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Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A

Machine LearningeDriven Approach
Akash A. Shah1, Sai K. Devana1, Changhee Lee2, Amador Bugarin1, Elizabeth L. Lord1, Arya N. Shamie1, Don Y. Park1,
Mihaela van der Schaar2,3, Nelson F. SooHoo1
-BACKGROUND: Given the significant cost and morbidity
of patients undergoing lumbar fusion, accurate preopera-
tive risk-stratification would be of great utility. We aim to
develop a machine learning model for prediction of major
complications and readmission after lumbar fusion. We
also aim to identify the factors most important to perfor-
mance of each tested model.

-METHODS: We identified 38,788 adult patients who un-
derwent lumbar fusion at any California hospital between
2015 and 2017. The primary outcome was major periopera-
tive complication or readmission within 30 days. We build
logistic regression and advanced machine learning models:
XGBoost, AdaBoost, Gradient Boosting, and Random Forest.
Discrimination and calibration were assessed using area
under the receiver operating characteristic curve and Brier
score, respectively.

-RESULTS: There were 4470 major complications (11.5%).
The XGBoost algorithm demonstrates the highest discrim-
ination of the machine learning models, outperforming
regression. The variables most important to XGBoost per-
formance include angina pectoris, metastatic cancer,
teaching hospital status, history of concussion, comorbidity
burden, and workers’ compensation insurance. Teaching
hospital status and concussion history were not found to be
important for regression.
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Abbreviations and Acronyms
ACS-NSQIP: American College of Surgeons National Surgical Quality Improvement
Program
AUPRC: Area under the precision-recall curve
AUROC: Area under the receiver operating characteristic curve
CAD: Coronary artery disease
CMS: Centers for Medicare and Medicaid
ICD-10: International Classification of Diseases, Tenth Revision
LR: Logistic regression
ML: Machine learning
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-CONCLUSIONS: We report a machine learning algorithm
for prediction of major complications and readmission after
lumbar fusion that outperforms logistic regression. Notably,
the predictors most important for XGBoost differed from
those for regression. The superior performance of XGBoost
may be due to the ability of advanced machine learning
methods to capture relationships between variables that
regression is unable to detect. This tool may identify and
address potentially modifiable risk factors, helping risk-
stratify patients and decrease complication rates.
INTRODUCTION
ith more than 450,000 cases performed per year,
spinal fusion is one of the most commonly performed
Wsurgeries in the United States and is rapidly growing

in prevalence.1-3 There has been an increase in all spinal fusions
across all ages between 2001 and 2010, with the largest increase
(74%) observed for lumbar fusion. During the same time period,
the average total charges increased by over 100%.2 Complications
with associated unplanned readmissions are a driver of increased
cost and morbidity.3 The average age and comorbidity burden of
patients undergoing lumbar fusion have also increased.2 Older
with more medical comorbidities, these patients are at elevated
risk of perioperative complications. It is thus important to
OSHPD: California Office of Statewide Health and Planning and Development
PDD: OSHPD Patient Discharge Database

From the 1Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA,
Los Angeles; 2Department of Electrical and Computer Engineering, University of California,
Los Angeles, California, USA; and 3Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, Cambridge, United Kingdom

To whom correspondence should be addressed: Akash A. Shah, M.D.
[E-mail: aashah@mednet.ucla.edu]

Citation: World Neurosurg. (2021) 152:e227-e234.
https://doi.org/10.1016/j.wneu.2021.05.080

Journal homepage: www.journals.elsevier.com/world-neurosurgery

Available online: www.sciencedirect.com

1878-8750/$ - see front matter ª 2021 Elsevier Inc. All rights reserved.

www.journals.elsevier.com/world-neurosurgery e227

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wneu.2021.05.080&domain=pdf
mailto:aashah@mednet.ucla.edu
https://doi.org/10.1016/j.wneu.2021.05.080
www.journals.elsevier.com/world-neurosurgery
www.sciencedirect.com/science/journal/18788750
www.journals.elsevier.com/world-neurosurgery


ORIGINAL ARTICLE

AKASH A. SHAH ET AL. RISK PREDICTION FOR LUMBAR FUSION
preoperatively assess which patients are at increased risk of major
perioperative complications.
Numerous studies have used logistic regression (LR) to analyze

risk factors and create prediction models for outcomes after
lumbar fusion.1-8 Advanced machine learning (ML) methods have
grown in popularity because of their ability to recognize complex
nonlinear relationships, often outperforming LR.4-7 ML has been
increasingly employed for degenerative, neoplastic, and infectious
spinal pathology.8-12 Yet ML methods have been sparingly used to
specifically predict outcomes after lumbar fusion. Using a large
patient discharge database, we primarily aim to build an ML
model for prediction of major complication or readmission after
lumbar fusion. Our secondary aim is to compare its performance
against LR. We hypothesize that the optimized model will
outperform LR as well as identify novel risk factors for major
complication or readmission after lumbar fusion.

MATERIAL AND METHODS

Study Design and Subjects
This study is a retrospective review of patients undergoing lumbar
fusion using the California Office of Statewide Health and Plan-
ning and Development (OSHPD) Patient Discharge Database
(PDD). The PDD is a mandatory statewide discharge database
containing admissions data for all nonfederal hospital admissions
in California. Patients in this database are assigned a unique re-
cord linkage number that allows them to be tracked longitudinally
for complications as long as future admissions occur at a hospital
that is included in the PDD. We identified patients undergoing
lumbar fusion between 2015 and 2017. We included patients 18
years or older who underwent lumbar fusion using International
Classification of Diseases, Tenth Revision (ICD-10) procedure
codes to identify patients (Supplementary Table 1).

Outcome and Other Variables
The primary outcome was any major complication or readmission
after index lumbar fusion. Complications were identified using
ICD-10 codes adapted from performance measures developed by
the Centers for Medicare and Medicaid (CMS) for total joint
replacement.13 These include acute myocardial infarction,
pneumonia, sepsis, pulmonary embolism, surgical site bleeding,
and wound infection. Myocardial infarction, pneumonia, and
sepsis were included if the complication occurred during the
index admission or within 7 days of index admission. Pulmonary
embolism was included if it occurred during the index admission
or within 30 days of admission. Surgical site bleeding and wound
infection were included during the index admission or within 90
days. Readmission for any cause within 30 days of index lumbar
fusion was included as an outcome. The ICD-10 diagnosis and
procedure codes used to identify surgical site bleeding and wound
complications are specific to lumbar spine surgery.
Explanatory features collected for the cohort include patient

demographic characteristics (e.g., age, sex, insurance type), hos-
pital characteristics (e.g., volume, teaching institution), and pa-
tient medical comorbidities using the Condition Categories as
defined by the CMS Hierarchical Condition Category risk adjust-
ment model (e.g., malignancy, coronary atherosclerosis, renal
failure, diabetes).
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Model Development and Evaluation
We built 5 standard ML benchmark models spanning different
classes of ML modeling approaches: LR (a linear classifier),
random forest (a tree-based ensemble classifier), AdaBoost,
gradient boosting machines, and XGBoost (boosting ensemble
classifiers).14-17 We implemented LR, random forest, Ada-
Boost, and gradient boosting machines using the scikit-learn
Python library.18 XGBoost was built using the xgboost Python
library.17

We evaluated the discrimination and calibration performances
of the prognostic models using 5-fold stratified cross-validation to
avoid overfitting. In each cross-validation fold, the training cohort
(80% of the study population) was used to derive the models. A
hold-out testing cohort (20% of the population) was used for
performance evaluation. We report the mean and 95% confidence
interval for all models.
Assessed by area under the receiver operating characteristic

curve (AUROC), discrimination determines how well a model
distinguishes patients who developed complications from those
who did not. AUROC represents the probability that a randomly
selected patient who experienced the outcome was assigned a
higher risk by the classifier than a patient who did not experience
the outcome. An AUROC of 0.5 indicates random prediction,
whereas an AUROC of 1 indicates perfect prediction.19,20

Calibration signifies the agreement between the model’s
predictions and observed outcomes in the study population.
The Brier score is the mean squared error between the
observed values and the predicted probabilities; it is a measure
of discrimination and calibration. Brier scores closer to zero
indicate a more accurate model.19

The area under the precision-recall curve (AUPRC) is a useful
performance metric when analyzing a dataset in which negative
cases far outnumber positive cases. The precision-recall curve is
constructed by plotting positive predictive value (precision)
versus the sensitivity (recall). Ignoring true negatives, the
precision-recall curve depicts the model’s ability to correctly
identify positive cases.21,22 Unlike AUROC, the baseline AUPRC
is the proportion of true positive cases in the cohort. Random
prediction will result in the baseline AUPRC. The higher the
AUPRC compared with the baseline value, the better the model
handles positive cases. An AUPRC of 1 suggests a classifier
with perfect recall and precision.

Feature Importance
We use the partial dependence function described by Friedman to
measure importance of an individual feature by assessing the average
effect in predicted risks when its value is altered.16 Specifically, xc is a
chosen target feature in the set of input features X and X yc is its
complement (i.e., X ¼ X ycWxc), and rðX Þ ¼ rðX yc; xcÞ is
the predicted risk by our trained model. We define the feature
importance score for an individual feature xc by averaging
rðX yc; xc ¼ 1Þ � rðX yc; xc ¼ 0Þ for binary features and
rðX yc; xc ¼ maxðxcÞÞ � rðX yc; xc ¼ minðxcÞÞ, where maxðxcÞ and
minðxcÞ are the maximum and minimum of feature xc for
continuous features, respectively. For categorical variables, we
define feature importance of category b˛f1;.; Bg as rðX yc; xc ¼
bÞ � rðX yc; xc ¼ modeðxcÞ, where modeðxcÞ indicates the most
frequency category of feature xc.
UROSURGERY, https://doi.org/10.1016/j.wneu.2021.05.080

www.sciencedirect.com/science/journal/18788750
https://doi.org/10.1016/j.wneu.2021.05.080


Table 1. Baseline Cohort Demographics

Variable All Patients (n [ 38,788)

Demographics

Age (years), median (IQR) 64 (54e72)

Hospital volume,* median (IQR) 412 (222e681)

Male 18,021 (46.46)

Race

White 31,223 (80.50)

Black 1834 (4.73)

Asian/Pacific Islander 1746 (4.50)

Native American 145 (0.37)

Other 3515 (9.06)

Unknown 325 (0.84)

Ethnicity

Non-Hispanic 32,117 (82.80)

Hispanic 6196 (15.97)

Unknown 475 (1.22)

Insurance

Medicare 18,810 (48.49)

Private 12,449 (32.09)

Medi-Cal 3343 (8.62)

Workers’ compensation 3259 (8.40)

Other 927 (2.39)

Medical comorbidities

Diabetes mellitus 2764 (7.13)

Coronary atherosclerosis 2219 (5.72)

Angina pectoris 1600 (4.12)

COPD 2080 (5.36)

Metastatic cancer or acute leukemia 1685 (4.34)

Other major cancer 1630 (4.20)

Protein-calorie malnutrition 1740 (4.49)

Osteoporosis 2012 (5.19)

Osteoarthritis 1876 (4.84)

Chronic kidney disease requiring dialysis 1612 (4.16)

Bone, joint, or muscle infection 1812 (4.67)

Vertebral fracture without spinal cord injury 1871 (4.82)

Concussion or unspecified head injury 1572 (4.05)

Complications of implants 1810 (4.67)

Other complications of medical care 1957 (5.05)

Number of medical comorbidities, mean 0.34

Data represent n (%) unless otherwise specified.
COPD, chronic obstructive pulmonary disease; IQR, interquartile range.
*Cases of lumbar fusions performed between 2015 and 2017.

ORIGINAL ARTICLE

AKASH A. SHAH ET AL. RISK PREDICTION FOR LUMBAR FUSION
RESULTS

Baseline Characteristics
A total of 38,788 patients met inclusion criteria for this study. The
median age of the cohort was 64 years, with 18,021 males (46.5%).
The most common medical comorbidity was diabetes mellitus
(7.1%), followed by coronary atherosclerosis (5.7%) and chronic
obstructive pulmonary disease (5.4%). The mean number of
Condition Categories that a patient fell under was 0.34. A com-
plete description of the cohort demographics is provided in
Table 1. A total of 4470 patients (11.5%) had at least 1 complication
or readmission. There were 3354 patients (8.6%) who required
readmission within 30 days. The most common complications
were pneumonia, sepsis, and pulmonary embolism (Table 2).

Model Performance
Algorithms predicting the risk of major complications or read-
mission after lumbar fusion were built with LR and 4 benchmark
ML models (XGBoost, Gradient Boosting, AdaBoost, Random
Forest). In the overall cohort, XGBoost demonstrates higher
discrimination (AUROC: 0.687 � 0.01) compared with LR
(AUROC: 0.675 � 0.01). It also outperforms the standard bench-
mark ML models. The XGBoost model is well calibrated with a
Brier score of 0.094 � 0.001. The LR and benchmark ML models
are similarly well calibrated, with the exception of AdaBoost. The
AUPRC of the XGBoost model is 0.284; a random classifier would
result in AUPRC of 0.115 (Table 3). The receiver operating
characteristic and precision-recall curves of the XGBoost and LR
models are depicted in Figures 1 and 2, respectively.

Feature Importance
The relative importance of each feature to model performance for
XGBoost and LR is displayed in Table 4. The features most
important for risk prediction for XGBoost include angina
pectoris, metastatic cancer, musculoskeletal infection, other
malignancy, and history of cerebral hemorrhage. The most
important continuous variable for both XGBoost and LR is
number of medical comorbidities as defined by the CMS
Condition Categories. Workers’ compensation insurance status
is the most important insurance category toward risk prediction
for XGBoost. The variables most important for XGBoost differ
from those for LR.

DISCUSSION

The prevalence of lumbar fusion is projected to increase sub-
stantially in the coming decades.3 The cost of caring for lumbar
pathology exceeds $100 billion per year, almost equal to the cost
of treating all malignancies combined.23-25 Given the morbidity
and cost incurred by perioperative complications and unplanned
readmissions, accurate prediction of a patient’s complication risk
after lumbar fusion would be useful. Accurate prognostic
information can inform preoperative counseling and management
decisions. Furthermore, identification of high-risk patients before
surgery provides an opportunity to preoperatively address poten-
tially modifiable risk factors.
Numerous studies have used multivariate LR modeling for

prediction of complications after lumbar spinal surgery.26-33
WORLD NEUROSURGERY 152: e227-e234, AUGUST 2021 www.journals.elsevier.com/world-neurosurgery e229
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Table 2. Major Complications and Readmission

Complications
All Patients

(n [ 38,788), n (%)

At least 1 complication or readmission 4470 (11.52)

Readmission within 30 days 3354 (8.65)

Pneumonia 724 (1.87)

Sepsis 701 (1.81)

Pulmonary embolism 303 (0.78)

Acute myocardial infarction 123 (0.32)

Surgical site bleeding 86 (0.22)

Wound infection 15 (0.04)

Figure 1. Receiver operating characteristic curves for XGBoost and logistic
regression.
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ML methods have grown in popularity in recent years in the
neurosurgery and orthopedic surgery literature. A subset of arti-
ficial intelligence, ML represents a set of techniques that allow
machines to learn and perform classification tasks by recognizing
underlying patterns in data. In contrast to conventional regression
techniques, advanced ML methods can detect complex nonlinear
relationships as well as factor-factor interactions.34,35 Indeed, ML
models have been shown to outperform LR in many cases.5-7 ML
has been increasingly employed in spinal surgery for prediction of
outcomes including discharge disposition, surgical site infection,
presence of vertebral compression fracture, and mortality in
metastatic disease and infection.10,36-39

ML has been sparingly used to predict outcomes after lumbar
fusion. With 22,629 patients from the American College of Sur-
geons National Surgical Quality Improvement Program (ACS-
NSQIP), Kim et al40 developed an artificial neural network to
predict complications after posterior lumbar fusion with an
AUROC of 0.641. Goyal et al3 queried ACS-NSQIP for cervical
and lumbar fusions, analyzing 59,145 cases for prediction of un-
planned readmission. They developed ML models predicting
readmission with AUROC ranging between 0.63 and 0.66.3 Most
recently, Jain et al9 analyzed 37,852 patients who underwent
posterior lumbar fusion of 3 or more levels to predict 90-day
major complication and 90-day readmissions. ML models
achieved an AUROC of 0.69 and 0.63 for prediction of major
complications and readmission, respectively.9 ML methods
underperformed LR in their analysis.
Table 3. Discrimination, Calibration, and AUPRC of Logistic
Regression and Advanced ML Models

Model AUROC Brier Score AUPRC

XGBoost 0.687 � 0.01 0.094 � 0.01 0.284 � 0.014

Logistic Regression 0.675 � 0.01 0.095 � 0.01 0.265 � 0.011

Gradient Boosting 0.686 � 0.009 0.094 � 0.009 0.283 � 0.009

AdaBoost 0.686 � 0.011 0.248 � 0.011 0.278 � 0.015

Random Forest 0.629 � 0.006 0.112 � 0.006 0.197 � 0.007

AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating
characteristic curve; ML, machine learning.

e230 www.SCIENCEDIRECT.com WORLD NE
With a cohort of 38,788 patients, we report a boosting model
(XGBoost) for prediction of major perioperative complications and
30-day readmission.With an AUROC of 0.687, this model represents
fair accuracy comparable or superior to currently available ML algo-
rithms predicting complications after lumbar fusion.3,9,40 Thismodel
also outperforms the ACS-NSQIP calculator and the Risk Assessment
Tool developed by Veeravagu et al33 for prediction of complications
after spinal surgery. Our reported model is well calibrated and
Figure 2. Precision-recall curves for XGBoost and logistic regression.
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Table 4. Relative Feature Importance for Complications After
Lumbar Fusion

Feature

Rank in XGBoost
(Rank in Logistic

Regression)

Change to
Risk

Prediction

Binary features

Angina pectoris 1 (4) �0.0535

Metastatic cancer or
leukemia

2 (1) 0.0463

Musculoskeletal infection 3 (3) 0.0321

Malignancy 4 (7) �0.0259

Cerebral hemorrhage 5 (8) �0.0235

Diabetes mellitus 6 (6) 0.0499

Complications of medical
care

7 (5) 0.0508

Teaching hospital 8 (34) 0.0186

Implant complication 9 (2) 0.0183

Concussion 10 (17) �0.0174

Continuous features

Number of comorbidities 1 (1) 0.12222

Age 2 (2) 0.0701

Hospital volume 3 (3) 0.0301

Insurance status

Medicare Reference 0

Workers’ compensation 1 (2) �0.0284

Personal 2 (1) �0.0259

Other 3 (4) �0.0201

Medi-Cal 4 (3) 0.0193
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demonstrates superior discrimination compared with LR. With an
AUPRC of 0.284, the XGBoost model shows good performance in
this relatively imbalanced dataset and far exceeds random
prediction. AUPRC is a useful performance metric to evaluate the
predictive performance of ML models in imbalanced datasets.21,22

We also report the importance of each feature to performance of
the XGBoost model. Although these features are not necessarily
causative, their inclusion increases the predictive performance of the
model. The most important binary feature identified is angina pec-
toris. A possible sign of symptomatic coronary artery disease (CAD),
angina has not specifically been implicated as an important feature
for poor outcomes after lumbar fusion. CAD has been reported as a
predictor for readmission after elective lumbar spinal surgery.32

Associated with reduced immunity, diabetes mellitus is an
established risk factor for poor outcomes after spinal surgery
including wound complications and infection. Diabetes has been
shown to be a predictor for pneumonia, mortality, sepsis, wound
complications, and readmission after lumbar fusion.28,30,41 History
of malignancy, musculoskeletal infection, and cerebral hemorrhage
are comorbidities that are important contributors to XGBoost
WORLD NEUROSURGERY 152: e227-e234, AUGUST 2021
model performance. A marker of low physiologic reserve and
immunosuppressed state, metastatic cancer has been shown to be
an important predictor of mortality after spinal fusion.2 Cerebral
hemorrhage is associated with the development of multiple
medical conditions including renal disease, cognitive impairment,
and dementia.42-44 These associated comorbidities are risk factors
for poor outcomes after lumbar spine surgery.45-47 Number of CMS
Condition Categories is the most important continuous feature to
model performance, suggesting that overall comorbidity burdenmay
contribute to poor outcomes after lumbar fusion.
We additionally find that a history of complications in past ad-

missions (e.g., failed/difficult intubation, excessive transfusion,
implant infection) is important to model performance. Similarly, a
history of implant-related complications is an important feature for
XGBoost—potentially a sign of revision surgery. Although these
features encompass a wide range of diagnosis codes due to con-
straints of the OSHPD dataset, they can be interpreted as markers of
past complications or mechanical complication. We also find that
workers’ compensation insurance status is an important categorical
feature. Although workers’ compensation has been implicated
extensively in the elective spinal surgery literature, it has not been
identified as an important factor in ML analysis to our knowl-
edge.48-50 A proposed hypothesis for the link between workers’
compensation and poor outcomes is secondary gain for the patient
(e.g., settling claims from civil litigation).51 Furthermore, patients
with active workers’ compensation claims are more likely to have
positive smoking history and elevated body mass index, both of
which are linked to adverse outcomes after spine surgery.49-51

Notably, 2 features were found to be extremely important to
XGBoost but markedly less so for LR. History of concussion is the
10th most important feature for XGBoost but the 17th most
important for LR; this may indicate prior head trauma or neurologic
injury. Concussion and traumatic brain injury have been shown to
be associated with the development of dementia and psychiatric
disorders.52-54 Both dementia and psychiatric comorbidities are risk
factors for adverse outcomes after lumbar fusion.45,55 Interestingly,
teaching hospital status is the 8th most important feature for
XGBoost but the 34th most important for LR. Although this has
not been shown before in an ML analysis, a study by Durand
et al56 suggests that teaching hospitals may have suboptimal
resource allocation compared with nonteaching hospitals when it
comes to lumbar fusion. Resident physician involvement is
independently associated with increased complication risk after
spinal fusion, although this finding may be confounded by
increased case complexity at an academic teaching hospital.26

Differences in feature importance for XGBoost versus LR must
be interpreted with caution. For example, metastatic cancer is an
important feature for both models—it is the most important
feature for LR and the second most important feature for
XGBoost. This does not imply that metastatic cancer is more
correlated with complications than teaching hospital status, a
feature markedly different in importance between XGBoost and
LR. In fact, XGBoost is unable to determine correlation at all; it is
designed for classification and not for statistical inference. Rather,
this finding underlines that XGBoost and LR analyze the same
features quite differently. The superior performance of XGBoost in
this dataset is due to its ability to capture relationships between
variables that regression is unable to detect.
www.journals.elsevier.com/world-neurosurgery e231
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This study has limitations, first of which is its retrospective
design. The use of a de-identified administrative database limits the
granularity of the collected variables and outcomes. The reliance on
diagnosis codes to assign complications may underestimate
complication rates and is less comprehensive compared with chart
review. Similarly, medical comorbidities may not always be coded
accurately. Specific laboratory values (e.g., hemoglobin A1c) are not
available for manual look-up, requiring reliance on CMS-
Hierarchical Condition Category Condition Categories comprising
groups of ICD-10 codes to determine comorbidities. Although we
aim to only capture complications associated with surgery by
limiting inclusion of complications in the immediate perioperative
period, we cannot exclude the possibility that a small number of
medical complications that occur in the perioperative period are
unrelated to index lumbar fusion. Furthermore, this database does
not contain data on mortality or patient-reported functional out-
comes. In addition, with any predictive model there exists a concern
for overfitting. In overfitting, the algorithm has good performance
on the development set but generalizability to new cohorts is
diminished because the algorithm is fit to the idiosyncrasies of the
development cohort. Although we aim to protect against overfitting
with our model development and validation strategy, future studies
in which this algorithm is validated on external cohorts are
necessary. Finally, it should be noted that systematic biases present
in the dataset may be amplified by ML, potentially propagating
treatment biases adversely affecting under-represented groups such
as patients of lower socioeconomic status and ethnic minorities.35

CONCLUSIONS

We report a boosting classifier that predicts major complications
and readmission after lumbar fusion with superior accuracy
compared with LR. In addition, it identifies novel features
important to model performance. By including all lumbar fusions
regardless of indication or approach, we hope to enhance the
e232 www.SCIENCEDIRECT.com WORLD NE
generalizability of this model. Furthermore, by providing accurate
prognostic information, this tool may facilitate preoperative
shared decision-making and aid with appropriate patient selec-
tion. No predictive model is a substitute for clinical judgment. The
determination of an acceptable risk-to-benefit ratio remains solely
with the patient and his or her surgeon; we simply aim to provide
an accurate estimation of perioperative risk. Furthermore, this tool
can be used to identify and address potentially modifiable risk
factors for complications. Preoperatively addressing issues such as
diabetes and CAD may reduce overall health care costs by
decreasing the likelihood of complications after lumbar fusion.
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SUPPLEMENTARY DATA
Supplementary Table 1. ICD-10 Procedure Codes for Lumbar
Spinal Fusion

ICD-10 procedure codes

Fusion of the thoracolumbar vertebral joint

0RGA070, 0RGA071, 0RGA07J, 0RGA0A0, 0RGA0AJ, 0RGA0J0, 0RGA0J1,
0RGA0JJ, 0RGA0K0, 0RGA0K1, 0RGA0KJ, 0RGA370, 0RGA371, 0RGA37J,
0RGA3A0, 0RGA3AJ, 0RGA3J0, 0RGA3J1, 0RGA3JJ, 0RGA3K0, 0RGA3K1,
0RGA3KJ, 0RGA470, 0RGA41, 0RGA47J, 0RGA4A0, 0RGA4AJ, 0RGA4J0,
0RGA4J1, 0RGA4JJ, 0RGA4K0, 0RGA4K1, 0RGA4KJ

Fusion of the lumbar vertebral joint

0SG0070, 0SG0071, 0SG007J, 0SG00A0, 0SG00AJ, 0SG00J0, 0SG001J,
0SG00JJ, 0SG00K0, 0SG00K1, 0SG00KJ, 0SG0370, 0SG0371, 0SG037J,
0SG03A0, 0SG03AJ, 0SG03J0, 0SG03J1, 0SG30JJ, 0SG03K0, 0SG03K1,
0SG03KJ, 0SG0470, 0SG0471, 0SG047J, 0SG04A0, 0SG04AJ, 0SG04J0,
0SG04J1, 0SG04JJ, 0SG04K0, 0SG04K1, 0SG04KJ

Fusion of 2 or more lumbar vertebral joints

0SG1070, 0SG1071, 0SG107J, 0SG10A0, 0SG10AJ, 0SG10J0, 0SG10J1,
0SG10JJ, 0SG10K0, 0SG10K1, 0SG10KJ, 0SG1370, 0SG1371, 0SG137J,
0SG13A0, 0SG13AJ, 0SG13J0, ASG13J1, 0SG13JJ, 0SG13K0, 0SG13K1,
0SG13KJ, 0SG1470, 0SG1471, 0SG147J, 0SG14A0, 0SG14AJ, 0SG14J0,
0SG14J1, 0SG14JJ, 0SG14JK0, 0SG14K1, 0SG14KJ

Fusion of the lumbosacral joint

0SG3070, 0SG3071, 0SG307J, 0SG30A0, 0SG30AJ, 0SG30J0, 0SG30J1,
0SG30JJ, 0SG30K0, 0SG30K1, 0SG30KJ, 0SG3370, 0SG3371, 0SG337J,
0SG33A0, 0SG33AJ, 0SG33J0, 0SG33J1, 0SG33JJ, 0SG33K0, 0SG33K1,
0SG33KJ, 0SG3470, 0SG3471, 0SG347J, 0SG34A0, 0SG34AJ, 0SG34J0,
0SG34J1, 0SG34JJ, 0SG34K0, 0SG34K1, 0SG34KJ

ICD-10, International Classification of Diseases, Tenth Revision.
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