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ABSTRACT The Shell sort algorithm is one of the most practically effective in-place sorting algorithms.
However, it is difficult to execute this algorithm with its intended running time complexity on data encrypted
using fully homomorphic encryption (FHE), because the insertion sort in Shell sort has to be performed by
considering the worst-case input data. In this paper, in order for the sorting algorithm to be used on the
FHE data, we modify the Shell sort with an additional parameter α, allowing exponentially small sorting
failure probability. For a gap sequence of powers of two, the modified Shell sort with input array length n is
found to have the trade-off between the running time complexity of O(n3/2

√
α + log log n) and the sorting

failure probability of 2−α . Its running time complexity is close to the intended running time complexity
of O(n3/2) and the sorting failure probability can be made very low with slightly increased running time.
Further, the near-optimal window length of the modified Shell sort is also derived via convex optimization.
The proposed analysis of the modified Shell sort is numerically confirmed by using randomly generated
arrays. For the practical aspect, our modification can be applied to any gap sequence, and we show that
Ciura’s gap sequence, which is known to have good practical performance, is also practically effective when
our modified Shell sort is applied. We compare our modified Shell sort with other sorting algorithms with
the FHE over the torus (TFHE) library, and it is shown that this modified Shell sort has the best performance
in running time among in-place sorting algorithms on homomorphic encryption scheme.

INDEX TERMS Fully homomorphic encryption (FHE), fully homomorphic encryption over the torus
(TFHE), insertion sort, Shell sort, sorting failure probability.

I. INTRODUCTION
Fully homomorphic encryption (FHE) is an encryption
scheme that provides encrypted data with an evaluation algo-
rithm, which enables addition or multiplication of plaintext
without decryption [1], [2]. The FHE enables specific oper-
ations to be performed on encrypted information without
leaking any clue to the plaintext. The notion of the FHE
was suggested by Rivest et al. [1]. Although several cryp-
tography researchers had attempted to construct the FHE
scheme because of its effectiveness with respect to operations
in cloud systems, no one had been able to successfully con-
struct it until 2009, when Gentry succeeded in developing an
FHE scheme using an ideal lattice [2]. Several researchers
suggested different types of the FHE algorithms in series
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using the bootstrapping technique in Gentry’s scheme and
optimized the FHE schemes [3]–[7]. Recently, FHE schemes
have been significantly improved in regard to various perfor-
mance criteria [8]–[12], which makes this scheme practically
applicable. Further, the efficient implementations of the FHE
schemes have been proposed actively now [13]–[17].

Further, the algorithms used on the FHE data are expected
to demonstrate the oblivious property, i.e., providing the most
appropriate outputs without knowing any information about
the input. In other words, the behavior of an oblivious algo-
rithm does not depend on the input data. If it depends on
the input, it implies the leakage of input information. The
oblivious property of an algorithm is essential for the FHE
schemes to ensure privacy.

When processing large amounts of ciphertexts in cloud
systems, it is frequently required to process the sorted data
rather than unaligned data. Thus, one of the most essential
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operations on the FHE data is the sorting algorithm, which is
generally used as a subroutine algorithm of many algorithms.
However, most sorting algorithms are not suitable for the FHE
data. For example, because the quick sort algorithm, one of
the most popularly used sorting algorithms, is not oblivious,
it cannot be used on the FHE data. Although numerous studies
have been conducted to render the quick sort algorithm obliv-
ious, its running time complexity becomes O(n2), where n is
the input array length. Its actual running time is even longer
than that of the bubble sort, which is considered to have
the longest running time among all the known sorting algo-
rithms. Therefore, modifying conventional sorting algorithms
to make them suitable for the FHE data is necessary. Several
studies have been conducted for this purpose [18]–[20].

A. MOTIVATION FOR SHELL SORT
Since the oblivious sorting algorithm can be applied for
encrypted data with the FHE, Emmadi et al. [20] compared
several oblivious algorithms for sorting the FHE data.
We can divide sorting algorithms for the FHE data into two
classes of oblivious sorting algorithms: in-place algorithm
and recursive algorithm. The bubble sort and insertion sort
are basic in-place oblivious algorithms, and the bitonic sort
and odd-even merge sort are recursive oblivious algorithms.
The recursive oblivious algorithms are much better than the
in-place oblivious algorithms in the aspect of both the asymp-
totic performance and practical performance.

However, the recursive algorithmsmay have inefficiency in
some cases. Since many function calls are caused in the recur-
sive algorithms and the amount of memory for the ciphertext
array is quite big, the total transmission of data in the memory
bus must be somewhat large. When the bandwidth of the
memory bus is restricted, this transmission time can be a
bottleneck for sorting with encrypted data. This situation can
occur in lightweight IoT devices, whose memory or band-
width cannot be large enough. For this reason, it is desirable
to devise an efficient in-place sorting algorithm for the FHE
data. The Shell sort [21], [22], which is one of the oldest
sorting algorithms, is the generalized version of the insertion
sort. The Shell sort algorithm is an in-place algorithm, which
is fast and easy to implement, and thus, many systems use it
as a sorting algorithm.

B. MAIN RESEARCH PROBLEM AND PREVIOUS WORKS
It is known that Shell sort uses insertion sort as a subroutine
algorithm, and insertion sort can be performed on the FHE
data [18], [23]. However, the Shell sort should be modified to
be used in the FHE setting. If we do not allow any error in sort-
ing, then insertion sort is expected to be quite conservative,
i.e., the number of operations for sorting must be set for the
worst case, because the insertion sort algorithm in the FHE
setting is an oblivious algorithm. Thus, if we use insertion
sort in the Shell sort, the running time complexity of Shell
sort in the FHE setting must be O(n2), which makes the use
of Shell sort ineffective. Therefore, it is important to devise a

sorting algorithm that is better than the Shell sort on the FHE
data in terms of running time complexity.

Goodrich [24] suggested an asymptotically optimal ran-
domized oblivious Shell sort. He proved that its running time
complexity is O(n log n) and sorting failure probability (SFP)
is O(1/nb) for some constant b ≥ 1, where n is the length of
an array. While it is pretty efficient in the asymptotic sense,
there are two points to be considered. First, the analytically
induced SFP is an inverse polynomial of the length of an
array. When we sort the array having a small length with
this algorithm, the induced SFP may not be the practically
allowable value. Further, the inverse polynomial SFP is not
considered a small probability in the asymptotic sense. Since
users are often conservative with the SFP in the sorting,
the exponentially decaying SFP is more desirable. Second,
it can be inefficient for the array of the small length. For low-
ering the SFP, many processes are required in the randomized
Shell sort. This causes rather large additional operations for
an array with a small length. Considering that the running
time of the homomorphic operations in the FHE is quite large,
sorting a large number of encrypted data is not a practical
situation yet. Thus, it can be desirable to devise an oblivious
variant of Shell sort which is practically efficient and has truly
negligible SFP, which is independent of the array length.

On the other hand, it is known [23] that we can reduce the
running time of insertion sort on the FHE data by allowing
very small sorting failure probability using what is known as
the window technique. According to this technique, in each
insertion sort, instead of inserting the ith element into the
subarray of (a1, a2, · · · , ai−1), we insert the ith element into
the subarray (ai−k , ai−k+1, · · · , ai−1) of length k , called the
window length, immediately to the left of the ith element.
We call this subarray a ‘‘window’’ with window length k .
This technique is used to reduce the number of bootstrapping
operations in [23]. Since the insertion sort is the subroutine
algorithm for the Shell sort, the window technique is ade-
quate to be applied to the Shell sort. However, the effective
application of the window technique in the Shell sort for
homomorphic encryption has not been proposed.

C. MAIN CONTRIBUTION
In this paper, we devise a method to modify the Shell sort in
the FHE setting using the window technique, which is proved
to be effective in the theoretical aspect and the practical
aspect. It is referred to as a ‘‘modified Shell sort’’. The win-
dow technique in [18] is applied to each subroutine insertion
sort in our modified Shell sort for FHE setting. We note that
the role of the window technique in our algorithm is different
from the original use of the window technique. Our algorithm
does not reduce the bootstrapping itself compared to the
number of the homomorphic gates, but we reduce the number
of the comparison operations with the window technique. For
this reason, the homomorphic comparison operation in our
sorting algorithm does not generate a comparison error.

For theoretical view, the running time complexity of the
modified Shell sort is O(n3/2

√
α + log log n) with SFP 2−α
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when the gap sequence is powers-of-two, which is close
to the average-case time complexity O(n3/2) of the original
Shell sort. The value of α is our additional parameter that
controls the trade-off between the running time and the SFP.
This trade-off is quite effective because the SFP is decreased
exponentially with α but the running time is proportional only
to
√
α. To this end, we use the exact distribution of window

lengths of subarrays in each gap for successful sorting in
the Shell sort. If the length of the subarray for the insertion
sort in some gap is s, it is discovered that the average of the
required window length for successful sorting is proportional
to
√
s, and the right tail of its probability distribution is very

thin. In the sorting process, the window length is provided
as a constant multiple of

√
s, which ensures a negligible SFP.

If the window length is close to β
√
s, the SFP decays as e−β

2
,

which signifies a very fast-decaying function. Therefore, with
a fixed negligible SFP, we can set a small window length so
that the running time is asymptotically faster than that of the
naive version of the Shell sort on the FHE data.

For the practical view, the running time of the modified
Shell sort is effectively reduced even in the small arrays,
compared to the basic in-place sorting algorithms on the FHE
data, bubble sort, and insertion sort.

In this paper, we address only the gap sequence of powers
of two in the analysis of the modified Shell sort, i.e., 2h, h =
1, 2, 3, · · · . Although this gap sequence is not optimal in
terms of running time complexity, we first analyze the run-
ning time complexity of the modified Shell sort on the FHE
data, which is important for the FHE in cloud systems.
The performance of the modified Shell sort is numerically
compared with the cases of near-optimal window lengths
obtained through convex optimization and Ciura’s optimal
gap sequence [25], which was evaluated numerically as an
optimal gap sequence in the non-FHE settings. Although
we do not analyze this case, the method of deriving the
near-optimal window length in the modified Shell sort func-
tions well for Ciura’s optimal gap sequence.

We also suggest the convex optimization method to derive
a tighter window length. In other words, the window length
obtained by the convex optimization method makes the run-
ning time of the modified Shell sort to be less than that of the
case employing the analytical method in the modified Shell
sort. The running time of the proposed modified Shell sort
is compared with that of the conventional algorithms with
the TFHE scheme, and it is shown that this modified Shell
sort has the best performance in running time among in-place
sorting algorithms on the TFHE scheme.

Thus, our contributions are summarized as follows:
• We propose a modified Shell sort with an additional
parameter α on the FHE data, and derive its theo-
retical trade-off between the running time complexity
O(n3/2

√
α + log log n) and the SFP 2−α when the gap

sequence is power-of-two sequence.
• The near-optimal window length of each gap in the mod-
ified Shell sort is derived via the convex optimization
technique.

• The numerical simulation with TFHE homomorphic
encryption scheme is performed, and the modified Shell
sort with Ciura’s gap sequence is proven to have the
best running time performance in the practical situa-
tion among the in-place sorting algorithms for the FHE
setting.

D. OUTLINE
The remainder of this paper is organized as follows. Section II
presents the preliminary of the paper, which includes the
related sorting algorithms and the notion of the FHE.
In Section III, we present the distribution of the required
window length for each gap in the Shell sort on the FHE data
with the gap sequence of powers of two. Then, we propose
a modified Shell sort for the FHE and derive the trade-off
between the running time complexity and the SFP. Section IV
discusses amethod to deduce the near-optimal window length
of each gap of the modified Shell sort using the convex
optimization technique. Section V shows numerical results
that support the proposed analysis in the TFHE setting. From
these results, the performance in the case of the optimal gap
sequence or the near-optimal window lengths is compared
with that of conventional algorithms using the TFHE library.
Section VI concludes the study and discusses the scope for
future research.

II. PRELIMINARIES
A. NOTATIONS
Let A[1 : n] be an array of length n with indices from 1
to n, where the ith element of A[1 : n] is denoted by A[i].
dxemeans the least integer which is larger than or equal to x.(m
n

)
means the binomial coefficient which is given by m!

n!(m−n)! .
Pr[A] means the probability of an event A, and Pr[A|B] means
the conditional probability of an event A given B. g(n) =
O(f (n)) means that there is a positive real numberC and a real
number n0 such that |g(n)| ≤ Cf (n) for all n ≥ n0. Plaintext
data are denoted by the normal math italic letters like A, and
ciphertext data are denoted by the letters of the typewriter
type letters like A.

B. FULLY HOMOMORPHIC ENCRYPTION
the FHE is a public-key encryption scheme, which supports
an arbitrary number of additions and multiplications of plain-
text without decryption so that anyone without the decryption
key can operate the circuit with any ciphertext without leak-
ing the information of its plaintext.

Gentry suggested the bootstrapping technique to transform
a somewhat homomorphic encryption scheme, which allows
only a finite number of operations on the encrypted data, to a
fully homomorphic encryption scheme [2]. The bootstrap-
ping operation has enabled several researchers to construct
the FHE schemes [2], [26], which involves implementing
the decryption circuit on encrypted data using the evaluation
algorithm, that is, the addition and multiplication algorithms
in the FHE setting. All of the FHE schemes suggested thus far
ensure security by adding the plaintext to an LWE sample or
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a ring-LWE sample, which is known as pseudorandom sam-
ples. For security reasons, the LWE sample or the ring-LWE
sample includes some errors. As the addition and multipli-
cation operations are repeated, the total number of errors
increases, and if the total number of errors exceeds a certain
limit, a decryption failure occurs. Thus, the errors need to be
removed after a certain number of operations on the encrypted
data, so that the ciphertexts can be further evaluated. The
purpose of the bootstrapping operation is to reset the errors in
the ciphertext when the errors are too large to be decrypted.

As bootstrapping utilizes a considerable amount of com-
putation during the processing of the FHE, the number of
bootstrapping operations significantly affects the total oper-
ation time of the FHE. In fact, the number of bootstrapping
operations depends on the multiplicative depth of the circuit.
The lower the depth of a circuit, the fewer the number of
bootstrapping operations. Thus, it is crucial to consider the
number of the bootstrapping operations for each element,
when bootstrapping is implemented in the FHE schemes.
If the total number of operations in an algorithm is fixed, it is
better to evenly distribute the operations on the inputs. Fur-
thermore, to stably address errors, deterministic algorithms
are better than randomized algorithms. This is because we
can predict the error size of each element in deterministic
algorithms ensuring that these errors are handled easily and
error control is optimized adequately.

C. TFHE HOMOMORPHIC ENCRYPTION
The TFHE homomorphic encryption scheme [27] is the
most practical bit-wise homomorphic encryption scheme
now. There are two types of the TFHE scheme: the lev-
eled homomorphic encryption and the fully homomorphic
encryption. Since we use the fully homomorphic encryption
version of the TFHE scheme, we deal with only it in this
subsection. Its basic elements are the bootstrapped homo-
morphic gates, which performs each gate followed by the
bootstrapping. Although the noise in the ciphertext grows
when we perform the homomorphic gate without the boot-
strapping, the bootstrapping refreshes the noise independent
of the input noise. Hence, any large-depth Boolean circuits
can be performedwithout noise growth of the ciphertext using
the TFHE scheme.

The secret key s is a vector of length n in {0, 1}n uniformly
sampled, and the ciphertext is formed by (a, b) ∈ Tn × T,
where b = a · s+ e+µ and µ ∈ {− 1

8 ,
1
8 } is encoded by µ =

1
4 (b−

1
2 ) with the message bit b ∈ {0, 1}. The bootstrapping

procedure makes the encoded message 1
8 when the input

encoded message is in (0, 12 ) and makes the encoded message
−

1
8 when the input encoded message is in ( 12 , 1). Before the

bootstrapping for each bootstrapped homomorphic gate, each
matched linear operation is processed so that the encoded
message is in (0, 12 ) when the output bit is 1 and is in ( 12 , 1)
when the output bit is 0. The linear operations can easily be
performed homomorphically since the LWE ciphertext has
the linear property. For example, the homomorphic NAND

gate performs 1
8−a − b homomorphically where a, b are

the encoded message of the two input ciphertexts before the
bootstrapping. All Boolean gates can be designed by this
method, and thus we can compose any Boolean circuits with
these bootstrapped homomorphic gates. Each linear operation
for each homomorphic gate and the detailed bootstrapping
procedure can be referred to in [27].

D. SORTING ALGORITHMS
Although there exist several sorting algorithms [28], we con-
sider only the insertion sort and Shell sort in this paper. These
are comparison-based sorting algorithms, which do not rely
on the divide-and-conquer method.

The insertion sort is an iterative sorting algorithm that sorts
from the leftmost element. In each iteration, we define an
element to be sorted into its left-side subarray as the pivot
element. It is assumed that the elements to the left of the
pivot element are already sorted.We then compare the already
sorted elements with the pivot element, deduce its proper
position, and insert it into this position. Its worst-case and
average-case running time complexities are both O(n2). It is
known that the insertion sort is slightly faster than the bubble
sort in practical cases.

The operations in the conventional insertion sort require
the knowledge of its input, and this is not allowed in the case
of the FHE data. Therefore, we cannot determine the correct
position of a pivot element in the already sorted subarray
in the FHE setting, and thus, the operation and behavior
of the insertion sort need to be modified. It is known [18]
that we can perform an insertion sort on the FHE data by
sequentially swapping the pivot element with the elements
in the already sorted subarray to its left, from left to right.
In fact, the FHE version of the insertion sort has already been
proposed, and its performance has been assessed numerically
in the previous works [18], [20]. This operation, however,
is inefficient, as the number of operations is always the same
as that in the worst case, that is, its average-case running time
complexity is estimated to be O(n2).
The Shell sort is a generalized version of the insertion

sort [21]. It requires a gap sequence, which is a decreasing
sequence of positive integers ending with 1. For each gap h
and each integer j, 0 ≤ j ≤ h − 1, the (hi + j)-th elements
i = 0, 1, 2, · · · are sorted using insertion sort. As the gap
sequence ends with 1, we can finally obtain the correctly
sorted array. Algorithm 1 shows the specific algorithm for
classical Shell sort.

Even though the running time complexity of the Shell sort
varies depending on the gap sequences [22], it is asymptot-
ically better than that of insertion sort. To the best of our
knowledge, a trial of the Shell sort on the FHE data has not
been performed thus far.

E. COMPARISON OPERATION IN FHE
In the sorting algorithms in the FHE setting, the swap oper-
ation is performed by comparing two encrypted elements.
Although it is not possible to determine the larger element
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Algorithm 1: ShellSort(A[1 : n])
Input : An array A[1 : n] with n elements and gap

sequence G[1 : p] with decreasing order
Output: Sorted array A[1 : n]

1 for `← 1 to p do
2 g← G[`]
3 for i← g+ 1 to n do
4 k ← i− g
5 T ← A[i]
6 while k ≥ 1 and T < A[k] do
7 A[k + g]← A[k]
8 k ← k − g
9 end
10 A[k + g]← T
11 end
12 end

in the FHE setting, it has been established that computing the
maximum and minimum elements out of the two elements is
possible in the FHE setting, even though these elements are
encrypted.

Bit-wise encrypted numbers can be compared by homo-
morphically computing the maximum or the minimum using
Boolean circuits. Algorithm 2 shows the algorithm sort-
ing the two encrypted numbers with HomXNOR gate and
HomMUX gate, which can be supported with any FHE
scheme. HomXNOR and HomMUX are the bootstrapped
homomorphic gates for XNOR gate and MUX gate, respec-
tively, where Dec(HomXNOR(a,b)) = Dec(a)⊕ Dec(b)
and Dec(MUX(a,b,c)) = Dec(a) ? Dec(b) : Dec(c).

Algorithm 2: SortTwo(X,Y)
Input : An encrypted integer

X = x[1 : m],Y = y[1 : m] with m bits
Output: X and Y are sorted with increasing order.

1 u[1 : m] = x[1 : m]
2 v[1 : m] = y[1 : m]
3 c = Enc(0)
4 for i = 1 to m do
5 t = HomXNOR(u[i],v[i])
6 c = HomMUX(t,c,u[i])
7 end
8 for i = 1 to m do
9 x[i] = HomMUX(c,v[i],u[i])
10 y[i] = HomMUX(c,u[i],v[i])
11 end

III. ANALYSIS OF MODIFIED SHELL SORT OVER FHE
In this section, we propose a modified Shell sort using the
window technique suggested in [23], and the probability
distribution of the required window length for the successful

Algorithm 3: FHEShellSort(A[1 : n])
Input : An encrypted array A[1 : n] with n elements,

gap sequence G[1 : p] with decreasing order,
and α

Output: Sorted array of encrypted data A[1 : n] without
sorting failure

1 for `← 1 to p do
2 g← G[`]
3 for i← g+ 1 to n do
4 for j← d ige − 1 to 1 do
5 SortTwo(A[i− gj],A[i])
6 end
7 end
8 end

sorting is also obtainedwhen the powers-of-two gap sequence
is used. Finally, the running time complexity of the modified
Shell sort in each gap for the successful sorting of each
subarray is determined for the FHE, considering the trade-off
with the SFP when the powers-of-two gap sequence is used.

A. MODIFIED SHELL SORT OVER FHE
As insertion sort can be performed on the FHE data, the Shell
sort, which uses the insertion sort as a subroutine algorithm,
can also be performed on the FHE data. The Shell sort using
the FHE variant insertion sort as subroutine algorithms is
shown in Algorithm 3. However, if the Shell sort is to be
employed without any sorting failure in the FHE setting, it is
expected to be pretty conservative. In other words, as we
need to consider the worst case for each gap, its running
time complexity becomes O(n2), which does not provide any
advantage in comparison with a simple insertion sort. This is
because the FHE variant insertion sort cannot be performed
adaptively with the intermediate situations. Thus, designing
the Shell sort with a negligible SFP and a running time com-
plexity close to the original average-case time complexity is
necessary.

To this end, we employ the window technique [18], [23] in
the Shell sort. During the insertion sort in each gap, instead of
searching the position of each element in the whole partially
sorted array, we search for its position in the partially sorted
subarray of a certain window length, located to the left of the
pivot element, as shown in Fig. 1. Fig. 1 shows an example
of the modified Shell sort using the window technique, where
the gap is 4 and the window length is 2. Subarrays consisting
of elements that are separated by the gap are sorted using the
insertion sort. To sort each subarray, it is compared only with
the elements that are located to its left, within a distance equal
to the window length from the pivot element to be inserted,
which is called the modified Shell sort.

The proposed modified Shell sort is described in
Algorithm 4. As the minimum and maximum functions can
be computed without knowing their plaintext in the FHE

126202 VOLUME 9, 2021



J.-W. Lee et al.: Analysis of Modified Shell Sort for FHE

Algorithm 4: ModifiedShellSort(A[1 : n], α)
Input : An encrypted array A[1 : n] with n elements,

gap sequence G[1 : p] with decreasing order,
and α

Output: Sorted array of encrypted data A[1 : n] with
SFP 2−α

1 c← α + 1+ log log n
2 for `← 1 to p do
3 g← G[`]

4 k ← min
{⌈√
d
n
2ge · (c+ `) ·

1
log e

⌉
,
⌈
n
2g

⌉}
5 for i← g+ 1 to n do

6 u← min
{
k, d ige − 1

}
7 for j← u to 1 do
8 SortTwo(A[i− gj],A[i])
9 end

10 end
11 end

FIGURE 1. Modified Shell sort using the window technique.

setting as we deal with in Section II, neither of the operations
in Algorithm 4 require any knowledge of the contents of
elements in the array A[i]. Thus, Algorithm 4 can be executed
in the FHE setting. In designing this algorithm, deciding
the window length in each gap for successfully sorting each
subarray in the Shell sort for the given SFP 2−α is not a trivial
problem. Along with the design of the window length for
each gap, we propose a modified Shell sort with an additional
parameter α.
We prove that the running time complexity of the modified

Shell sort is determined to be O(n3/2
√
α + log log n) with an

SFP of 2−α for powers-of-two gap sequence, which consists
of all powers of two less than the length of the array. Note
that the average-case time complexity of the classical Shell
sort with powers-of-two gap sequence is O(n3/2) [29]. The
parameter α is determined only from the SFP, regardless of
the input length n. In fact, α is considerably smaller than n
and should be larger than or equal to

√
6 log e − 1 ' 2.534,

the derivation of which is provided in a subsequent section of
this paper. It is noted that the proposed modified Shell sort
considers the trade-off between the running time complexity
and the SFP.

Before analyzing the running time complexity and the
sorting failure probability of the modified Shell sort with
power-of-two gap sequence, we introduce themain idea of the

analysis to help readers to understand the following theorems
and lemmas.

Lemma 1 and 2 deal with the useful properties of the
intermediate arrays tomake it easy to induce the exact number
of acceptable arrays for a certain window length, which is
dealt with in Lemma 3 and Theorem 4. Theorem 4 is the
special case of Lemma 3 that matches our aim.

While the number of acceptable arrays is represented with
some binomial coefficients, the resultant running time com-
plexity has to be represented with some analytic function.
To this end, Lemma 5 and 6 relate some formulas with bino-
mial coefficients with some exponential function. With the
help of these lemmas, Theorem 7 suggests the running time
complexity and the sorting failure probability of the modified
Shell sort.
Remark: We assume that the modified Shell sort is per-

formed with the bootstrapped homomorphic gate, a homo-
morphic Boolean gate followed by the bootstrapping. The
bootstrapping always removes the noise in the ciphertext, and
thus we do not have to consider the noise amplification in the
ciphertext when processing any homomorphic evaluations.
In addition, the ciphertext size does not grow in the fully
homomorphic encryption scheme, and we also do not have
to consider the amplification of the ciphertext size. Thus,
we focus on the validity of the modified Shell sort itself in
the following analysis. If we use the leveled homomorphic
encryption instead of the FHE, the analysis for the noise
growth or the ciphertext size growth will be needed, and this
analysis becomes an interesting future work.

B. PROBABILITY DISTRIBUTION OF REQUIRED WINDOW
LENGTH
In this subsection, we derive the probability distribution of
required window length in each gap required for successfully
sorting each subarray in the Shell sort. This probability distri-
bution is essential in determining the window length of each
gap in the modified Shell sort, because the properties of the
tail of the probability distribution must be used to obtain the
required window length.

The array of n elements is denoted by its index vector
(a1, a2, · · · , an), which is a permuted vector of (1, 2, · · · , n).
If we handle the real data, wemap each datum to its respective
index in {1, 2, · · · , n}. Moreover, we assume that n is an
even integer. If n is odd, the same analysis can be applied,
with an additional dummy element inserted in the rightmost
position with the largest element. Several lemmas are needed
for devising the main theorem of the probability distribution
for the required window length.

Before obtaining the probability distribution, the meaning
of the probability distribution in this subsection has to be
clarified. For each permutation of (1, 2, · · · , n), the required
window length is defined as the minimum window length
such that the insertion sort with the window length returns
a perfectly sorted array. The required window length is a
random variable when the sample space is the set of all
permutations of (1, 2, · · · , n) or its subset. For analyzing the
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modified Shell sort, we are interested in the case when the
sample space is the set of all permutations (a1, a2, · · · , an)
of (1, 2, · · · , n) which satisfy ai < ai+2.
While the analysis of the conventional Shell sort is per-

formed for an average number of operations, the analysis of
the window length in the modified Shell sort involves the
maximum number of insertion operations for each subarray.

We assume that the gap sequence is powers of two,
i.e., 2blog nc, 2blog nc−1, · · · , 22, 2, 1. With this gap sequence,
each subarray that is sorted using insertion sort has the follow-
ing structure. The elements in odd positions of the subarray
for a gap 2h are already sorted and the elements in even
positions are also sorted for a gap 2h using the previous
insertion sort for a gap 2h+1. We analyze the insertion sort
under this special situation.

The following Lemma 1 and Lemma 2 suggest
that the required window length of a permuted vector
(a1, a2, · · · , a2m) of (1, 2, · · · , 2m) is equal to the maximum
distance of the current position and the right position in our
situation. After Lemma 1 and Lemma 2, we identify these
two notions as equivalent notions.
Lemma 1: Let a = (a1, a2, · · · , a2m) be a subarray in

each gap in the Shell sort with a gap sequence 2h, which
is permuted from (1, 2, · · · , 2m), satisfying ai < ai+2 for
i = 1, 2, · · · , 2m − 2. Let M (a) = max1≤i≤2m |ai − i|. Then
there exists an even integer j and an odd integer k such that

M (a) = |aj − j| = |ak − k|

and (aj − j)(ak − k) ≤ 0.
Proof: Let M1,M2,M3, and M4 be defined as

M1 = max
1≤i≤m

(a2i−1 − (2i− 1))

M2 = − min
1≤i≤m

(a2i−1 − (2i− 1))

M3 = max
1≤i≤m

(a2i − 2i)

M4 = − min
1≤i≤m

(a2i − 2i).

It is clear that at least one of M1 and M2 as well M3 and
M4 is a non-negative integer. If we establish that M1 = M4
and M2 = M3, the lemma can be proved by the following
argument. IfM1 ≥ M2, we obtainM (a) = M1 = M4 ≥ M2 =

M3, and thus, there exist an odd index j and an even index k ,
such that M (a) = aj − j = −(ak − k). If M1 < M2, M (a) =
M2 = M3 ≥ M1 = M4 holds, then there exist an odd index j
and an even index k , such that M (a) = −(aj − j) = ak − k .
Thus, it is sufficient to prove that M1 = M4 and M2 = M3.
To show M1 = M4 and M2 = M3, we prove the fol-

lowing four inequalities; M1 ≥ M4, M1 ≤ M4, M2 ≥ M3,
and M2 ≤ M3.

i) Firstly, we show that M1 ≥ M4. Consider an index l,
such that a2l−2l = min1≤i≤m(a2i−2i), which is−M4.
We establish this case for a2` = 2m or a2` < 2m.

i)-1 If a2l = 2m, l must be m, as 2m is the largest
element. Thus, we obtain min1≤i≤m(a2i − 2i) = 0
and a2i ≥ 2i for all i, 1 ≤ i ≤ m, which implies
that 1 cannot be in the even index and must be

in the first index, and a1 − 1 = 0. Therefore,
M1 = max1≤i≤m(a2i−1 − (2i − 1)) ≥ 0 =
−min1≤i≤m(a2i − 2i) = M4.

i)-2 If a2l < 2m, we show that a2l + 1must be in the odd
index. Let a2l + 1 be in the even index; this implies
that a2l + 1 = a2l+2, because all the elements in
the even indices are already sorted. Then, we obtain
a2l+2 − (2l + 2) = (a2l + 1) − (2l + 2) =
a2l − 2l − 1 < a2l − 2l, which is a contradiction
to the assumption that a2l − 2l is the minimum
value, and thus, a2l + 1 must be in the odd index.
Among {1, 2, · · · , a2l − 1}, l − 1 elements have to
be placed in the even indices in the left-side of a2l .
The remaining a2l − l elements must be placed in
the odd indices in the increasing order from the
first index 1. Thus, the index of a2l + 1 must be
2(a2l − l)+ 1. As a2(a2l−l)+1 − (2(a2l − l)+ 1) =
(a2l + 1)− (2(a2l − l)+ 1) = 2l − a2l , we obtain
M1 = max1≤i≤m(a2i−1 − (2i − 1)) ≥ 2l − a2l =
−min1≤i≤m(a2i − 2i) = M4.

ii) We then show that M2 ≥ M3. Consider an index l,
such that a2l−2l = max1≤i≤m(a2i−2i), which isM3.
We establish this case for a2` = 1 or a2` > 1.

ii)-1 If a2l = 1, l must be 1, as 1 is the smallest
element, and therefore, max1≤i≤m(a2i − 2i) = −1.
As a2i − 2i ≤ −1 for all i, 1 ≤ i ≤ m, 2m cannot
belong to the even index. Thus, 2m must be in the
(2m − 1)-th index, and a2m−1 − (2m − 1) = 1.
Therefore, M2 = −min1≤i≤m(a2i−1 − (2i − 1)) ≥
−1 = max1≤i≤m(a2i − 2i) = M3.

ii)-2 If a2l > 1, we show that a2l − 1 must be in the odd
index. Let a2l − 1 be in the even index. We have
a2l − 1 = a2l−2, because all the elements in the
even indices are already sorted. Then, we obtain
a2l−2 − (2l − 2) = (a2l − 1) − (2l − 2) =
a2l − 2l + 1 > a2l − 2l, which is a contradiction
to the assumption that a2l − 2l is the maximum
value, and thus, a2l − 1 must be in the odd index.
Among {1, 2, · · · , a2l − 2}, l − 1 elements need to
be placed in the even indices in the left-side of a2l .
The remaining a2l − l − 1 elements have to be
placed in the odd indices from the first index 1.
Thus, the index of a2l − 1 must be 2(a2l − l) − 1.
As a2(a2l−l)−1 − (2(a2l − l) − 1) = (a2l − 1) −
(2(a2l − l) − 1) = 2l − a2l , we obtain M2 =

−min1≤i≤m(a2i−1 − (2i − 1)) ≥ −(2l − a2l) =
max1≤i≤m(a2i − 2i) = M3.

Similarly, we can establish that M1 ≤ M4 and M2 ≤

M3 by swapping the even indices with the odd indices.
Therefore, we can prove that M3 = max1≤i≤m(a2i −
2i) ≥ −min1≤i≤m(a2i−1 − (2i − 1)) = M2, and M4 =

−min1≤i≤m(a2i − 2i) ≥ max1≤i≤m(a2i−1 − (2i− 1)) = M1.
Therefore, we establish that M1 = M4 and M2 = M3.
Lemma 2: Let a = (a1, a2, · · · , a2m) be a subarray in the

Shell sort with a gap sequence 2h, which is permuted from
(1, 2, · · · , 2m) satisfying ai < ai+2 for i = 1, 2, · · · , 2m−2.
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Let W (a) be the required minimum window length to sort the
subarray successfully. Then, we have

W (a) = max
1≤i≤2m

(i− ai).

Whenwe insert ai into the partially sorted subarray, the fol-
lowing scenarios can be given; if ai < i, we require a window
length of i − ai, and if ai ≥ i, ai stays in place regardless of
the window length.

Consider the first case, where ai < i. First, we assume
that i is even. Consider the elements to the left of ai. From the
condition ai < ai+2, it is clear that all the elements in even
indices to the left of ai are less than ai. As there are i/2 − 1
even indices to the left of ai, the remaining ai − i/2 elements
in {1, 2, · · · , ai − 1} have to be placed in odd indices in
increasing order from the leftmost odd index. As the number
of odd indices to the left of ai is i/2 and i/2 > ai − i/2, all
the elements less than ai are located to the left of ai.
We then assume that i is odd. The proof is almost the same

as that for the scenario in which i is even. As there are (i−1)/2
odd indices to the left of ai, the remaining ai − (i + 1)/2
elements in {1, 2, · · · , ai− 1}must be placed in even indices
from the first even index, in increasing order. As the number
of even indices to the left of ai is (i − 1)/2 and (i − 1)/2 >
ai − (i+ 1)/2, all the elements less than ai are located to the
left of ai.
Thus, we prove that all the elements less than ai are located

to the left of ai. The partially sorted subarray, therefore,
must include the elements {1, 2, · · · , ai − 1} in the indices
{1, 2, · · · , ai − 1} in the appropriate order. This implies that
ai moves to the index ai, and thus, we require a minimum
window length of i− ai.
Consider the second case, in which ai ≥ i. It is evident that

i/2 ≤ ai− i/2, when i is even, and (i−1)/2 ≤ ai− (i+1)/2,
when i is odd. This implies that all the elements to the left of
ai are less than ai. Thus, the partially sorted subarray in the
indices {1, 2, · · · , i− 1} comprises elements smaller than ai.
Therefore, ai does not move to the left but stays in its position,
regardless of the window length.
From Lemma 1, it is noted that M (a) is equal to W (a).

Lemma 3 is needed to obtain the exact number of the
arrays whose required window length is some non-negative
number k . Theorem 4 corresponds to the conclusion of this
subsection, and this can be obtained by only considering the
special case of Lemma 3.
Lemma 3: Let pk (n,m) be the number of distinct

arrays (a1, a2, · · · , am) of length m, whose elements from
{1, 2, · · · , n} are sorted in increasing order, ai < ai+1, and
max1≤i≤m |ai−2i| ≤ k is satisfied for a positive integer k and
n ≥ m. Let (b0, b1, · · · ) and (c0, c1, · · · ) be the two arrays
defined as

b0 = c0 = 0

bi+1 =

{
bi + (k + 1) if i is even
bi + (k + 2) if i is odd

ci+1 =

{
ci + (k + 2) if i is even
ci + (k + 1) if i is odd.

For 2m− k ≤ n ≤ 2m+ k, we obtain

pk (n,m) =
(
n
m

)
−

∑
1≤bi≤m

(−1)i+1
(

n
m− bi

)
−

∑
1≤ci≤m

(−1)i+1
(

n
m+ ci

)
. (1)

Proof: It is clear that pk (1, 1) = 1 for all k ≥ 1, and
pk (n, 1) = n for n ≤ k+2. As the element am in the last index
must be 2m−k ≤ am ≤ 2m+k frommax1≤i≤m |ai−2i| ≤ k ,
the following can be determined from the condition 2m−k ≤
am ≤ 2m+ k:

i) For n < 2m− k ,

pk (n,m) = 0,

because the minimum possible value of am must be
2m− k .

ii) For n > 2m+ k + 1,

pk (n,m) = pk (2m+ k,m),

because the maximum possible value of am must be
2m+ k .

iii) For 2m− k ≤ n ≤ 2m+ k + 1,
We derive the recurrence relation of pk (n,m) using the
following three cases:

iii)-1 For n = 2m+ k + 1,
It is easy to derive that

pk (2m+ k + 1,m) = pk (2m+ k,m). (2)

Note that this case can be included in ii). Although this
separation of the case appears unnatural, it enables us
to analyze pk (n,m) well.

iii)-2 For 2m− k + 1 ≤ n ≤ 2m+ k ,
If the element in the last index m is n, the elements
in the remaining indices should be selected from
{1, 2, · · · , n− 1}, and thus, there are pk (n− 1,m− 1)
possible arrays. If the element in the last indexm is not
n, the element n cannot be located in one of the indices
{1, 2, · · · ,m − 1}, because the elements are sorted
in increasing order. Thus, {1, 2, · · · , n − 1} should
be located in the indices {1, 2, · · · ,m}, and there are
pk (n− 1,m) possible arrays. Therefore, we obtain

pk (n,m) = pk (n− 1,m)+ pk (n− 1,m− 1). (3)

iii)-3 For n = 2m− k ,
We obtain

pk (2m− k,m) = pk (2m− k − 1,m− 1), (4)

because the element 2m − k must be located in the
index m.
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Let qk (n,m) be the right-hand side in (1). Then, we prove
that qk (2m+ k+2,m) = 0 and qk (2m−k−1,m) = 0. First,
qk (2m+ k + 2,m) can be written as

j∑
i=1

(−1)i
(
2m+ k + 2
m+ ci

)
+

j∑
i=1

(−1)i−1
(
2m+ k + 2
m− bi−1

)
. (5)

As (m + ci) + (m − bi−1) = 2m + k + 2,
(2m+k+2

m+ci

)
=(2m+k+2

m−bi−1

)
holds, and qk (2m+ k + 2,m) is equal to 0.

Next, qk (2m− k − 1,m) can be written as

j∑
i=1

(−1)i−1
(
2m− k − 1
m+ ci−1

)
+

j∑
i=1

(−1)i
(
2m− k − 1
m− bi

)
. (6)

As (m + ci−1) + (m − bi) = 2m − k − 1,
(2m−k−1
m+ci−1

)
=(2m−k−1

m−bi

)
holds, and qk (2m− k − 1,m) is equal to 0.

We now prove that pk (n,m) = qk (n,m) when 2m − k ≤
n ≤ 2m+k+1. Using the fact that qk (n,m) is simply a linear
combination of binomial coefficients and the property of the
binomial coefficients, we easily know that

qk (n,m) = qk (n− 1,m)+ qk (n− 1,m− 1).

When n = 2m+ k+ 1, we know that qk (n− 1,m− 1) = 0
from (5). Thus, we have

qk (2m+ k + 1,m) = qk (2m+ k,m).

When n = 2m−k , we know that qk (n−1,m) = 0 from (5).
Thus, we have

qk (2m− k,m) = qk (2m− k − 1,m− 1).

Clearly, pk (1, 1) = qk (1, 1). The recurrence relation of
pk (n,m) is identical to that of qk (n,m) when 2m − k ≤ n ≤
2m + k + 1 and the initial value is also identical. Therefore,
we prove that pk (n,m) = qk (n,m) when 2m − k ≤ n ≤
2m+ k + 1, which proves it.
Remark: In order to understand intuitionally the proof of

Lemma 3, we add the additional explanation of proof of
Lemma 3 in the Appendix B.

From the previous lemmas, we have the following theorem.
Theorem 4: Let C(2m, k) be the number of the permuta-

tions a of {1, 2, · · · , 2m}, such that ai < ai+2 for all possible
i, and W (a) ≤ k. Then, we have

C(2m, k) =
(
2m
m

)
−

∑
1≤bi≤m

(−1)i+1
(

2m
m− bi

)
−

∑
1≤ci≤m

(−1)i+1
(

2m
m−ci

)
,

where bi and ci are defined in Lemma 3.
Proof: As M (a) of the odd indices is equal to that of

the even indices from Lemma 1, we consider only the even
indices. Thus, we can consider this situation to be equivalent
to the following simple situation; we consider distinct m ele-
ments from {1, 2, · · · , 2m} randomly, sort them in increasing
order, and consider ai − 2i rather than ai − i. Then, C(2m, k)

is identical to pk (2m,m) in Lemma 3. This is established as( 2m
m+bi

)
=
( 2m
m−bi

)
.

In fact, C(2m, k) denotes the number of arrays for gap 2h,
which can be successfully sorted using the proposedmodified
Shell sort with a window length of k . Clearly, the exact
number of arrays with W (a) = k , such that ai < ai+2 for
all i can be obtained by computing C(2m, k)−C(2m, k − 1).
With this result, we derive the running time complexity of the
modified Shell sort in the next subsection.

C. DERIVATION OF RUNNING TIME COMPLEXITY FOR A
SPECIFIC SFP
In this subsection, we derive the running time complexity
O(n3/2

√
α + log log n) of the proposed modified Shell sort

with powers-of-two gap sequence, considering the optimal
trade-off with the SFP 2−α , in which α is the parameter
that controls the window length of each gap. In the running
time complexity, log log n increases gradually as n increases.
Therefore, the running time complexity is approximately
proportional to n3/2

√
α. However, the probability that the

output is not successfully sorted decreases exponentially as
α increases. It is noted that the SFP 2−α is not related to
the number of the input data. One of the advantages of the
modified Shell sort algorithm is irrespective of the number of
the input data, and thus we can obtain a trade-off between
the SFP and running time complexity by considering an
appropriate α.

It is important to prove the following lemmas to determine
the relation between the binomial coefficients and exponen-
tial function. It is a well-known fact from the central limit
theorem in statistics that the closer n is to infinity, the closer a
binomial distribution is to a normal distribution. Even though
the binomial and normal distributions are similar, we should
establish that some binomial coefficients are upper-bounded
by the probability distribution function of the normal distribu-
tion. The following Lemma 5 is used in the proof of Lemma 6,
and Lemma 6 is used to prove Theorem 7.
Lemma 5: Let f : [a,∞)→ R be a function of some real

number a satisfying the following;

i) lim
x→∞

f (x) = M for some real number M.
ii) There exists a positive integer n, such that the n-th order

derivative f (n)(x) exists on (a,∞), and (−1)nf (n)(x) > 0
for all x ∈ (a,∞).

Then, f (x) > M for all x ∈ [a,∞).
Proof: It is sufficient to show that f (m)(x) → 0 as

x → ∞ and (−1)mf (m)(x) is a monotonically decreasing
function for m, 1 ≤ m ≤ n − 1. If this is proved, then
f (x) is a monotonically decreasing function and is larger
than the limit value M from the first condition in Lemma 5,
as f ′(x) is negative for (a,∞). Since it is true for m = n
that (−1)mf (m)(x) > 0, we will prove the following: if it is
true for 2 ≤ k ≤ n that (−1)k f (k)(x) > 0, then we have
lim
x→∞

f (k−1)(x) = 0, and it is true that (−1)k−1f (k−1)(x) is a
monotonically decreasing function.
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Let gk (x) = (−1)k f (k)(x). As (−1)k−1f (k)(x) = g′k−1(x) <
0 on (a,∞), gk−1(x) is a monotonically decreasing function.
As a monotonically decreasing function always converges to
a certain value, if it possesses some lower bound, we obtain
lim
x→∞

gk−1(x) = T for some T , or lim
x→∞

gk−1(x) = −∞.
We assume that lim

x→∞
gk−1(x) = T for some T 6= 0,

or lim
x→∞

gk−1(x) = −∞. Then, we can deduce some N ∈

(a,∞),R > 0, such that |gk−1(x)| > R, i.e., f (k−1)(x) > R
for all x > N , or f (k−1)(x) < −R for all x > N .
Consider the case of f (k−1)(x) > R. If we integrate both

terms from N to x ∈ (N ,∞) iteratively as

f (k−2)(x)− f (k−2)(N ) =
∫ x

N
f (k−1)(t)dt

>

∫ x

N
Rdx = R(x − N )

f (k−3)(x)− f (k−3)(N ) =
∫ x

N
f (k−2)(t)dt

>

∫ x

N

(
R(x − N )+ f (k−2)(N )

)
dx

=
R
2
(x − N )2 + f (k−2)(N )(x − N ),

we obtain

f (x) >
R

(k − 1)!
(x − N )k−1 +

k−2∑
i=0

f (i)(N )
i!

(x − N )i,

whose right-hand side tends to infinity, as x → ∞. In this
case, f (x) tends to infinity as well, which contradicts the
first condition. If we consider the case of f (m)(x) < −R,
the inequality is changed to

f (x) < −
R

(k − 1)!
(x − N )k−1 +

k−2∑
i=0

f (i)(N )
i!

(x − N )i,

whose right-hand side tends to negative infinity, as x →
∞. Then f (x) tends to negative infinity as well, which also
contradicts the first condition.

Thus, we obtain lim
x→∞

gk−1(x) = 0. As gk−1(x) is a mono-
tonically decreasing function, gk−1(x) > 0 on (a,∞), which
completes the proof.
Lemma 6 directly uses Lemma 5. To prove the inequality

in Lemma 6, we only prove that the condition of Lemma 5
holds for some function.
Lemma 6: For any real number α ≥

√
6 and any positive

integer n ≥ dα2e, the following inequality holds(
2n

n− dα
√
ne

)
< e−α

2
(
2n
n

)
.

Proof: It can be derived that(2n
n

)( 2n
n−dα

√
ne

) = (n+ dα
√
ne)(n+ dα

√
ne − 1) · · · (n+ 1)

n(n− 1) · · · (n− dα
√
ne + 1)

=

dα
√
ne−1∏

k=0

(
1+
dα
√
ne

n− k

)
.

We must prove that

dα
√
ne−1∏

k=0

(
1+
dα
√
ne

n− k

)
> eα

2
. (7)

If we consider the logarithm on the left-hand side and
change the form, we obtain

dα
√
ne−1∑

k=0

ln
(
1+
dα
√
ne

n−k

)
≥

dα
√
ne−1∑

k=0

ln

1+ α
√
n− k
√
n

 . (8)

Let f (x) = log
(
1+ α

x

)
. Then, the right-hand side of (8)

can be defined as

√
n
dα
√
ne∑

k=1

1
√
n
f (
√
n+

1
√
n
−

k
√
n
),

which is a type of Riemann sum of f (x). As f (x) is a monoton-
ically decreasing function, the Riemann sum demonstrates its
lower bound as the integration of f (x) from

√
n+ 1
√
n−
dα
√
ne

√
n

to
√
n+ 1
√
n . As

√
n+ 1
√
n−
dα
√
ne

√
n ≤

√
n+ 1
√
n−α, we obtain

dα
√
ne−1∑

k=0

ln

1+
α

√
n− k

√
n


≥
√
n
∫ √n+ 1

√
n

√
n+ 1
√
n
−
dα
√
ne

√
n

ln
(
1+

α

x

)
dx

≥
√
n
∫ √n+ 1

√
n

√
n+ 1
√
n
−α

ln
(
1+

α

x

)
dx. (9)

To integrate right-hand side of (9), let g(x) = x ln x.
We then obtain

√
n
∫ √n+ 1

√
n

√
n+ 1
√
n
−α

ln
(
1+

α

x

)
dx

= g(n+ α
√
n+ 1)+ g(n− α

√
n+ 1)− 2g(n+ 1).

Let h(x) = g(x2 + αx + 1)+ g(x2 − αx + 1)− 2g(x2 + 1)
in [α,∞). If we prove lim

x→∞
h(x) = α2, and h(3)(x) < 0

in (α,∞), we obtain h(x) > α2 in [α,∞) using Lemma 5.
As
√
n ≥ α, we obtain h(

√
n) > α2, which proves (7).

We must establish lim
x→∞

h(x) = α2, and h(3)(x) < 0 in

(α,∞). To prove lim
x→∞

h(x) = α2, we consider eh(x). Using
g(x) = x ln x and h(x), we obtain

eh(x) =
(
1−

α2 x2

(x2 + 1)2

)x2−αx+1 (
1+

αx
x2 + 1

)2αx

.

From lim
x→∞

(
1+

p
x

)x
= ep, we obtain lim

x→∞
eh(x) = eα

2
,

and thus, lim
x→∞

h(x) = α2.

Moreover, h(3)(x) can be computed as

h(3)(x) = −
4α2 x(x2 − 1){α2(x4 + 4x2 + 1)− 6(x2 + 1)2}

(x2 + 1)2(x2 − αx + 1)2(x2 + αx + 1)2
.
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As α ≥
√
6, we obtain h(3)(x) < 0 in (α,∞). Thus,

we complete the proof.
We present the following theorem, which is the main the-

orem of this subsection. The situation in Theorem 4 occurs
in Theorem 7, so that we can directly use Theorem 4. Then,
we use Lemma 6 to obtain a simple upper bound of the
complicated formula.
Theorem 7: The running time complexity of the pro-

posed modified Shell sort algorithm is obtained as
O(n3/2

√
α + log log n). For α ≥

√
6 log e − 1, its SFP is

upper-bounded by 2−α .
Proof: As the swapping operation in the modified Shell

sort algorithm can be performed within a certain constant
time, the running time complexity of the modified Shell sort
in Algorithm 4 is determined from the number of swapping
operations. Let S(n) be the number of the swapping opera-
tions with an input length n. Then, S(n) can be upper-bounded
as

S(n) ≤ n
blog nc∑
`=0

k`

where the window length k` of each gap is defined as⌈√⌈ n
2`+1

⌉
· (α + 1+ log log n+ `) ·

1
log e

⌉
.

Thus, S(n) can be expressed as

S(n) = O

n 3
2

blog nc∑
`=0

√
α + log log n+ `+ 1

2`+1

 .
Using

√
a+ b ≤

√
a+
√
b, we obtain that T (n) is

O

n 3
2

√α + log log n
blog nc+1∑
`=1

1

2
`
2

+

blog nc+1∑
`=1

√
`

2
`
2

 .
Thus, we obtain S(n) = O(n3/2

√
α + log log n), because∑

∞

`=1
1

2
`
2
and

∑
∞

`=1

√
`

2
`
2
are both finite.

At this point, we consider the SFP. Let B denote the event
that the output of the sorting algorithm is not successfully
sorted and letB` denote the event that at least one subarray for
the gap 2` is not successfully sorted. As B ⊆

⋃blog nc
`=0 B` =⋃blog nc

`=0

(
B` ∩

⋂blog nc
u=`+1 Bc

u

)
, we obtain

Pr
[
B
]
≤

blog nc∑
`=0

Pr

B` ∩
blog nc⋂
u=`+1

Bc
u


≤

blog nc∑
`=0

Pr

B`

∣∣∣∣ blog nc⋂
u=`+1

Bc
u

 ,
where

⋂blog nc
u=`+1 Bc

u implies the event that the sorting is suc-
cessful for the gaps 2`+1, · · · , 2blog nc. All of the subarrays
satisfy the condition ai < ai+2 in Theorem 4, before we
perform the insertion sort for the gap 2`. Clearly, there are

2` subarrays when the gap is 2`, and the length of subarray
is less than or equal to 2d n

2`+1
e. Let m` = d n

2`+1
e, and β` =√

(α + 1+ log log n+ `) · 1
log e . As β` ≥

√
6, the probability

that one subarray of length 2m` is not successfully sorted can
be upper-bounded as

1−
C(2m`, β`

√
m`)(2m`

m`

) ≤ 2

( 2m`
m`−β`

√
m`

)
(2m`
m`

) ≤ 2e−β
2
` , (10)

where the second inequality is obtained from Lemma 6 if
m` ≥ dβ2` e. If m` < dβ

2
` e, the left term of (10) is 0, and

thus (10) trivially holds. We then obtain

blog nc∑
`=0

Pr

B`

∣∣∣∣ blog nc⋂
u=`+1

Bc
u

 ≤ blog nc∑
`=0

2` · 2e−β
2
`

=
2−αblog nc

log n
≤ 2−α,

and thus, the theorem is proved.
Remark:Theorem 7 states that the asymptotic running time

complexity of Algorithm 4 is lower than the trivially modified
Shell sort in Algorithm 3, which is O(n2). The reduction of
the running time in a concrete sense is rather clear, in that
the number of iterative steps in the last for statement in
Algorithm 4 is lower than that in Algorithm 3. On the other
hand, the asymptotic running time of the modified Shell sort
is lower than that of the insertion sort for the FHE setting, but
the concrete comparison for them in a practical situation is
not clear in this theoretical analysis. In Section V, we numer-
ically compare their running time using TFHE homomorphic
encryption scheme.

IV. NEAR-OPTIMAL WINDOW LENGTH BY CONVEX
OPTIMIZATION
It is necessary to find the shortest window length for the SFP
so that the least running time complexity of themodified Shell
sort is obtained. Generally, it is not easy to derive the optimal
window length in closed form. In this section, we obtain the
near-optimal window length using convex optimization [30].
Let β`

√
dn/2`+1e be the window length for the gap 2`, and

Pr
[
B`

∣∣∣∣⋂blog ncu=`+1 Bc
u

]
be the SFP for the gap 2`, when sorting

is successful for the gaps 2`+1, · · · , 2blog nc. From Theorem 4
and Lemma 6, we obtain

Pr

B`

∣∣∣∣ blog nc⋂
u=`+1

Bc
u

 ≤ 2`e−β
2
` .

The objective function that needs to be minimized is
the total number of swap operations, which determines the
running time. As the exact running time formula is rather
complicated, we consider a tight upper bound of the run-
ning time, n

∑blog nc
`=0 β`

√
dn/2`+1e, which is used in the

proof of Theorem 7. Let p` = 2`e−β
2
` . Then, we have
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β` =
√
(`+ log(1/p`))/ log e. As it is sufficient to mini-

mize
∑blog nc
`=0

√
dn/2`+1e(`+ log(1/p`)), the problem of the

near-optimal window length can be formulated as follows;

minimize
blog nc∑
`=0

√
dn/2`+1e(`+ log(1/p`))

s.t.
k−1∑
`=1

p` ≤ perr.

This formulation implies that the total running time with
SFP upper-bounded by perr needs to be minimized. We can

validate that
√
c+ log 1

x is a convex function on small pos-
itive values, where c is a constant. As the weighted sum
of convex functions is also a convex function, the objec-
tive function is a convex function, and the constraint is
also convex. Thus, this can be termed as a convex opti-
mization problem. As every convex optimization problem
can be solved using numerical analysis, it is easy to obtain
the near-optimal window length. Then, we can deduce p`,
and the near-optimal window length is determined to be
d
√
dn/2`+1e(`+ log(1/p`))/ log ee for each gap 2`. It is

noted that the above formulation is not sufficiently tight,
because it still uses the union bound. Constructing a tighter
formulation, which can be solved easily, can be a focus for
future research.

V. SIMULATION RESULTS
A. SIMULATION WITHOUT HOMOMORPHIC ENCRYPTION
The performance of the proposed modified Shell sort is
numerically verified using a personal computer with an AMD
Ryzen 9 5950X CPU running at 2.04GHz, and 128GB RAM.
First, we validate the running time and SFP when the array
length varies. Then, the running time and SFP are numerically
obtained when the parameter α is varied. Finally, the perfor-
mance of the modified Shell sort is compared with the cases
corresponding to the near-optimal window length, which is
obtained using convex optimization, and Ciura’s optimal gap
sequence, which has been validated numerically as an optimal
gap sequence in the non-FHE settings. We firstly simulate
these sorting algorithms without homomorphic encryption
schemes, i.e., in the plaintext region. Since the use of homo-
morphic encryption schemes can affect only the running time,
the result of SFP values in this simulation has the same
meaning in the case of using homomorphic encryption.

Fig. 2 shows the relation between the running time and SFP
against various array lengths for α = 3. It is observed that
the array length increases from 50 to 1000. The input arrays
are randomly generated, and 105 input arrays are generated
for each array length. It is observed from Fig. 2 that the
running time increases in proportion to n3/2, and the SFP
is independent of the array length. This numerical result
coincides well with the proposed analysis of the modified
Shell sort. Note that the value c = α+1+ log log n increases
slightly as the length of the array increases.

FIGURE 2. Running time and SFP of the modified Shell sort for varied
array lengths.

Fig. 3 shows the relation between the running time and
SFP for various α values, in which g2p denotes the power
of the 2-gap sequence, gop denotes Ciura’s optimal gap
sequence [25], and a-win and o-win denote the analyti-
cally derived window length and near-optimal window length
derived by convex optimization, respectively. The input array
length is fixed at 1000. Similar to the previous simulation,
105 input arrays are randomly generated for each α value.
Algorithm 4 and the case corresponding to the Ciura’s opti-
mal gap sequence or near-optimal window length are simu-
lated, with the near-optimal window length derived using the
convex optimization discussed in Section IV.

From Fig. 3, it is observed that the running time of
Algorithm 4 increases as α increases and the growth rate
decreases. This observation coincides with the proposed anal-
ysis, i.e., the running time is approximately proportional
to
√
α. The logarithms of the SFP values of Algorithm 4 are

parallel to that of the SFP bounds. This implies that the SFP
is proportional to 2−α with some small proportional constant.

When the gap sequence is replaced with Ciura’s gap
sequence, the running time is reduced by approximately
0.5 ms. Sorting failure is not detected in the case of the
simulation that uses Ciura’s gap sequence. This implies that
the order of the SFP of Ciura’s optimal gap sequence is less
than or equal to 10−5. Although the window lengths of each
gap in this paper are analytically derived for the power of
the 2-gap sequence, a better result is obtained when Ciura’s
optimal gap sequence is used.

We numerically find the value c = α+ 1+ log log n when
the SFP value reaches 10−5 for some length of an array, and
Table 1 shows the values. While the value c increases slightly
as the length of the array increases when the gap sequence
is powers-of-two and the SFP value is fixed, the value c
decreases sharply as the length of the array increases. It sug-
gests that the trade-off in the case of Ciura’s gap sequence
is asymptotically better than the case of the powers-of-two
gap sequence. The exact asymptotical analysis of Ciura’s gap
sequence is an open problem.

The near-optimal window length is derived using the con-
vex optimization problem described in Section IV. The run-
ning time in this case is marginally reduced compared with
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FIGURE 3. Running time and SFP of the modified Shell sort for varied α
values and comparison of these values with those obtained from the
cases of Ciura’s optimal gap sequence and near-optimal window length
derived by convex optimization.

TABLE 1. The value c = α + 1+ log log n for array of various lengths when
the Ciura’s gap sequence is used and the SFP is 10−5.

the case using the analytically obtained window length. How-
ever, their values become closer as α increases. The SFP of
the case using the near-optimal window length for the power
of the 2-gap sequence is closer to the SFP bound than that of
the case using the analytically obtained window length. Thus,
the running time can be reduced, while the SFP remains less
than the SFP bound.

B. SIMULATION WITH TFHE SCHEME
In this subsection, we measure the running time of several
sorting algorithms on encrypted data, including the modified
Shell sort algorithm. We implement each sorting algorithm
with the TFHE library [31]. The security parameter in the
TFHE scheme is set to be 128, and the number of bits for each
data is set to be 10. Table 2 shows the main parameters used
in the simulation satisfying 128-bit security. For the modified
Shell sort, we set the value of c to make the SFP 10−5, and
the Ciura’s gap sequence is used rather than the powers-of-
two gap sequence. The unit of each running time result is
in seconds.

The sorting algorithm to be compared with the modified
Shell sort is chosen as follows. Since the modified Shell
sort can be the generalized algorithm for the insertion sort,
we choose to compare the insertion sort. The randomized
Shell sort [24] is the most related sorting algorithm to the
proposed modified Shell sort, and thus we also choose it
to be compared. These two sorting algorithms are in-place
algorithms. For the recursive sorting algorithm, the odd-even
merge sort and the bitonic sort are chosen, which are the
standard oblivious recursive sorting algorithms. These two

TABLE 2. TFHE parameters with 128-bit security.

recursive algorithms are also used in [20] to compare the
sorting algorithm for homomorphic encryption.

As for the odd-even merge sort and the bitonic sort,
the length of the input array is originally assumed to be
a power of two. However, we cannot generally choose the
array length, and thus we perform the simulation with a more
general type of numbers rather than the power-of-two array
length. Since the length of the input array in our simulation
is not a power-of-two integer, we add dummy data in the
end of the array to make the input array power-of-two, and
these dummy data is assumed to be larger than the data in
the input array. Since these dummy data will not be moved
in the sorting, we ignore the comparison if dummy data is
homomorphically compared to other data, in order to erase
the effect of the addition of dummy data. Thus, we can fairly
compare the running time of each sorting algorithm in the
case of more general array lengths other than the power-
of-two length. We specify the whole algorithms used in the
simulation in Appendix A.

Table 3 shows the running time of several sorting algo-
rithms required to sort an array of encrypted data of length
500. The running time of the modified Shell sort with Ciura’s
gap sequence is far lower than the insertion sort, which is
the basic in-place sorting algorithm. The use of the modified
Shell sort is proved to be efficient not only in the asymptotic
sense but also practical sense. Also, although the randomized
Shell sort [24] is asymptotically better than our algorithm,
the performance of our algorithm is better than that of the
randomized Shell sort for an array of length 500.

When we compare the efficient and recursive sorting algo-
rithms, bitonic sort and odd-evenmerge sort, the running time
of the modified Shell sort is yet larger, but it is closer than the
original insertion sort. This running time performance will
depend on the situation, especially in the IoT device. Since
these recursive sorting algorithms make many function calls
recursively and the memory of the input array is quite big,
the transmission time can be a serious problem when the
memory bus bandwidth is not large enough. In this situation,
the modified Shell sort will be useful in that it uses no
function calls or almost no additional memories. Even though
the running times of bitonic sort and odd-even merge sort are
smaller than that of the modified Shell sort, the numbers of
memory and function calls of the bitonic sort and odd-even
merge sort increases to 5121 and 9729, respectively.

Table 4 shows the performance of the modified Shell sort,
the insertion sort, and the bitonic sort for an array of various
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TABLE 3. Comparison of the running time of several sorting algorithms
for array of length 500.

TABLE 4. Comparison of the running time in seconds of several sorting
algorithms for array of various lengths.

lengths less than 500. While the running time of the insertion
sort increases fast as the array length increases, the running
time of the modified Shell sort with Ciura’s gap sequence
increases not very fast as the array length increases. This rate
is somewhat similar to the rate of the Bitonic sort, whose
running time complexity is better than ours.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a modified Shell sort with an
additional parameter α in the FHE setting, and for a gap
sequence of powers of two, we derived the running time
complexity O(n3/2

√
α + log log n), considering a trade-off

with the SFP 2−α . We also established that the running time
complexity of the proposed algorithm is almost the same
as the average-case running time complexity of the origi-
nal Shell sort, while the SFP is maintained to be minimal.
We then obtained the near-optimal window length of each
gap by numerically solving a convex optimization problem.
We believe that this study plays a significant role in the foun-
dation of the analysis of the Shell sort in the FHE settings.
Using the TFHE encryption scheme, the running time of the
proposed modified Shell sort with Ciura’s gap sequence was
compared with that of the conventional sorting algorithms,
and it has the best running time performance among other
in-place sorting algorithms in the FHE setting.

The performances of the recursive sorting algorithms on
the FHE data, such as bitonic sort and odd-even merge sort,
are better than our algorithms but use many function calls in
the process of sorting. The detailed analysis of the memory
usage in the sorting algorithms for FHE and the simulation
in the practical environment with limited memory bus band-
width is also an important research topic, and we leave it as
future work. Designing a practically faster variant of the Shell
sort on the FHE data than the recursive sorting algorithms is
also our future work. Also, we plan to analyze the modified
Shell sort with other gap sequences.

Recently, Hong et al. [32] proposed the k-way sorting
method extending the conventional 2-way sorting. All pre-
vious works used sorting of the two elements as the building
block, but they used sorting of the k elements larger than two
as the building block. Since we used the 2-way sorting in our
modified Shell sort algorithm, analyzing the k-way Shell sort
algorithm will be interesting future work.

APPENDIX A
IMPLEMENTATION OF OTHER SORTING ALGORITHMS
We specify the algorithms for other sorting algorithms used
in the simulation with TFHE scheme. Algorithm 5, 6, 9,
and 12 shows the algorithms used in the simulation for the
insertion sort, the randomized Shell sort, the odd-even merge
sort, and the bitonic sort, respectively. Other algorithms are
the subroutine algorithms for the main algorithm. Note that
the randomized Shell sort can be implemented without any
function calls by including the subroutine algorithms in the
body of the algorithm, but the odd-even merge sort and the
bitonic sort should be performed recursively.

Algorithm 5: InsertionSort(A[1 : n])
Input : An encrypted array A[1 : n] with n elements
Output: Sorted array of encrypted data A[1 : n]

1 for i← 2 to n do
2 for j← 1 to i− 1 do
3 SortTwo(A[j],A[i])
4 end
5 end

Algorithm 6: RandShellSort(A[1 : n])
Input : An encrypted array A[1 : n] with n elements
Output: Sorted array of encrypted data A[1 : n] with

small sorting failure

1 m = 2dlog ne

2 Append m− n dummy elements to A[1 : n].
3 RandShellPower2(A[1 : m]).
4 Remove the m− n dummy elements at the end of A.

APPENDIX B
EXPLANATION OF PROOF OF LEMMA 3
The recurrence relations (2)-(4) of pk (n,m) are similar to the
Pascal’s triangle

(n
m

)
=
(n−1
m

)
+
(n−1
m−1

)
shown in Fig. 4(a),

except that the width of the triangle for pk (n,m) is limited,
as shown in Fig. 4(b) as well as (2) and (4). This recursive
relation can then be transformed into overlapped Pascal’s
triangles. Fig. 4(c) shows a part of Fig. 4(b) near the boundary
of the lower dotted line. Here, we only consider the lower
dotted line. We then establish that this recursive relation near
the boundary in Fig. 4(c) is equivalent to the situation of
Fig. 4(d), which is two overlapped Pascal’s triangles, in which
pk (0, 0) = 1 and pk (0, k + 1) = −1.
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Algorithm 7: CompareRegions(A[1 : n], s, t,offset)
Input : An encrypted array A[1 : n] with n elements
Output: Sorted array of encrypted data A[1 : n] with

small sorting failure

1 for count = 1 to count = 4 do
2 Choose the permutation

σ : {0, · · · ,offset− 1} → {0, · · · ,offset− 1}
randomly. for i = 0 to i = offset− 1 do

3 SortTwo(A[s+ i],A[t + σ (i)])
4 end
5 end

Algorithm 8: RandShellPower2(A[1 : n])
Input : An encrypted array A[1 : n] with power-of-two

n = 2` elements
Output: Sorted array of encrypted data A[1 : n] with

small sorting failure

1 for offset = n/2 to offset = 1 with offset← offset/2
do

2 for i = 1 to i = n− 2 · offset+ 1 with
i← i+ offset do

3 CompareRegions(A[1 : n], i, i+offset,offset)
4 end
5 for i = n− offset+ 1 to i = offset+ 1 with

i← i− offset do
6 CompareRegions(A[1 : n], i−offset, i,offset)
7 end
8 for i = 1 to i = n− 4 · offset+ 1 with

i← i+ offset do
9 CompareRegions(A[1 :

n], i, i+ 3 · offset,offset)
10 end
11 for i = 1 to i = n− 3 · offset+ 1 with

i← i+ offset do
12 CompareRegions(A[1 :

n], i, i+ 2 · offset,offset)
13 end
14 for i = 1 to i = n− 2 · offset+ 1 with

i← i+ 2 · offset do
15 CompareRegions(A[1 : n], i, i+offset,offset)
16 end
17 for i = offset+ 1 to i = n− 3 · offset with

i← i+ 2 · offset do
18 CompareRegions(A[1 : n], i, i+offset,offset)
19 end
20 end

First, it can be obtained that the values on the dotted line
in Fig. 4(d) are always 0, because of the symmetry of Pascal’s
triangles. As adding a 0 does not change the value, the cases
of Fig. 4(c) and Fig. 4(d) are equivalent regarding the area to
the left of the dotted line.

Algorithm 9: OddevenMergeSort(A[1 : n])
Input : An encrypted array A[1 : n] with n elements
Output: Sorted array of encrypted data A[1 : n]

1 m = 2dlog ne

2 Append m− n dummy elements to A[1 : n].
3 OddevenMergeRange(A[1 : m], 1,m).
4 Remove the m− n dummy elements at the end of A.

Algorithm 10: OddevenMergeRange(A[1 :

n], init, count)
Input : An encrypted array A[1 : n] with n elements,

initial position init, subarray length count
Output: Sorted array of encrypted data A[1 : n]

1 if count = 1 then
2 return
3 end
4 ` = count/2
5 OddevenMergeRange(A[1 : n], init, `)
6 OddevenMergeRange(A[1 : n], init+ `, `)
7 OddevenMergeMerge(A[1 : n], init, count, 1)

Algorithm 11: OddevenMergeMerge(A[1 :

n], init, count, step)
Input : An encrypted array A[1 : n] with n elements,

initial position init, subarray length count,
stride step step

Output: Sorted array of encrypted data A[1 : n]

1 if count = 1 then
2 return
3 end
4 if 2 · step < count then
5 OddevenMergeMerge(A[1 :

n], init, count, 2 · step)
6 OddevenMergeMerge(A[1 :

n], init+ step, count, 2 · step)
7 i = init+ step
8 while i ≤ init+ count− step do
9 SortTwo(A[i],A[i+ step])

10 i = i+ step
11 end
12 end

However, the values on both the dotted lines in Fig. 4(b)
must be 0. To satisfy the other boundary condition pk (2m +
k + 2,m) = 0 on the upper dotted line in Fig. 4(b), we con-
sider another Pascal’s triangle translated by −(k + 2) with
pk (0,−(k+2)) = −1. If we add these three Pascal’s triangles
P−1,P0, and P1 shown in Fig. 4(e), there are zero boundary
values on the lines fromQ1 toQ2 and fromR1 toR2. However,
the boundary value after Q2 or R2 is not equal to 0. To obtain
the boundary values on the lines from Q2 to Q3 and from
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Algorithm 12: BitonicSort(A[1 : n])
Input : An encrypted array A[1 : n] with n elements
Output: Sorted array of encrypted data A[1 : n]

1 m = 2dlog ne

2 Append m− n dummy elements to A[1 : n].
3 BitonicRange(A[1 : m], 1,m, true).
4 Remove the m− n dummy elements at the end of A.

Algorithm 13: BitonicRange(A[1 : n], init, count,
ascend)
Input : An encrypted array A[1 : n] with n elements,

initial position init, subarray length count,
Boolean variable ascend

Output: Sorted array of encrypted data A[1 : n]

1 if count = 1 then
2 return
3 end
4 BitonicRange(A[1 : n], init, count/2, true)
5 BitonicRange(A[1 : n], init+ count/2, count/2, false)
6 BitonicMerge(A[1 : n], init, count,ascend)

Algorithm 14: BitonicMerge(A[1 : n], init, count,
ascend)
Input : An encrypted array A[1 : n] with n elements,

initial position init, subarray length count,
Boolean variable ascend

Output: Sorted array of encrypted data A[1 : n]

1 if count = 1 then
2 return
3 end
4 for i = init to i = init+ count/2 do
5 if ascend = true then
6 SortTwo(A[i],A[i+ count/2])
7 end
8 else
9 SortTwo(A[i+ count/2],A[i])
10 end
11 end
12 BitonicMerge(A[1 : n], init, count/2,ascend)
13 BitonicMerge(A[1 :

n], init+ count/2, count/2,ascend)

R2 to R3, we must add the Pascal’s triangles P2 and P−2.
Therefore, we repeat this process, as shown in Fig. 4(e). The
sequence {bi} in Lemma 3 is the distance from the initial
vertex of P0 to that of Pi, while {ci} is the distance from
the initial vertex of P0 to that of P−i. The initial value at
the initial vertex of Pi is 1 if i is even, and −1 if i is odd.
Qi is defined as the intersection of the boundaries of the two
Pascal’s triangles starting from the initial vertices of Pi−1 and
P−i, and Ri is defined as the intersection of the boundaries of

FIGURE 4. pk (n,m) using Pascal’s triangle.

the two Pascal’s triangles starting from the initial vertices of
Pi and P−(i−1).

We establish that if the Pascal’s triangles Pi’s, i =
· · · ,−1, 0, 1, · · · , are overlapped, all of the integer points on
the half-lines of

−−→
Q1 Q2 and

−−→
R1 R2 must be 0s. The integer

points on the upper half-line of
−−→
Q1 Q2 exhibit the form n =

2m+ k + 2 for all non-negative integers m, and those on the
lower half-line of

−−→
R1 R2 exhibit the form n = 2m− k − 1 for

all m ≥ k + 1. First, in the case of the points on the half-line
of
−−→
Q1 Q2, we consider the integer points on QjQj+1, which

can be denoted as n1 = 2m1 + k + 2 and bi−1 ≤ m1 ≤ bi.
Then, we can only consider Pascal’s triangles P−j, · · · ,Pj−1.
Considering the parallel translation of each Pascal’s triangle,
the overlapped values on the points are defined as

j∑
i=1

(−1)i
(
2m1+k+2
m1+ci

)
+

j∑
i=1

(−1)i−1
(
2m1+k+2
m1−bi−1

)
. (11)
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As (m1 + ci)+ (m1 − bi−1) = 2m1 + k + 2,
(2m1+k+2

m1+ci

)
=(2m1+k+2

m1−bi−1

)
holds, and (5) is equal to 0.

In the case of the points on the half-line of
−−→
R1 R2, we con-

sider the integer points on RjRj+1, which can be denoted as
n2 = 2m2− k− 1 and bi ≤ bi+1. Then, we can only consider
Pascal’s triangles Pj−1, · · · ,Pj. The overlapped values on the
points are defined as

j∑
i=1

(−1)i−1
(
2m2 − k − 1
m1 + ci−1

)
+

j∑
i=1

(−1)i
(
2m2 − k − 1
m1 − bi

)
.

(12)

As (m2 + ci−1)+ (m2 − bi) = 2m2 − k − 1,
(2m2−k−1
m1+ci−1

)
=(2m2−k−1

m1−bi

)
holds, and (6) is also equal to 0.

Therefore, we establish that with respect to the region
between the two dotted lines in Fig. 4(b), Fig. 4(b) is exactly
equivalent to the hashed part of Fig. 4(e). We obtain pk (n,m)
by adding the values of points of several Pascal’s triangles
as in (1), where the first term is from the central Pascal’s
triangle P0; the second term is from the right-side Pascal’s
triangles Pi’s for the positive integer i; and the third term
is from the left-side Pascal’s triangles P−i’s for the positive
integer i.
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