solution for instances of M-
SIS. Similar to the previous work [15], there is a range of
module rank that allows the reduction from M-SIS to R-SIS.
However, the proposed work shows that the range of module
rank is doubled compared to the previous work.

A. IMPROVED REDUCTION FROM M-SIS TO R-SIS FOR
THE SAME MODULUS AND THE NUMBER OF INSTANCES
We propose a new method of finding m distinct solutions of
instances of R-SIS. Finding distinct solutions for the same
instances of R-SIS is difficult since details of the algorithms’
process for solving R-SIS are not known. For example, if the
algorithm A for solving R-SIS is deterministic, then this
algorithm outputs the same solution for the same instance.
To overcome this problem, we devise a method to add
randomness before using the algorithm for solving R-SIS.

Lemma 2: Letm be a positive integer and let t be a positive
integer. Choose a prime q such that

√
n · m · q

1
m <

q
t
.

Choose a real number β such that
√
n · m · q

1
m ≤ β <

q
t
.

Suppose that there exists an algorithm A for solving
R-SISq,m,β . Let a = (a1, . . . , am) ∈ Rmq be chosen
independently from uniform distribution. Then there exist m
linearly independent solutions z̄(j) = (z̄(j)1 , . . . , z̄

(j)
m ) ∈ Rm

such that
∑m

i=1 ai · z̄
(j)
= 0 mod q with ‖z̄(j)‖ ≤ t · β for

all j = 1, . . . ,m.
Proof: (Step 1) Let r (1) = (r (1)1 , . . . , r (1)m ) ← U (Rm)

with ‖r (1)‖ ≤ t and let a(1) = (a1 · r
(1)
1 , . . . , am · r

(1)
m ). Then

a(1) is uniform and we can consider a(1) as an instance of
R-SISq,m,β . Using the algorithm A for solving R-SISq,m,β ,
we obtain a non-trivial solution z(1) = (z(1)1 , . . . , z

(1)
m ) such

that
∑m

i=1 ai ·r
(1)
i ·z

(1)
i = 0 mod qwith ‖z(1)‖ ≤ β. Since a(1)

is uniform, there is a non-zero r (1)i (if r (1)i is all zero in R, then
a(1)i is not uniform). Denote z̄(1) = (r (1)1 · z

(1)
1 , . . . , r

(1)
m · z

(1)
m )

in Rm. Then z̄(1) is a non-trivial solution of (a1, . . . , am) with
‖z̄(1)‖ ≤ t ·β since z(1) is a non-trivial solution inRm and there
is a non-zero r (1)i in R. Since t · β is less than q, we consider
r (1)i , z(1)i ∈ R as r (1)i , z(1)i ∈ Rq for all i = 1, . . . ,m.
(Step 2) Let r (2) = (r (2)1 , . . . , r (2)m ) ← U (Rm) with
‖r (2)‖ ≤ t and let a(2) = (a1 · r

(2)
1 , . . . , am · r

(2)
m ). Then

a(2) is uniform and we can consider a(2) as an instance of R-
SISq,m,β . Through the above process, we obtain a non-trivial
solution z̄(2) = (r (2)1 · z

(2)
1 , . . . , r

(2)
m · z

(2)
m ) ∈ Rm with ‖z̄(2)‖ ≤

t · β. Also, we consider r (2)i , z(2)i ∈ R as r (2)i , z(2)i ∈ Rq for all
i = 1, . . . ,m.
Let z̄(1) be fixed. Since ‖z̄(1)‖ ≤ t ·β < q, each coefficient

of z̄(1) is in Zq. Thus, gcd(z̄(1), q) = 1 because q is a prime.
Then we can define

S1 = spanRq (z̄
(1)) = {k1 · z̄(1) | k1 ∈ Rq}

and

T1 = {z̄(2) = (r (2)1 · z
(2)
1 , . . . , r

(2)
m · z

(2)
m )

| (r (2)1 , . . . , r (2)m )← U (Rm),

(a1 · r
(2)
1 , . . . , am · r (2)m )→ A,

and z(2) = (z(2)1 , . . . , z
(2)
m )← A}.

Since S1 is determined by an element k1 ∈ Rq, we obtain
|S1| = qn. However, z̄(2) is determined by r (2)i for all i =
1, . . . ,m, whether z̄(2) belongs to S1 or not. Thus, we obtain
|T1| = qnm. Then |S1∩T1| ≤ |S1| � |T1|. If z̄(2) is in S1, then
we repeat Step 2 until z̄(1) and z̄(2) are linearly independent,
which is possible from |S1| � |T1|.
Now, assume that z̄(1), . . . , z̄(j−1) ∈ Rm are linearly

independent solutions of (a1, . . . , am) such that ‖z̄(k)‖ ≤ t ·β
for all k = 1, . . . , j− 1.
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(Step 3) Let r (j) = (r (j)1 , . . . , r
(j)
m )← U (Rm) with ‖r (j)‖ ≤

t and let a(j) = (a1 · r
(j)
1 , . . . , am · r

(j)
m ). Through the above

process, we obtain a solution z̄(j) = (r (j)1 · z
(j)
1 , . . . , r

(j)
m · z

(j)
m )

such that ‖z̄(j)‖ ≤ t · β. Also, we consider r (j)i , z
(j)
i ∈ R as

r (j)i , z
(j)
i ∈ Rq for all i = 1, . . . ,m. Let z̄(1), . . . , z̄(j−1) be

fixed and let

Sj−1 = spanRq (z̄
(1), . . . , z̄(j−1))

= {k1 · z̄(1) + · · · + kj−1 · z̄(j−1)

| ki ∈ Rq for i = 1, . . . , j− 1}

and

Tj−1 = {z̄(j) = (r (j)1 · z
(j)
1 , . . . , r

(j)
m · · · z

(j)
m )

| (r (j)1 , . . . , r
(j)
m )← U (Rm),

(a1 · r
(j)
1 , . . . , am · r

(j)
m )→ A,

and z(j) = (z(j)1 , . . . , z
(j)
m )← A}.

Then |Sj−1| = qn(j−1) since Sj−1 is determined by elements
k1, . . . , kj−1 ∈ Rq. However, z̄(j) is determined by r (j)i
for all i = 1, . . . ,m whether z̄(j) belongs to Sj−1 or not.
Thus, we obtain |Tj−1| = qnm. Then |Sj−1 ∩ Tj−1| ≤
|Sj−1| � |Tj−1|. If z̄(j) is in Sj−1, then we repeat Step 3
until z̄(1), z̄(2), . . . , z̄(j) are linearly independent, which is also
possible from |Sj−1| � |Tj−1|. If we repeat this process
m times, then we can find m linearly independent solutions
z̄(j) = (z̄(j)1 , . . . , z̄

(j)
m ) = (r (j)1 · z

(j)
1 , . . . , r

(j)
m · z

(j)
m ) such that∑m

i=1 ai · r
(j)
i · z

(j)
i = 0 mod q with ‖z̄(j)‖ ≤ t · β for all

i = 1, . . . ,m.
The above solutions are not exact solutions of R-SISq,m,β ,

but we can use these solutions to find the solution of
M-SIS. Now, we prove the reduction from M-SIS to R-SIS
using Lemma 2. The proof of the following theorem is the
same as that of Theorem 2. However, the upper bound of
the solution of R-SIS is changed since we use Lemma 2.
Also, the condition for β is changed as in the following
theorem, where the reduction from M-SIS to R-SIS is
satisfied.
Theorem 3: Let m, t be positive integers and q be chosen

as in Lemma 2. Choose a module rank d ∈ Z>0 such that

√
n · m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

. (3)

Let a positive real number β be an upper bound on the norm
of the solution of R-SISq,m,β such that

√
n · m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Assume that an algorithmA exists for solving R-SISq,m,β .
Then there exists an algorithm A1 for solving M-SISq,m,β1 ,
where β1 = (t

√
m)d−1βd .

Proof: Let a1, . . . , am ∈ Rdq be instances ofM-SISq,m,β ,
which are chosen independently from the uniform distribu-
tion, where ai = (ai1, . . . , aid )T and aij ∈ Rq. Then we can

write the matrix

A =


a11 a21 · · · am1
a12 a22 · · · am2
...

...
...

...

a1d a2d · · · amd

 =

a′1
a′2
...

a′d

 ∈ Rd×mq ,

where a′i = (a1i, . . . , ami). Then the i-th row a′i of A
is considered as an instance of R-SIS. Consider the last
row a′d of A. Then there are m distinct solutions z̄(j)d =

(z̄(j)d,1, . . . , z̄
(j)
d,m)

T with ‖z̄(j)d ‖ ≤ t ·β such that a′d · z̄
(j)
d = 0 mod

qk for j = 1, . . . ,m from Lemma 2. Now, we construct the
m× m solution matrix

Z̄d =
[
z̄(1)d z̄(2)d · · · z̄

(m)
d

]
and ‖Z̄d‖ ≤ (t ·

√
m) · β. Then, we have

A · Z̄d =


a′′1
a′′2
...

a′′d−1
0

 mod q,

where a′′i is an m-tuple vector. Applying the above method
d − 1 times, we obtain the solution matrix

A∗ = A · Z̄d · · · Z̄2 =


a∗1
0
...

0

 mod q.

Finally, applying the algorithmA to a∗1, we find a solution
z′ with ‖z′‖ ≤ β such that A∗ · z′ = 0 mod q. Then, we have
the solution z = Z̄d · · · Z̄2 · z′ for A. Then A · z = 0 mod q
and

‖z‖ = ‖Z̄d · · · Z̄2 · z′‖

≤
(
t ·
√
m · β

)d−1
· β

=
(
t ·
√
m
)d−1

βd .

From (3), we have that the upper bound β1 = (t ·
√
m)d−1 ·

βd on the norm of the solution of M-SISq,m,β1 is less than q
since (

t ·
√
m
)d−1

βd <
(
t ·
√
m
)d−1 ( d

√
q · t ·

√
m

t ·
√
m

)d
= q.

Thus, we find a non-trivial solution of M-SISq,m,β1 and
show that there exists a reduction from M-SISq,m,β1 to
R-SISq,m,β , where β1 = (t

√
m)d−1βd .

B. THE POSSIBLE RANGE OF MODULE RANK FOR M-SIS
Similar to the previous work [15], the possible range of
module rank of M-SIS that satisfies the reduction from
M-SISq,m,β1 to R-SISq,m,β depends on (3) in Theorem 3,
where β1 = (t

√
m)d−1βd . Moreover, n and m are fixed since

n and m are the dimension of the polynomial ring R and the
number of instances of R-SIS, respectively. Also, given t ,
the module rank d depends on the modulus q. In this paper,
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FIGURE 2. Rank of module when n = 216 from (4) in Section III-B.

FIGURE 3. Comparison of the possible ranges of module ranks for the previous and the proposed works when n = 216.

the new range of module rank d of M-SIS through (3) is
derived as

d <
2m log q+ m logm+ 2m log t

m log n+ 2m logm+ 2 log q+ 2m log t
. (4)

Then, for sufficiently large q, we obtain the range of
module rank as

d < m.

This result is twice as large as the range of module rank
of the reduction from M-SIS to R-SIS [15]. Fig. 2 shows
the possible module ranks with the different parameters and
log2 q for n = 216, t = 10. In the case of Fig. 2(a), the bits
of modulus q vary from 0 to 100. In the case of Fig. 2(b), the
bits of modulus q vary from 0 to 105. As log2 q increases, the
possible range of module rank d approaches the number of
instances m as in Fig. 2(b). Also, as m increases, the possible
range of module rank d becomes even wider.

The possible range of module rank is doubled compared
to that of the previous result in (2). Also, the previous work
considered the case that the modulus exponent k is larger than
one, but in this work, we propose the reduction for the case
of k = 1. Fig. 3 shows the comparison of the possible ranges

of module ranks of the previous work [15] and the proposed
work for n = 216, t = 10. In the case of Fig. 3(a), the bits
of modulus q vary from 0 to 100. The range of module rank
of the previous work is larger than that of the proposed work
in the range 0 to 10, but, in the range 10 to 100, the range
of the proposed work is larger than that of previous work.
Also, the previous reduction is possible when the exponent k
of the modulus of M-SIS is larger than one, but the proposed
reduction is also possible when the exponent of k of that of
M-SIS is equal to one. In the case of Fig. 3(b), the bits of
modulus q vary from 0 to 105, and it shows the convergence
values of (2) and (4). (2) converges to half of the number
of instances of R-SIS, which is the maximum module rank.
However, (4) converges to the same number of instances of
R-SIS, which is the maximum module rank.

IV. REDUCTION FROM VARIOUS M-SIS PROBLEMS
TO R-SIS PROBLEM
In this section, we derive several reductions among
the M-SIS problems, which lead to the reduction from
M-SISc,mk , c

qk
(t·
√
m)k(d−1)βkd to R-SISq,m,β for the modulus c

such that qk |c.
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A. REDUCTION BETWEEN M-SIS PROBLEMS WITH
INCREASED MODULUS
First, we derive the reduction from M-SISqk ,mk ,βk to
M-SISq,m,β as in the following theorem, where its proof is
the same as that of Theorem 1 in the previous work [15].
Theorem 4: Let m be a positive integer and q be a prime.

Let d be a positive integer such that d define a rank of
module definingM-SISq,m,β andM-SISqk ,mk ,βk . Assume that
there exists an algorithm A1 for solving the M-SISq,m,β
problem. Then there exists an algorithm A2 for solving the
M-SISqk ,mk ,βk for any integer k ≥ 1, which corresponds to
the reduction from M-SISqk ,mk ,βk to M-SISq,m,β .

Proof: Assume that there exists an algorithm A1 for
solving M-SISq,m,β . Assume that a1, . . . , amk ∈ Rdqk are

chosen independently from uniform distribution over Rdq .
We can write A = (a1, . . . , amk ) = (ā1, . . . , āmk−1), where
āi is an m tuple vector. Using the algorithm A1, we obtain
the solution zi ∈ Rm such that āi · zi = 0 mod q and
‖zi‖ ≤ β. Since β < q and q is a prime, gcd(zi, q) = 1.
Thus, āi · zi = q · a′i and a′i = āi · zi/q ∈ Rd

qk−1
for some

a′i ∈ R
d . Set A′ = (a′1, . . . , a

′

mk−1
) and use the induction on

k . Then we find a solution z′ = (z′1, . . . , z
′

mk−1
)T ∈ Rm

k−1

with ‖z′‖ ≤ βk−1 such that A′ · z′ = 0 mod qk−1. Let
z = (z′1 · z1, . . . , z

′

mk−1
· zmk−1)

T
∈ Rm

k
. Then, we have

A · z =
mk−1∑
i=1

z′i · āi · zi

=

mk−1∑
i=1

z′i · q · a
′
i

= q ·
mk−1∑
i=1

z′i · a
′
i

= q · A′ · z′ = 0 mod qk

and ‖z‖ ≤ ‖z′‖ · maxi‖zi‖ ≤ βk . Thus, M-SISq,m,β is more
difficult than M-SISqk ,mk ,βk .

Using Theorem 4, we can obtain the following reduction.
Corollary 2: There exists the reduction from

M-SISqk ,mk ,β2 to M-SISq,m,β1 , where β1 = (t ·
√
m)d−1βd

and β2 = βk1 as in Fig. 1.

B. REDUCTION BETWEEN M-SIS PROBLEMS WITH
CHANGED NORM BOUND
In order to derive the reduction from M-SISqk ,mk ,β3 to
M-SISq,m,β1 in Fig. 1, we use the reduction from
M-SISqk ,mk ,β3 to M-SISqk ,mk ,β2 , where

β1 = (t ·
√
m)d−1βd ,

β2 = β
k
1

= (t ·
√
m)k(d−1)βkd ,

β3 = m
k
2 (d−1)βk(2d−1),

and k ≥ 1. To derive the reduction, we need to know the
following remark.

Remark 1: Let m and q be positive integers. Let β, β ′ ∈ R
such that

√
n · m · q

1
m ≤ β ≤ β ′ < q.

Assume that there exists an algorithm A for solving
R-SISq,m,β . Then there exists an algorithm A′ for solving
R-SISq,m,β ′ . Similarly, assume that there exists an algorithm
A for solving M-SISq,m,β . Then there exists an algorithm A′
for solving M-SISq,m,β ′ with the same module rank.

Thus, we derive the reduction from M-SISqk ,mk ,β3 to
M-SISqk ,mk ,β2 as in the following theorem.
Theorem 5: Let m be a positive integer. Let t be positive

integers and q a prime such that

t ≤
√
n · m · q

1
m <

q
t
.

Choose a module rank d ∈ Z>0 such that

√
n · m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

.

Let β be a positive real number such that

√
n · m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Then M-SISqk ,mk ,β2 is harder than M-SISqk ,mk ,β3 , where

β2 = (t ·
√
m)k(d−1)βkd , β3 = m

k
2 (d−1)βk(2d−1),

and k ≥ 1.
Proof: Assume that there exists an algorithm A2 for

solving M-SISqk ,mk ,β2 , where β2 =
(
t ·
√
m
)k(d−1)

βkd . Then
we need to compare β2 and β3 as

β3

β2
=

m
k
2 (d−1)βk(2d−1)

(t ·
√
m)k(d−1)βkd

=

(
β

t

)k(d−1)
≥

(√
n · m · q

1
m

t

)k(d−1)
,

which is larger than one if t ≤
√
n · m · q

1
m . Thus, we obtain

β3 = m
k
2 (d−1)βk(2d−1) ≥ (t ·

√
m)k(d−1)βkd = β2.

From Remark 1, there exists an algorithm A3 for solving
M-SISqk ,mk ,β3 , where β3 = m

k
2 (d−1)βk(2d−1).

From Theorems 3, 5, and Corollary 2, we can derive
the reduction from M-SISqk ,mk ,β3 to R-SISq,m,β , where

β3 = m
k
2 (d−1)βk(2d−1) for k ≥ 1, where Corollary 1 in the

previous work [15] derived the same reduction for k > 1.

C. REDUCTION FROM M-SIS WITH COMPOSITE NUMBER
AS MODULUS TO R-SIS
In this subsection, we observe the relationship between
M-SIS with modulus qk for prime q and k ≥ 1 and
M-SIS with modulus c as a composite number. In par-
ticular, composite number c is divided by prime qk . The
following theorem shows the relationship between two
problems.
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Theorem 6: Let m, t , and q be chosen as in Theorem 5.
Let k ≥ 1 be a positive integer. Let c be a composite
integer such that qk divides c. Assume that there exists an
algorithm A for solving M-SISqk ,mk ,β2 . Then there exists an
algorithm B for solving M-SISc,mk ,γ , where γ =

c
qk β2 and

β2 = (t ·
√
m)k(d−1)βkd for k ≥ 1.

Proof: Let a1, . . . , amk ∈ R
d
c be chosen independently

from uniform distribution, where ai = (ai1, . . . , aid ) for all
i = 1, . . . ,mk . For i = 1, . . . ,mk and j = 1, . . . , d , aij =
a(0)ij + qka(1)ij + · · · + qksa(s)ij for some integer s and thus we

write ai = a(0)i + q
ka(1)i + · · · + q

ksa(s)i . Thus, ai ≡ a(0)i mod
qk . From the algorithm A for solving M-SISqk ,mk ,β2 , we can
find the solution z1, . . . , zmk ∈ R such that

a(0)1 · z1 + · · · + a(0)mk · zmk =
mk∑
i=1

a(0)i · zi = 0 mod qk

and ‖z‖ ≤ β2, where z = (z1, . . . , zmk )
T . This means that∑mk

i=1 a
(0)
i · zi = qk · α for some α ∈ R. Thus, we have

mk∑
i=1

ai · zi =
mk∑
i=1

a(0)i · zi

+ qk
mk∑
i=1

a(1)i · zi + · · · + q
ks

mk∑
i=1

a(s)i · zi

= qk · α + qk
mk∑
i=1

a(1)i · zi + · · · + q
ks

mk∑
i=1

a(s)i · zi

= 0 mod qk .

Thus,
∑mk

i=1 ai · zi = qk · α′ for some α′ ∈ R and we have

c
qk

mk∑
i=1

ai · zi =
mk∑
i=1

ai · (
c
qk
zi)

= c · α′

= 0 mod c.

Since c
qk is an integer, c

qk zi is in R for all i = 1, . . . ,mk .
And we obtain ‖ cqk z‖ =

c
qk ‖z‖ ≤

c
qk β2. Thus,

c
qk z is a

solution of the instance of M-SISc,mk ,γ , where γ =
c
qk β2 and

β2 = (t ·
√
m)k(d−1)βkd for k ≥ 1.

Using Theorems 3, 6, and Corollary 2, we obtain
the reduction from M-SISc,mk ,γ to R-SISq,m,β , when
γ = c

qk (t ·
√
m)k(d−1)βkd as in the following theorem.

Theorem 7: Letm, t , and q be chosen as in Theorem 5. Let
c be a composite integer such that c is divided by qk for some
k ≥ 1. Choose a module rank d ∈ Z>0 such that

√
n · m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

.

Let a positive real number β be an upper bound on the norm
of the solution of R-SISq,m,β such that

√
n · m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Assume that an algorithmA exists for solving R-SISq,m,β .
Then there exists an algorithm B for solving M-SISc,mk ,γ ,
where γ = c

qk (t ·
√
m)k(d−1)βkd .

V. CONCLUSION AND FUTURE WORKS
In this paper, we derived the reduction from M-SISc,mk ,γ to
R-SISq,m,β , where γ = c

qk (t
√
m)k(d−1)βkd and c is a com-

posite integer that has a factor qk for some k ≥ 1. To show
this reduction, we proposed the three reductions. First,
we proposed the reduction from M-SISq,m,β1 to R-SISq,m,β ,
where β1 = (t

√
m)d−1βd . To show this reduction, we devised

the new method to find m distinct solutions of R-SISq,m,β .
This new method is to add randomness to the algorithm
for solving R-SISq,m,β . Thus, we can devise an algorithm
that gives m distinct solutions to the same instances of
R-SIS. Compared to the previous work [15], this reduction
is preserved the same modulus and ring dimension. Also, the
possible range of module rank for reduction fromM-SISq,m,β
to R-SISq,m,β could be doubled compared to [15].
Second, we proposed the reduction from M-SISqk ,mk ,β2 to

R-SISq,m,β , where β2 = βk1 = (t
√
m)k(d−1)βkd . To show this

reduction, we derived the method extending the reduction
from R-SISqk ,mk ,βk to R-SISq,m,β shown in [15] to the
reduction from M-SISqk ,mk ,β2 to M-SISq,m,β1 , where β2 =
βk1 = (t

√
m)k(d−1)βkd . Also, we showed that M-SISqk ,mk ,β2

is more difficult than M-SISqk ,mk ,β3 defined in the previous

work [15], where β3 = m
k
2 (d−1)βk(2d−1) for k ≥ 1 using

the fact that M-SIS becomes more difficult when the upper
bound of M-SIS is tighter. This means that R-SIS is more
difficult than M-SIS, which is tighter than the M-SIS in the
previous work [15].

Finally, we showed that M-SISqk ,mk ,γ is more difficult
than M-SISc,mk ,β2 , where c is a composite integer with a
factor qk and γ = c

qk β2 =
c
qk (t
√
m)k(d−1)βkd . In the

previous work [15], all reductions depend on the prime
modulus q. However, we proposed the reductions between
the M-SIS problems with the different modulus. Combining
three reductions, we obtained the reduction fromM-SISc,mk ,γ
to R-SISq,m,β .

As a future work, it is crucial to handle the upper bound
of the solution of R-SIS and M-SIS because this upper bound
determines the rank of the module. Also, since we showed
the results for R-SIS and M-SIS related to only one prime q,
we need to derive the relationship between R-SIS and M-SIS
with different primes p and q as the modulus.
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