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Floquet topological semimetal with a helical nodal line in 2+1 dimensions
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Topological semimetals with a nodal line is a class of topological matter extending the concept of topological
matter beyond topological insulators and Weyl/Dirac semimetals. Here we show theoretically that a Floquet
topological semimetal with a helical nodal line can be generated in 2+1 dimensions by irradiating graphene
or the surface of a topological insulator with circularly polarized light. The helical nodal line is the nodal line
running across the Brillouin zone with helical winding. Specifically, it is shown that the dynamics of irradiated
graphene is described by the time Stark Hamiltonian, which can host a Floquet topological insulator and a
weakly driven Floquet topological semimetal with a helical nodal line in the high and low frequency limits,
respectively. One of the most striking features of the Floquet topological semimetal at low frequency is that the
Berry phase accumulated along the time direction, also known as the Zak phase, has a topological discontinuity
of π across the projected helical nodal line. It is predicted that such a topological discontinuity of the Berry phase
manifests itself as the topological discontinuity of the Floquet states. At intermediate frequency, this topological
discontinuity can create an interesting change of patterns in the quasienergy dispersion of the Floquet states.
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I. INTRODUCTION

Topological matter can be classified in various ways. An
intuitive way is to note how Dirac monopoles are located in
the Hamiltonian parameter space. In the case of topological
insulators [1–5], Dirac monopoles exist in an appropriate,
but hidden parameter space, while avoided in the momentum
space [6]. In the case of Weyl [7,8] and Dirac [9] semimetals,
they are directly located in the momentum space as isolated
points. Topological semimetals with a nodal line [10] can
be regarded as a class of topological matter where Dirac
monopoles form a closed loop in the momentum space. De-
spite considerable attention, however, conclusive experimen-
tal evidence for the topological semimetals with a nodal line
has been elusive so far, partly since they require a rather
delicate symmetry protection in real materials [11–22].

Meanwhile, there has been a rapidly growing interest in the
artificial generation of topological matter in time-dependent
periodic systems, dubbed Floquet engineering [23]. One of
the most notable examples is the theoretical proposal for the
generation of a Floquet topological insulator by irradiating
graphene [24–29] or semiconductor quantum wells [30]. The
Floquet topological insulator generated in the high frequency
limit of irradiated graphene is particularly interesting since it
can provide an exact realization of the Haldane model [1] or
the Kane-Mele model [2] for a single spin species with the
possibility of manipulating the Chern number via tuning the
radiation frequency and electric field strength.

Here we show that, in addition to the Floquet topological
insulator in the high frequency limit, irradiated graphene can
host a weakly driven Floquet topological semimetal with a
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helical nodal line at low frequency, which resides in 2+1
dimensions with one additional dimension being the time.
With the helical nodal line being the nodal line running across
the time Brillouin zone [18], this provides a platform for the
artificial generation of topological semimetals with a nodal
line. A salient feature of the so-obtained Floquet topological
semimetal is the π shift of the Zak phase inside the projected
helical nodal line, giving rise to the topological discontinuity
across the projected helical nodal line in the momentum
spectrum of the Floquet states. At intermediate frequency, this
topological discontinuity can create an interesting change of
patterns in the quasienergy dispersion of the Floquet states,
which cannot be understood in terms of the simple overlap-
ping Floquet copies of the Dirac dispersion. Having the same
dispersion as graphene in the continuum limit, the surface of
a topological insulator can also serve as another promising
platform for the Floquet topological semimetal with a helical
nodal line in 2+1 dimensions. We discuss the feasibility
of its experimental observation via time- and angle-resolved
photoemission spectroscopy (TARPES) [31,32].

II. TIME STARK HAMILTONIAN

When the Hamiltonian Ĥ (t ) is periodic in time with period
T = 2π/�, the Floquet theorem dictates that the solution of
the Schrödinger equation is generally written as |�α (t )〉 =
e−iεαt/h̄|ψα (t )〉 with |ψα (t )〉 being a periodic function of time
with the same period, i.e., |ψα (t )〉 = ∑

n e−in�t |ψn
α〉, where n

is the Fourier index. The quasienergy eigenvalue εα and the
Fourier components {|ψn

α〉} of the αth Floquet state can be
determined by diagonalizing the Floquet Hamiltonian:

[ĤF]nm = Ĥnm − nh̄�δnm, (1)
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where Ĥnm = 1
T

∫ T
0 Ĥ (t )ei(n−m)�t dt . We set h̄ = 1 from here

forward.
The Floquet Hamiltonian can be interpreted as the Fourier-

transformed Stark Hamiltonian, where an effective dc electric
field with the strength � is represented via the corresponding
effective electrostatic potential in the Fourier space [33]. In
this paper, we show that a unified understanding of the Floquet
dynamics in the two opposite limits of high and low fre-
quencies can be achieved by analyzing the Stark Hamiltonian
expressed directly in terms of time, which we call the time
Stark Hamiltonian (TSH):

ĤTS(k) = Ê (k) + �

[
i

∂

∂κ
+ Âκ (k)

]
, (2)

where k = (k⊥, κ ) is the extended momentum with two
real, k⊥ = (kx, ky), and one effective, κ = −�t , momentum
components. Note that, here, we are interested in the time-
dependent periodic systems in two spatial dimensions. Also,
note that, for convenience, we have chosen κ to be negatively
proportional to time so that the quasienergy increases in
magnitude along the effective electric field direction. Ê (k)
is the instantaneous energy eigenvalue matrix obtained by
diagonalizing the nominal Hamiltonian, Ĥ (k), which is sim-
ply the original Hamiltonian with �t just replaced by −κ .
Mathematically, [Ê (k)]ab = εa(k)δab with εa(k) being the in-
stantaneous eigenvalue of Ĥ (k) for the ath band. Âκ (k) is the
non-Abelian Berry connection projected along the κ direc-
tion; [Âκ (k)]ab ≡ Aab

κ (k) = 〈ua(k)|i ∂
∂κ

|ub(k)〉 with |ua(k)〉
and |ub(k)〉 being the instantaneous eigenstates of Ĥ (k) for
the ath and bth bands, respectively. See Appendix A for the
detailed derivation of the TSH. It is interesting to note that
essentially the same Hamiltonian has been studied in the
context of topological insulators [34] and Weyl semimetals
[35] under a real dc electric field.

To be specific, the graphene Hamiltonian without radiation
can be written as follows:

Ĥ0(k⊥) =
(

0 gk⊥
g∗

k⊥ 0

)
, (3)

where gk⊥ = −τ (eik⊥·c1 + eik⊥·c2 + eik⊥·c3 ) with c1 =
(−√

3/2,−1/2), c2 = (
√

3/2,−1/2), and c3 = (0, 1)
in units of lattice spacing, which is set to be unity
throughout this paper. τ is the hopping parameter between
nearest-neighboring sites. The Hamiltonian in the presence of
circularly polarized radiation can be obtained via Peierls
substitution, k⊥ → kPei-sub

⊥ = k⊥ − e
c A(t ), where the

vector potential is A(t ) = cE0
�

(cos �t,− sin �t ) with E0

being the radiation electric field strength. In the extended
momentum notation, kPei-sub

⊥ = (kx − A cos κ, ky − A sin κ )
with A = eE0/�. In summary, the graphene Hamiltonian in
the presence of circularly polarized radiation is written in the
extended momentum notation as follows:

Ĥ (k) =
(

0 gk
g∗

k 0

)
, (4)

where gk = gkPei-sub
⊥

.

The instantaneous eigenstates of Ĥ (k) in Eq. (4) are given
by

|u±(k)〉 = 1√
2

(
e−iφ(k)

±1

)
, (5)

where e−iφ(k) = gk/|gk|. The corresponding instantaneous
eigenvalues are ε±(k) = ±|gk|, where ± indicates the con-
duction and valence bands, respectively. Consequently, the
instantaneous energy eigenvalue matrix in Eq. (2) is given as

Ê (k) =
(|gk| 0

0 −|gk|
)

, (6)

indicating that the energy gap closes when |gk| = 0. Visually,
each Dirac node spirals around its original position, forming a
helical nodal line with radius A. Meanwhile, the instantaneous
eigenstates give rise to the following Berry connection:

Âκ (k) = 1

2

∂φ(k)

∂κ

(
1 1
1 1

)
. (7)

In conclusion, the dynamics of irradiated graphene is de-
scribed by the TSH, where an effective dc electric field is
applied along the axis of the helical nodal line. See Fig. 1 for
illustration.

The TSH needs to be solved numerically at general fre-
quencies. Fortunately, however, one can obtain quite useful
analytical expressions for the two topologically interesting so-
lutions in the limits of high and low frequencies, respectively.
The main goal of this work is to investigate what happens
in the limit of low frequency. Before elaborating on this, we
show how the TSH can capture the emergence of a Floquet
topological insulator in the limit of high frequency.

III. FLOQUET TOPOLOGICAL INSULATOR AT HIGH
FREQUENCY

It is well known that a Floquet topological insulator can
emerge in irradiated graphene with circularly polarized light
at high frequency [24–29,36]. A question is how the TSH in
Eq. (2) can capture this.

In the limit of high frequency, one can proceed by first
solving the second term in Eq. (2), which has � as a prefactor,

H� = �

[
i

∂

∂κ
+ 1

2

∂φ(k)

∂κ

(
1 1
1 1

)]
, (8)

and then taking into account the first term, Ê . H� can be
diagonalized analytically via the following eigenstates with
the corresponding eigenvalue ν:

|ϕ±,ν (k)〉 = 1√
2

(
1

±1

)
f±,ν (k), (9)

where f+,ν (k) = e−i[νκ−�φ(k)] and f−,ν (k) = e−iνκ with
�φ(k) = φ(k⊥, κ ) − φ(k⊥, 0). Due to the periodic boundary
condition, ν is an integer. Let us call |ϕ±,ν (k)〉 the high-
frequency eigenstate from this forward.
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FIG. 1. Schematic diagram showing the mapping of irradiated graphene from the real (a) to the extended momentum (b) space. Here, a1

and a2 denote the primitive lattice vectors of graphene in the real space, while b̂1 and b̂2 denote the unit reciprocal lattice vectors in the extended
momentum space. The dynamics of irradiated graphene is described by the time Stark Hamiltonian in the extended momentum space, where
an effective dc electric field with the strength equal to the radiation frequency � is applied along the axis of the helical nodal line aligned with
the time, i.e., κ = −�t direction. Note that the helical nodal line is the trajectory of each Dirac node encircling either K or K ′ as a function of
time. The radius of the helical nodal line is given by A = eE0/� with E0 being the radiation electric field strength. The Zak phase accumulated
along the κ direction acquires a relative π shift inside the projected helical nodal line due to the same reason why the Su-Schrieffer-Heeger
model becomes topological. At low frequency, the π shift of the Zak phase gives rise to the topological discontinuity across the projected
helical nodal line in the momentum spectrum of the Floquet states.

By using the high-frequency eigenstates as a new basis set,
one can reexpress Ê in the following matrix form:

MÊ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . �̂0 �̂

†
1 �̂

†
2

. . . �̂1 �̂0 �̂
†
1

. . .

�̂2 �̂1 �̂0
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where

�̂n =
(

0 �n(k⊥)

�∗
−n(k⊥) 0

)
, (11)

and �n(k⊥) = eiφ0(k⊥ )
∫ 2π

0
dκ
2π

gkeinκ with φ0(k⊥) = φ(k⊥,

κ = 0). The entire TSH including both terms in Eq. (2) can
be written as HTS = MÊ + M�, where M� is the diagonal
matrix with [M�]νν ′ = ν�Îδνν ′ for the (ν, ν ′)-th 2 × 2 block.

Now, HTS can be systematically expanded as a power
series of 1/�. Specifically, valid up to the order of 1/�, the
following effective 2 × 2 Hamiltonian can be obtained for the
νth pair of the quasienergy bands:

Heff,ν =
(

ν� �0

�∗
0 ν�

)
+

∞∑
n=1

|�n|2 − |�−n|2
n�

(
1 0
0 −1

)
.

(12)

Note that the above effective Hamiltonian can be derived by
combining the degenerate perturbation theory for the effects
of �0 within the 2 × 2 diagonal block and the second-order
perturbation theory for the virtual process mixing different
blocks via �n �=0.

After performing a series of integrations and algebras, one
can show that, in the limit of high frequency, Heff,ν can be
rewritten as follows:

Heff,ν = ν�Î + dk⊥ · σ, (13)

where d∗
k⊥,+ = dk⊥,− = −τeff (A)eiφ0(k⊥ ) ∑3

j=1 eik⊥·c j with

dk⊥,± = dk⊥,x ± idk⊥,y, and dk⊥,z = iλeff (A)
∑6

j=1(−1) jeik⊥·η j

with η j being the displacement vectors connecting between

next-nearest-neighboring sites: η1 = (−√
3/2,−3/2),

η2 = (
√

3/2,−3/2), η3 = (
√

3, 0), η4 = (
√

3/2, 3/2),
η5 = (−√

3/2, 3/2), and η6 = (−√
3, 0). The effective

hopping and spin-orbit coupling parameters are given as

τeff (A) = τJ0(A) and λeff (A) = 2τ 2

�

∑∞
n=1

J2
n (A)
n sin ( 2nπ

3 ),
respectively. It is important to note that these formulas are
exactly the same as those previously obtained by using the
degenerate perturbation theory [36] and the Brillouin-Wigner
theory [29]. See Appendix B for the details of the derivation.

In summary, up to the order of 1/� in the limit of high
frequency, the TSH can be decomposed into an infinite ladder
of the effective 2 × 2 Hamiltonians, Heff,ν , each of which is
exactly identical to the Kane-Mele model Hamiltonian [2]
of a single spin species with the effective hopping param-
eter τeff (A) and the effective spin-orbit coupling parameter
λeff (A). Since the Kane-Mele model is nothing but two copies
of the Haldane model with opposite flux configurations for
different spin species, this means that Heff,ν is also exactly
identical to the Haldane model Hamiltonian [1] describing
a Chern insulator. It is interesting to mention that there has
been a recent experimental paper reporting the observation
of an anomalous Hall effect in irradiated graphene with a
midinfrared femtosecond pulse of circularly polarized light
[37].
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Finally, it is important to note that the TSH can be ex-
panded systematically beyond the first order of 1/� in terms
of the high-frequency eigenstate basis. Specifically, a system-
atic high-frequency expansion can be constructed essentially
in the same way as the aforementioned degenerate perturba-
tion and Brillouin-Wigner theories. Note that there are various
other equivalent high-frequency expansion theories [38–40].
The detailed derivation of our systematic high-frequency ex-
pansion theory is to be published in a future paper.

Instead of providing such details here, we would like to
focus on one of the most important properties of our high-
frequency expansion theory, which is crucial for proving the
equivalence between ours and various other theories. That is,
the high-frequency eigenstate in our theory is in fact exactly
identical to the usual Floquet-Bloch state used, for example,
in the degenerate perturbation and Brillouin-Wigner theories.
To show this, let us rewrite the high-frequency eigenstates
|ϕ±,ν (k)〉 in terms of the instantaneous eigenstates |u±(k)〉 by
using the bra-ket notation,

|ϕ±,ν (k)〉 = 1√
2

f±,ν (k)(|u+(k)〉 ± |u−(k)〉), (14)

which is simply equal to Eq. (9). Similarly, according to
Eq. (5), the instantaneous eigenstates can be written in terms
of the Bloch states in 2+1 dimensions as follows:

|u±(k)〉 = 1√
2

(e−iφ(k)|A(k)〉 ± |B(k)〉), (15)

where |A(k)〉 and |B(k)〉 denote the Bloch states for the A and
B sublattices, respectively. By combining Eqs. (14) and (15),
the high-frequency eigenstates can be written as follows:

|ϕ+,ν (k)〉 = e−iνκe−iφ0(k⊥ )|A(k)〉, (16)

|ϕ−,ν (k)〉 = e−iνκ |B(k)〉, (17)

which means that the high-frequency eigenstates are noth-
ing but the Floquet-Bloch states. Note that the phase factor
e−iφ0 (k⊥ ) is not important since it can be removed via an
appropriate gauge transformation.

IV. FLOQUET TOPOLOGICAL SEMIMETAL WITH
HELICAL NODAL LINE AT LOW FREQUENCY

The low frequency limit of the TSH is particularly in-
teresting in the context of topological semimetals with a
nodal line. In the limit of low frequency, the band-mixing
terms, i.e., the off-diagonal elements of the non-Abelian Berry
connection can be ignored. In other words, one can take the
adiabatic approximation, where the Berry connection can be
approximated to be Abelian by keeping only the diagonal
terms. This can be done since the off-diagonal band-mixing
terms are proportional to the driving frequency, while the
diagonal terms have both kinetic energy and diagonal Berry
connection terms. A zeroth-order approximation for the low-
frequency limit would be to ignore all the terms proportional
to the driving frequency, which means dropping all the Berry
connection terms. However, this approximation would be too
crude. A better approximation is to ignore the off-diagonal
band-mixing terms while only keeping the diagonal Berry
connection terms, which affects the quasienergy by adding
corrections to the band dispersion.

The eigenstates of the Abelian Stark Hamiltonian under
a dc electric field are known as the WSL eigenstates. By
analogy, let us call the eigenstates of the Abelian TSH the
time WSL eigenstates. The Abelian TSH for the ath band can
be written as

ĤATS,a = εa(k) + �

(
i

∂

∂κ
+ Aaa

κ (k)

)
, (18)

which can, in turn, be diagonalized by the following time
WSL eigenstates:

ψWSL
a,n (k) = e− i

�

∫ κ

0 dκ ′[EWSL
a,n (k⊥ )−εa (k′ )−�Aaa

κ (k′ )], (19)

where k′ = (k⊥, κ ′). The above form of the time WSL eigen-
states can be derived by noticing that the diagonalization of
the Abelian TSH amounts to solving the following first-order
differential equation:

∂

∂κ
ψWSL

a (k) = − i

�

[
Ea(k⊥) − εa(k) − Aaa

κ (k)
]
ψWSL

a (k),

(20)

where it is important to remember that the quasienergy Ea(k⊥)
is independent of κ , while depending on the band index a.
Note that the dependence of Ea(k⊥) and ψWSL

a (k) on the
time WSL index n is introduced after the quantization of the
quasienergy.

The quasienergy of the time WSL eigenstates is quantized
via the periodic boundary condition, ψWSL

a (k⊥, κ + 2π ) =
ψWSL

a (k⊥, κ ). Specifically,

EWSL
a,n (k⊥) = ε̄a(k⊥) + �

(
n + γ Zak

a (k⊥)

2π

)
, (21)

where the time WSL index n is an integer, ε̄a(k⊥) =
1

2π

∮
dκεa(k) is the time-averaged instantaneous band energy,

and γ Zak
a (k⊥) = ∮

dκAaa
κ (k) is the Zak phase accumulated

along the κ direction. It is interesting to note that the impor-
tance of the geometric phase in the Floquet spectrum was pre-
viously pointed out in Ref. [24] by using the concept known
as the Aharonov-Anandan phase, which can be applicable
even in nonadiabatic situations. Also, there have been related
theoretical studies showing the effect of the geometric phase
in the real-time dynamics [41,42].

The time WSL eigenstates of irradiated graphene have an
intriguing topological structure induced by the π shift of the
Zak phase inside the projected helical nodal line. Mathemati-
cally, γ Zak

± (k⊥) = 1
2

∮
dκ ∂

∂κ
φ(k) = π and 0 for k⊥ located in-

side and outside the projected helical nodal line, respectively.
Intuitively, the π shift of the Zak phase can be understood as
follows. With an addition of the circularly polarized radiation,
each Dirac node performs a circular motion around either K
or K ′ point as a function of time. As far as the acquired Berry,
or Zak phase is concerned, however, there is no difference
between this and the usual situation, where the momentum
parameter of the Bloch state is adiabatically moved with a
fixed Dirac node. This means that any Bloch state inside the
trajectory of the circularly moving Dirac node acquires the
π shift of the Berry phase, as if it would by encircling a fixed
Dirac node. Mathematically, this is exactly the reason why the
Su-Schrieffer-Heeger model becomes topological [43–46].
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FIG. 2. Zero-energy momentum spectrum of the Floquet states in
irradiated graphene at low frequency. Here, the radiation frequency
is set to be �/τ = 0.05 with τ being the hopping parameter, and
the radius of the helical nodal line is set to be A = 0.8. (a) Zak
phase accumulated along the time direction, showing the π shift
inside the projected helical nodal line. (b) Zero-energy momentum
spectrum of the full Floquet states obtained by exactly solving
either the Floquet or the time Stark Hamiltonian. (c) Closeup of the
zero-energy momentum spectrum of the time Wannier-Stark ladder
eigenstates obtained by solving the Abelian approximation of the
time Stark Hamiltonian. (d) Closeup of the zero-energy momentum
spectrum of the full Floquet states in the same region as (c), denoted
by the green box in (b).

Consequently, the quasienergy of the time WSL eigenstates
acquires the relative �/2 shift inside the projected helical
nodal line,

EWSL
±,n (k⊥) =

{
ε̄±(k⊥) + �(n + 1/2) (inside)

ε̄±(k⊥) + �n (outside),
(22)

giving rise to the topological discontinuity across the pro-
jected helical nodal line.

Figure 2 shows the zero-energy momentum spectrum of
the Floquet states in irradiated graphene at low frequency,
showing the topological discontinuity across the projected
helical nodal line. The zero-energy momentum spectrum of
the full Floquet states can be obtained by exactly solving
either the Floquet Hamiltonian or the TSH. Specifically, the
quasienergy spectral function of the full Floquet states can be
computed as

ρ(ω, k⊥) = − 1

π
ImTr

[
1

ω − ĤF + iη

]
, (23)

where ĤF is the Floquet matrix in Eq. (1) and the trace Tr
is taken over both Floquet and sublattice indices. Then, the
zero-energy momentum spectrum of the full Floquet states
can be obtained by plotting ρ(ω = 0, k⊥) as a function of k⊥.
Alternatively, one can just directly diagonalize the TSH by

using the method developed in a previous work by some of
the current authors [35].

Meanwhile, the zero-energy momentum spectrum of the
time WSL eigenstates can be obtained by simply tracking all
the k⊥ curves satisfying EWSL

±,n (k⊥) = 0 for different n. A main
message of Fig. 2 is that the zero-energy momentum spectrum
of the full Floquet states is overall quite well captured by that
of the time WSL eigenstates, providing a natural explanation
for the existence of the topological discontinuity across the
projected helical nodal line in terms of the π shift of the Zak
phase.

Strictly speaking, however, the time WSL eigenstates is
valid only in the limit of low frequency, where the Abelian
approximation is applicable. Away from this limit, there is
generally a mixing between different time WSL eigenstates
from the conduction (+) and valence (–)bands. Note that there
have been various theoretical efforts for the construction of
a systematic perturbation theory beyond the adiabatic limit,
taking the effects of the band-mixing terms into account
[47–49].

Fortunately, in our system of interest, the effects of the
band-mixing terms can be treated quite accurately without
utilizing the full power of such a systematic perturbation the-
ory. Specifically, it can be shown that the band-mixing terms
generate the quasienergy gap of the Floquet states, which is
highly localized near the projected helical nodal line without
disturbing the overall structure of the momentum spectrum
well captured by the time WSL eigenstates. Mathematically,
the quasienergy gap near the projected helical nodal line can
be computed quite accurately by using some form of the
saddle point approximation. In particular, a quite accurate
analytical formula can be obtained in the continuum limit,
where the graphene Hamiltonian is taken to be linear in the
vicinity of the Dirac node. Concretely, the quasienergy gap
near the projected helical nodal line is given by

Egap � �A√
2πρ(A + ρ)

e
− 2(A−ρ)4

ρ(A+ρ)(�/τ )2 , (24)

where ρ = |k⊥ − KDirac| is the distance from the Dirac node.
See Appendix C for the details of the derivation. It is impor-
tant to note that the quasienergy gap vanishes much faster than
� as soon as ρ becomes separated from A by roughly more
than

√
A�/τ . This means that the topological discontinuity

across the projected helical nodal line becomes more and more
pronounced in the limit of low frequency.

Conversely speaking, away from the low frequency limit,
the quasienergy gap is opened to smear out the topological
discontinuity across the projected helical nodal line. The
projected helical nodal line would appear as a dark ring
with the width

√
A�/τ , which vanishes slower in the limit

of low frequency than the separation distance between two
adjacent time WSL eigenstates, �/τ . This means that the
dark ring tracking the projected helical nodal line can be used
as an experimental signature for the topological discontinuity
since it may be easier to detect in the experimental situations,
where the momentum resolution is not sufficient to distinguish
between two adjacent Floquet states.

Figure 3 shows the comparison between the quasienergy
dispersions of the time WSL eigenstates and the full Floquet
states. It is important to note that the quasienergy gap is very
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FIG. 3. Quasienergy dispersion of the Floquet states in irradiated graphene. Here, the radiation frequency and the radius of the helical nodal
line are set to be the same corresponding values as Fig. 2. (a) Quasienergy dispersion of the time Wannier-Stark ladder eigenstates showing
the mismatch of the quasienergy eigenvalues and hence the topological discontinuity at the projected helical nodal line. Note that the inside of
the projected helical nodal line is denoted as a yellow region. (b) Quasienergy dispersion of the full Floquet states showing the opening of the
quasienergy gap near the projected helical nodal line. The quasienergy gap is very well captured by the analytical formula Egap in Eq. (24), the
result of which is plotted as the shaded (grey) regions bounded by the thin black lines in the figure. Note that the thin black lines denote the
plus and minus halves of Egap. Color indicates the Abelian weight measuring how much the Floquet states belongs to the conduction (red) or
valence (blue) band. By construction, the time Wannier-Stark ladder (WSL) eigenstates belong to either one of the two bands exclusively. The
green lines in the insets show the scanned momentum path, along which the quasienergy dispersion is computed.

well described by the analytical formula for Egap in Eq. (24).
This means that the full Floquet states are essentially given by
the time WSL eigenstates except for the immediate vicinity
of the projected helical nodal line. This fact is reaffirmed by
the Abelian weight measuring how much the Floquet states
belong to the conduction or valence band, or equivalently
the overlap between the time WSL eigenstates and the full
Floquet states. See Appendix D for the details on how to
compute the Abelian weight.

Figure 4 shows the evolution of the Floquet states as a
function of the radius of the helical nodal line. As one can
see, the time WSL eigenstates can capture the evolution of
the full Floquet states very well in a wide range of the radius
of the helical nodal line. It is important to note that the
momentum spectrum undergoes an interesting transition when
the projected helical nodal lines overlap with those encircling
different Dirac nodes.

V. FLOQUET STATES AT INTERMEDIATE FREQUENCY

Generally, the quasienergy dispersion is quite complicated
at intermediate frequency. Nevertheless, the time WSL eigen-
states can provide a useful guide to the full quasienergy
dispersion.

For simplicity, let us take the continuum limit of graphene
or the surface of a topological insulator under radiation, which
has the same Hamiltonian expressed in the form of Eq. (4)
with gk replaced by gq = τ [(qx − A cos κ ) + i(qy − A sin κ )]
with q = (q⊥, κ ) and q⊥ = (qx, qy) = k⊥ − KDirac being the
momentum measured from the Dirac node. The quasienergy
of the time WSL eigenstates in this limit can be obtained
analytically via Eq. (22) with ε̄±(q⊥) given as follows:

ε̄±(q⊥) = ±2τA

π
(1 + r)E

(
2
√

r

1 + r

)
, (25)

where E (k) is the complete elliptic integral of the second
kind and r = ρ/A with ρ = |q⊥|. Considering the overall
shape of the elliptic integral, the quasienergy dispersion of
the time WSL eigenstates can be understood as being roughly
quadratic and linear inside and outside the projected helical
nodal line, respectively, with the relative topological shift by
�/2. Tuning the ratio between A and �/τ can create an
interesting series of patterns in the quasienergy dispersion of
the Floquet states.

Figure 5 shows the quasienergy dispersion of the
Floquet states at an intermediate frequency with three
representative ratios to the radius of the helical nodal line,
say, �/τ = 16A/π , 8A/π , and A. At �/τ = 16A/π , the
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FIG. 4. Evolution of the Floquet states in irradiated graphene as a function of the radius of the helical nodal line. (a)–(e) Zero-energy
momentum spectrum of the time Wannier-Stark ladder eigenstates. (f)–(j) Zero-energy momentum spectrum of the full Floquet states. Here,
the radius of the helical nodal line A is changed from 0.4 [(a), (f)] to 0.6 [(b), (g)] to 1.0 [(c), (h)] to 1.2 [(d), (i)] to 1.6 [(e), (j)], while the
radiation frequency �/τ is fixed as 0.05. Note that the projected helical nodal lines encircling different Dirac nodes are just about to touch at
(d) and (i) and pass through each other at (e) and (j).

FIG. 5. Quasienergy dispersion of the Floquet states in the continuum limit at an intermediate frequency with three representative ratios to
the radius of the helical nodal line. Specifically, �/τ = 16A/π (a)–(d), 8A/π (e)–(h), and A (i)–(l) with �/τ = 0.2. (a), (e), (i) Quasienergy
dispersion of the time Wannier-Stark ladder eigenstates. (b), (f), (j) Quasienergy dispersion of the full Floquet states. (c), (g), (k) Local density
of Floquet states via the Gaussian probe weight with the standard deviation σ being 1/2. (d), (h), (l) Local density of Floquet states via the
Gaussian probe weight with the standard deviation σ being 3/2. As one can see, at �/τ = A (i)–(l), the quasienergy dispersion of the Floquet
states cannot be understood in terms of the simple overlapping Floquet copies of the Dirac dispersion.
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quasienergy dispersion can be rather well understood in
terms of the simple overlapping Floquet copies of the Dirac
dispersion with slight gap opening whenever different bands
cross each other. Such a understanding is still possible
at �/τ = 8A/π despite some irregularities. At �/τ = A,
however, it is no longer possible to do so. This change
of patterns is due to the intricate interplay between the
quasienergy dispersion inside and outside the projected
helical nodal line having the relative topological shift by �/2.

To compare with the actual experimental data obtained via
TARPES, it is convenient to compute the “local density of Flo-
quet states” (LDOFS), which is analogous to the local density
of states under a dc electric field [34,35]. Mathematically, the
LDOFS is defined as

ρloc(ω, k⊥) =
∑
α,n

Wprobe(n)
〈
ψn

α,k⊥

∣∣ψn
α,k⊥

〉
δ(ω − εα,k⊥ ),

(26)

where the “probe weight” Wprobe(n) is the Gaussian-like
localized weight indicating the probability for an electron
to exist in the nth Fourier component state after interacting
with the probing light. For example, Wprobe(n) ∝ e−(n−n̄)2/2σ 2

with n̄ and σ being the mean and the standard deviation,
respectively. Note that |ψn

α,k⊥〉 is the n-th Fourier component
of the αth Floquet state at k⊥ with the quasienergy eigenvalue
εα,k⊥ . It is found that the quasienergy dispersion shown in
the middle panels of Fig. 5 [specifically, Fig. 5(h)] is quite
consistent with the experimental data obtained by Wang et al.
via TARPES [31].

VI. DISCUSSION

In this paper, we have shown theoretically that a Flo-
quet topological semimetal with a helical nodal line can be
generated in 2+1 dimensions by irradiating graphene or the
surface of a topological insulator with circularly polarized
light. The dynamics of such a Floquet topological semimetal
is described by the TSH, where an effective electric field is
applied along the axis of the helical nodal line. In the case of
irradiated graphene, the TSH can host a Floquet topological
insulator and a weakly driven Floquet topological semimetal
with a helical nodal line in the high and low frequency limits,
respectively. Importantly, in the limit of low frequency, the π

shift of the Zak phase inside the projected helical nodal line
is predicted to generate the topological discontinuity across
the projected helical nodal line in the momentum spectrum of
the Floquet states. At intermediate frequency, this topological
discontinuity can create an interesting change of patterns in
the quasienergy dispersion of the Floquet states, which can be
experimentally measured via TARPES.

We conclude this paper by discussing the possibility of
observing the topological surface flat band [10], also known
as the drumhead surface state, at the boundary of the Floquet
lattice. Theoretically, the Floquet topological semimetal with
a helical nodal line in 2+1 dimensions should have exactly
the same topological surface flat band at the boundary as
the usual topological semimetal with a nodal line in three
dimensions. A question is what the boundary of the Floquet
lattice means physically. The Floquet lattice site is labeled by
the time-conjugate Fourier index denoting the nth harmonics
of the driving frequency. We believe that the boundary of

the Floquet lattice can be interpreted as the maximum or
minimum cutoff harmonics, up to which electrons can respond
to the driving electric field. If so, the topological surface flat
band can be observed near this cutoff frequency.
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APPENDIX A: DERIVATION OF THE TIME STARK
HAMILTONIAN

We begin by writing the time-periodic Schrödinger equa-
tion with Ĥ (k⊥, t + T ) = Ĥ (k⊥, t ),

i
∂

∂t
|�(k⊥, t )〉 = Ĥ (k⊥, t )|�(k⊥, t )〉, (A1)

where we set h̄ = 1 throughout this section. Note that, here,
the dependence of the wave function on the real momentum
k⊥ and time t are denoted separately. Now, according to the
Floquet theorem, the wave function can be written as the
product between the quasienergy phase factor and the time-
periodic part,

|�(k⊥, t )〉 = e−iεt |ψ (k⊥, t )〉, (A2)

where |ψ (k⊥, t + T )〉 = |ψ (k⊥, t )〉. Then, the time-periodic
part of the wave function satisfies the following equation:(

i
∂

∂t
+ ε

)
|ψ (k⊥, t )〉 = Ĥ (k⊥, t )|ψ (k⊥, t )〉. (A3)

In terms of the extended momentum notation k = (k⊥, κ )
with κ = −�t , the above equation can be rewritten as follows:

ε|ψ (k)〉 =
(

Ĥ (k) + i�
∂

∂κ

)
|ψ (k)〉, (A4)

where it is important to note that t is guaranteed to appear in
the form of �t due to the time-periodic property of Ĥ (k =
(k⊥, t )) and |ψ (k = (k⊥, t ))〉.

Now, let us express the time-periodic part of the wave func-
tion in terms of the new basis set diagonalizing Ĥ (k). This
new basis set is none other than the instantaneous eigenstate
basis defined by the following unitary transformation:

Û†(k)Ĥ (k)Û (k) = Ê (k), (A5)

where Ê (k) is the instantaneous energy eigenvalue matrix.
Accordingly, the time-periodic part of the wave function is
unitary transformed as follows:

|ψ (k)〉 = Û (k)|ψ̃ (k)〉, (A6)

where |ψ̃ (k)〉 is the time-periodic part of the wave function
expressed in terms of the instantaneous eigenstate basis.

As a consequence of the above unitary transformation,
|ψ̃ (k)〉 now satisfies the following equation:

ε|ψ̃ (k)〉 =
(
Ê (k) + �

[
i

∂

∂κ
+ iÛ†(k)

∂

∂κ
Û (k)

])
|ψ̃ (k)〉.

(A7)
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The last step for the derivation of the TSH is to note that the
second term in the bracket is actually the very definition of the
Berry connection:

Âκ (k) = iÛ†(k)
∂

∂κ
Û (k). (A8)

Finally, the TSH is defined such that its diagonalization gives
rise to the quasienergy,

ε|ψ̃ (k)〉 = ĤTS(k)|ψ̃ (k)〉, (A9)

where

ĤTS(k) = Ê (k) + �

[
i

∂

∂κ
+ Âκ (k)

]
. (A10)

APPENDIX B: HIGH-FREQUENCY EFFECTIVE
HAMILTONIAN OF IRRADIATED GRAPHENE

In the limit of high frequency, the TSH can be expanded up
to the order of 1/� as follows:

Heff,ν = ν�Î + dk⊥ · σ, (B1)

describing the effective dynamics of the νth pair of the
quasienergy band. For convenience, let us rewrite the results
obtained in Eq. (12):

dk⊥,+ = dk⊥,x + idk⊥,y = �∗
0 (k⊥), (B2)

dk⊥,− = dk⊥,x − idk⊥,y = �0(k⊥), (B3)

dk⊥,z =
∞∑

n=1

|�n(k⊥)|2 − |�−n(k⊥)|2
n�

, (B4)

where

�n(k⊥) = eiφ0(k⊥ )
∫ 2π

0

dκ

2π
gkeinκ , (B5)

with φ0(k⊥) = φ(k⊥, κ = 0).
In the nearest-neighbor tight-binding model of graphene,

gk = −τ

3∑
j=1

eikPei-sub
⊥ ·c j , (B6)

where kPei-sub
⊥ = (kx − A cos κ, ky − A sin κ ) with c1 =

(−√
3/2,−1/2), c2 = (

√
3/2,−1/2), and c3 = (0, 1) in

units of lattice spacing, which is set to be unity. After some
algebra, one can show that

gk = −τ

3∑
j=1

eik⊥·c j e−iA cos (κ−θ j ), (B7)

where cos θ j = c j,x and sin θ j = c j,y. Then, Eq. (B5) can be
rewritten as follows:

�n(k⊥)

eiφ0(k⊥ )
= −τ

3∑
j=1

eik⊥·c j

∫ 2π

0

dκ

2π
einκe−iA cos (κ−θ j )

= −τ inJn(−A)
∑

j

eik⊥·c j einθ j , (B8)

where the definition of the Bessel function has been used:
Jn(z) = ∫ dφ

2π in einφeiz cos φ .

We are interested in the modulus square of �n(k⊥) for
n �= 0:

|�n(k⊥)|2 = τ 2J2
n (A)

∣∣∣∣∣∣
3∑

j=1

eik⊥·c j einθ j

∣∣∣∣∣∣
2

. (B9)

Meanwhile, for n = 0, �0(k⊥) itself is important,

�0(k⊥) = −τJ0(A)eiφ0(k⊥ )
3∑

j=1

eik⊥·c j , (B10)

where we have used Jn(−z) = (−1)nJn(z). By using these
expressions, one can rewrite Eq. (B4) as follows:

dk⊥,z = τ 2

�

∞∑
n=1

J2
n (A)

n
Fn(k⊥), (B11)

where we have used J−n(z) = (−1)nJn(z) and

Fn(k⊥) =
∣∣∣∣∣∣

3∑
j=1

eik⊥·c j einθ j

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣

3∑
j=1

eik⊥·c j e−inθ j

∣∣∣∣∣∣
2

= 2i
∑
j �=k

sin (nθ jk )eik⊥·c jk , (B12)

where θ jk = θ j − θk and c jk = c j − ck . Now, it is important to
note that c jk are actually the displacement vectors connecting
between next-nearest-neighboring sites in graphene. That is,
there are six displacement vectors: η1 = c13, η2 = c23, η3 =
c21, η4 = c31, η5 = c32, and η6 = c12. Also noting that θ12 =
θ23 = θ31 = −θ21 = −θ32 = −θ13 = −2π/3, one can rewrite
Eq. (B12) as follows:

Fn(k⊥) = 2i sin

(
2nπ

3

) 6∑
j=1

(−1) jeik⊥·η j . (B13)

Finally, after collecting all the factors, dk⊥,z can be written as

dk⊥,z = iλeff (A)
6∑

j=1

(−1) jeik⊥·η j , (B14)

where

λeff (A)

τ 2/�
= 2

∞∑
n=1

J2
n (A)

n
sin

(
2nπ

3

)
. (B15)

Also, by using Eq. (B10), dk⊥,± can be written as

d∗
k⊥,+ = dk⊥,− = −τeff (A)eiφ0(k⊥ )

3∑
j=1

eik⊥·c j , (B16)

where τeff (A) = τJ0(A). Note that the phase factor eiφ0(k⊥ ) is
not important since it can be removed via an appropriate gauge
transformation.

APPENDIX C: QUASIENERGY GAP NEAR THE
PROJECTED HELICAL NODAL LINE AT LOW

FREQUENCY

The quasienergy gap opens up when two different time
WSL eigenstates with one from the conduction band and the
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other from the valence band are mixed together. The mixing
matrix element between these two time WSL eigenstates is
given by

Mnn′ (k⊥) = �

2

∫ 2π

0

dκ

2π

[
ψWSL

+,n (k)
]∗ ∂φ(k)

∂κ
ψWSL

−,n′ (k), (C1)

since A±∓
κ (k) = 1

2
∂
∂κ

φ(k). Also,

ψWSL
±,n (k) = e− i

�

∫ κ

0 dκ ′[EWSL
±,n (k⊥ )−ε±(k′ )− �

2
∂
∂κ

φ(k′ )], (C2)

since A±±
κ (k) = 1

2
∂
∂κ

φ(k).
Now, due to the convenient fact that all the terms depending

on the Zak phase cancel each other completely, the mixing
matrix element can be written in a single formula regardless
of whether k⊥ is located inside or outside the projected helical
nodal line:

Mnn′ (k⊥) = �

2

∫ 2π

0

dκ

2π

∂φ(k)

∂κ
e−i�nκe

i
�

∫ κ

0 dκ ′[�ε(k′ )−�ε̄],

(C3)

where �n = n − n′, �ε(k) = ε+(k) − ε−(k), and �ε̄ =
ε̄+(k⊥) − ε̄−(k⊥). By inspecting the form of the above in-
tegral, one can find that the most important contribution
comes from the region, where φ(k) changes significantly as
a function of κ .

It can be shown from Eq. (5) that φ(k) changes signif-
icantly around the critical value of κ , κc(k⊥), where the
helical nodal line is the closest to the constant k⊥ line. For
convenience, let us define f (κ ) = ∂

∂κ
φ(k), which is writ-

ten as a function of κ with the k⊥ dependence being im-
plicit. Now, one can expand f (κ ) around κc; f (κ ) � fc +
f ′
c�κ + f ′′

c
2 (�κ )2, where fc = f (κ = κc), f ′

c = f ′(κ = κc),
f ′′
c = f ′′(κ = κc), and �κ = κ − κc. Since f ′

c = 0 due to the
very definition of κc, one can approximate f (κ ) as follows:

f (κ ) � fce
f ′′c

2 fc
(�κ )2

. (C4)

Under this expansion scheme, one can then rewrite Eq. (C3)
as follows:

Mnn′

� fc/2
�

∫ 2π

0

dκ

2π
e

f ′′c
2 fc

(�κ )2

e−i�nκe
i
�

∫ κ

0 dκ ′[�ε(k′ )−�ε̄]. (C5)

Note that the k⊥ dependence is not explicitly written from this
forward unless it is necessary.

In the limit of low frequency, the last exponential term in
Eq. (C5) fluctuates wildly unless its argument is nearly zero.
To take care of this wildly fluctuating term, let us first rewrite
Eq. (C5) as follows:

Mnn′

� fc/2
� C

∫ 2π

0

dκ

2π
e

f ′′c
2 fc

(�κ )2

e−i�n�κe
i
�

∫ κ

κc
dκ ′[�ε(k′ )−�ε̄],

(C6)

where C = e−i�nκc e
i
�

∫ κc
0 dκ ′[�ε(k′ )−�ε̄] is just a constant phase

factor. Then, we expand the argument of the last exponential
term up to the linear of order of �κ as follows:

Mnn′

� fc/2
� C

∫ 2π

0

dκ

2π
e

f ′′c
2 fc

(�κ )2

e−i[�n− 1
�

(�εc−�ε̄)]�κ, (C7)

where �εc = �ε(k⊥, κ = κc).

Then, as a final approximation, we take the upper and lower
limits of the integral to be plus and minus infinity and perform
the Gaussian integration with respect to �κ:

Mnn′

� fc/2
� C

∫ ∞

−∞

dκ

2π
e−α(�κ )2

eiβ�κ

= C
2π

√
π

α
e− β2

4α , (C8)

where α = − f ′′
c /2 fc and β = 1

�
(�εc − �ε̄) − �n. Note that

the above Gaussian integration is valid since α > 0 as shown
by an explicit calculation.

We are interested in the quasienergy gap at zero
quasienergy, or any other quasienergy value where the
quasienergy of the time WSL eigenstate from the conduction
band matches exactly that from the valence band. Mathe-
matically, this means that �ε̄ + ��n = 0. In other words,
the diagonal matrix element is exactly the same for both
of the time WSL eigenstates from the conduction and va-
lence bands. In this situation, the quasienergy gap is given
simply by twice the absolute value of the mixing matrix
element:

Egap = 2|M�n=−�ε̄/�|

� � fc

2π

√
π

α
e− (�εc )2

4α�2 . (C9)

Finally, in the continuum limit, the graphene Hamiltonian
is taken to be linear in the vicinity of a given Dirac node,
i.e., gq = τ [(qx − A cos κ ) + i(qy − A sin κ )], where q⊥ =
(qx, qy) = k⊥ − KDirac is the momentum measured from the
Dirac node. Here, f (κ ) = ∂

∂κ
φ(qx, qy, κ ) can be obtained

analytically,

f (κ ) = 1 − ρ

A cos (κ − θ )

1 − (
ρ

A

)2 − 2 ρ

A cos (κ − θ )
, (C10)

where ρ =
√

q2
x + q2

y and tan θ = qy/qx. The above formula
can be derived by noting that gq = ρeiθ − Aeiκ . By using this
formula, one can determine fc = A

A−ρ
and α = ρ(A+ρ)

2(A−ρ)2 with
κc = θ . Also, one can show �εc = 2|g(q⊥,κc )| = 2τ |A − ρ| in
the continuum limit. Inserting fc, α, and �εc into Eq. (C9),
we arrive at the following formula for the quasienergy gap in
the continuum limit:

Egap � �A√
2πρ(A + ρ)

e
− 2(A−ρ)4

ρ(A+ρ)(�/τ )2 . (C11)

It is important to note that, due to the exponential sup-
pression term, the quasienergy gap near the projected heli-
cal nodal line vanishes much faster than � as soon as ρ

becomes separated from A by roughly more than
√

A�/τ .
Consequently, in the limit of low frequency, the time WSL
eigenstates become more and more sharply defined with the
correspondingly pronounced topological discontinuity across
the projected helical nodal line.

APPENDIX D: ABELIAN WEIGHT OF THE FULL
FLOQUET STATES

Here, we provide some details on how to compute
the Abelian weight of the full Floquet states obtained by
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diagonalizing the Floquet Hamiltonian. In other words, we
would like to decompose the full Floquet states, |ψα (k)〉,
in terms of the conduction/valence time WSL eigenstates,
ψWSL

±,n (k), obtained by ignoring the off-diagonal elements of
the Berry connection. Mathematically, the Abelian weight of
the αth full Floquet states is defined as follows:

W±,α (k⊥) =
∑

n

∣∣∣∣
∫ 2π

0

dκ

2π
ψ∗

±,α (k)ψWSL
±,n (k)

∣∣∣∣
2

=
∫ 2π

0

dκ

2π
|ψ±,α (k)|2, (D1)

where ψ±,α (k) is the ±, or conduction/valence component of
|ψα (k)〉. The second line is obtained due to the completeness
of the time WSL eigenstates. Also, W+,α + W−,α = 1 due to
the normalization of the Floquet states. Therefore, the Abelian
weight is nothing but the projection weight of the full Floquet
states onto the instantaneous eigenstate basis.

Now, suppose that one obtains the full Floquet states by
diagonalizing the Floquet Hamiltonian ĤF expressed in terms
of the Floquet and sublattice index, not the TSH expressed in
terms of time and the instantaneous energy eigenvalue index.
That is,

|ψα (k)〉 =
∑

m

e−imκ

(
aα,m(k⊥)
bα,m(k⊥)

)
, (D2)

where aα,m and bα,m denote the amplitude of the Floquet state
in each sublattice basis. To compute the Abelian weight in
terms of this representation, one needs to perform a unitary
transformation of this Floquet state to the instantaneous eigen-
state basis. Mathematically,

ψ±,α (k) = 〈±|U †(k)|ψα (k)〉, (D3)

where 〈±| = (1, 0) and (0,1), respectively. The unitary trans-
formation matrix is given by

U (k) = 1√
2

(
e−iφ(k) e−iφ(k)

1 −1

)

= 1√
2

∑
n

e−inκ

(
ϕn(k⊥) ϕn(k⊥)

δn,0 −δn,0

)
, (D4)

where ϕn(k⊥) is the nth time-conjugate Fourier component
of e−iφ(k). Then, after plugging all the above expressions into
Eq. (D1) and performing the time integration, one can obtain
the following result:

W±,α = 1

2
±

∑
n,m

Re(ϕna∗
α,mbα,m−n), (D5)

where the k⊥ argument is not explicitly written for simplicity.

[1] F. D. M. Haldane, Model for a Quantum Hall Effect Without
Landau levels: Condensed-Matter Realization of the “Parity
Anomaly,” Phys. Rev. Lett. 61, 2015 (1988).

[2] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[3] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin
Hall insulator state in HgTe quantum wells, Science 318, 766
(2007).

[4] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[5] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[6] K. Park, A passage to topological matter: Colloquium, J. Korean
Phys. Soc. 73, 817 (2018).

[7] S. Murakami, Phase transition between the quantum spin Hall
and insulator phases in 3D: Emergence of a topological gapless
phase, New J. Phys. 9, 356 (2007).

[8] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological semimetal and Fermi-arc surface states in the elec-
tronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101
(2011).

[9] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,
X. Dai, and Z. Fang, Dirac Semimetal and Topological Phase
Transitions in A3Bi (A = Na, K, Rb), Phys. Rev. Lett. 85,
195320 (2012).

[10] A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal
semimetals, Phys. Rev. B 84, 235126 (2011).

[11] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern
Semimetal and the Quantized Anomalous Hall Effect in
HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011).

[12] J.-M. Carter, V. V. Shankar, M. A. Zeb, and H.-Y. Kee,
Semimetal and topological insulator in perovskite iridates,
Phys. Rev. B 85, 115105 (2012).

[13] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai,
and Y. Kawazoe, Topological nodal-line semimetal in three-
dimensional graphene networks, Phys. Rev. B 92, 045108
(2015).

[14] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line
semimetals with and without spin-orbital coupling, Phys. Rev.
B 92, 081201(R) (2015).

[15] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Diracline
Nodes in Inversion-Symmetric Crystals, Phys. Rev. Lett. 115,
036806 (2015).

[16] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological Nodal-
Line Semimetal and Dirac Semimetal State in Antiperovskite
Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

[17] L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie,
and R. J. Cava, A new form of Ca3P2 with a ring of Dirac nodes,
APL Mater. 3, 083602 (2015).

[18] Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. Cohen, and S.
Zhang, Nanostructured carbon allotropes with Weyl-like loops
and points, Nano Lett. 15, 6974 (2015).

[19] Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Nodal-
surface and nodal-line fermions from nonsymmorphic lattice
symmetries, Phys. Rev. B 93, 085427 (2016).

[20] H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topological
nodal-line semimetals in alkaline-earth stannides, germanides,
and silicides, Phys. Rev. B 93, 201114(R) (2016).

[21] Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2

and other topological semimetals with line nodes and drumhead
surface states, Phys. Rev. B 93, 205132 (2016).

115136-11

https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.3938/jkps.73.817
https://doi.org/10.3938/jkps.73.817
https://doi.org/10.3938/jkps.73.817
https://doi.org/10.3938/jkps.73.817
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevB.85.115105
https://doi.org/10.1103/PhysRevB.85.115105
https://doi.org/10.1103/PhysRevB.85.115105
https://doi.org/10.1103/PhysRevB.85.115105
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1063/1.4926545
https://doi.org/10.1063/1.4926545
https://doi.org/10.1063/1.4926545
https://doi.org/10.1063/1.4926545
https://doi.org/10.1021/acs.nanolett.5b02978
https://doi.org/10.1021/acs.nanolett.5b02978
https://doi.org/10.1021/acs.nanolett.5b02978
https://doi.org/10.1021/acs.nanolett.5b02978
https://doi.org/10.1103/PhysRevB.93.085427
https://doi.org/10.1103/PhysRevB.93.085427
https://doi.org/10.1103/PhysRevB.93.085427
https://doi.org/10.1103/PhysRevB.93.085427
https://doi.org/10.1103/PhysRevB.93.201114
https://doi.org/10.1103/PhysRevB.93.201114
https://doi.org/10.1103/PhysRevB.93.201114
https://doi.org/10.1103/PhysRevB.93.201114
https://doi.org/10.1103/PhysRevB.93.205132
https://doi.org/10.1103/PhysRevB.93.205132
https://doi.org/10.1103/PhysRevB.93.205132
https://doi.org/10.1103/PhysRevB.93.205132


KUN WOO KIM, HYUNWOONG KWON, AND KWON PARK PHYSICAL REVIEW B 99, 115136 (2019)

[22] A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto,
Line-node Dirac semimetal and topological insulating phase in
noncentrosymmetric pnictides CaAgX (X = P, As), J. Phys.
Soc. Jpn. 85, 013708 (2016).

[23] T. Oka and S. Kitamura, Floquet engineering of quantum mate-
rials, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

[24] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys.
Rev. B 79, 081406(R) (2009).

[25] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Trans-
port properties of nonequilibrium systems under the application
of light: Photoinduced quantum Hall insulators with Landau
levels, Phys. Rev. B 84, 235108 (2011).

[26] A. Kundu, H. A. Fertig, and B. Seradjeh, Effective Theory of
Floquet Topological Transitions, Phys. Rev. Lett. 113, 236803
(2014).

[27] H. Dehghani, T. Oka, and A. Mitra, Out-of-equilibrium elec-
trons and the Hall conductance of a Floquet topological insula-
tor, Phys. Rev. B 91, 155422 (2015).

[28] M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka,
J. K. Freericks, and T. P. Devereaux, Theory of Floquet band
formation and local pseudospin textures in pump-probe photoe-
mission of graphene, Nat. Commun. 6, 7047 (2015).

[29] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and H.
Aoki, Brillouin-Wigner theory for high-frequency expansion in
periodically driven systems: Application to Floquet topological
insulators, Phys. Rev. B 93, 144307 (2016).

[30] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological
insulator in semiconductor quantum wells, Nat. Phys. 7, 490
(2011).

[31] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Ob-
servation of Floquet-Bloch states on the surface of a topological
insulator, Science 342, 453 (2013).

[32] F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee,
P. A. Lee, and N. Gedik, Selective scattering between Floquet-
Bloch and Volkov states in a topological insulator, Nat. Phys.
12, 306 (2016).

[33] A. Gómez-León and G. Platero, Floquet-Bloch theory and
Topology in Periodically Driven Lattices, Phys. Rev. Lett. 110,
200403 (2013).

[34] W.-R. Lee and K. Park, Direct manifestation of topological
order in the winding number of the Wannier-Stark ladder, Phys.
Rev. B 92, 195144 (2015).

[35] K. W. Kim, W.-R. Lee, Y. B. Kim, and K. Park, Surface to
bulk Fermi arcs via Weyl nodes as topological defects, Nat.
Commun. 7, 13489 (2016).

[36] A. Eckardt and E. Anisimovas, High-frequency approximation
for periodically driven quantum systems from a Floquet-space
perspective, New J. Phys. 17, 093039 (2015).

[37] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Light-induced anomalous Hall
effect in graphene, arXiv:1811.03522.

[38] F. Casas, J. A. Oteo, and J. Ros, Floquet theory: Exponen-
tial perturbative treatment, J. Phys. A: Math. Gen. 34, 3379
(2001).

[39] S. Rahav, I. Gilary, and S. Fishman, Effective Hamiltonians for
periodically driven systems, Phys. Rev. A 68, 013820 (2003).

[40] E. S. Mananga and T. Charpentier, Introduction of the Floquet-
Magnus expansion in solid-state nuclear magnetic resonance
spectroscopy, J. Chem. Phys. 135, 044109 (2011).

[41] H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Attosecond
strong-field interferometry in graphene: Chirality, singularity,
and the Berry phase, Phys. Rev. B 93, 155434 (2016).

[42] H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene
superlattices in strong circularly polarized fields: Chirality,
Berry phase, and attosecond dynamics, Phys. Rev. B 96, 075409
(2017).

[43] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations
in polyacetylene, Phys. Rev. B 22, 2099 (1980).

[44] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys. Rev.
Lett. 62, 2747 (1989).

[45] R. D. King-Smith and D. Vanderbilt, Theory of polarization of
crystalline solids, Phys. Rev. B 47, 1651 (1993).

[46] P. Delplace, D. Ullmo, and G. Montambaux, Zak phase and the
existence of edge states in graphene, Phys. Rev. B 84, 195452
(2011).

[47] G. Rigolin, G. Ortiz, and V. H. Ponce, Beyond the quantum
adiabatic approximation: adiabatic perturbation theory, Phys.
Rev. A 78, 052508 (2008).

[48] H. Martiskainen and N. Moiseyev, Perturbation theory for
quasienergy Floquet solutions in the low-frequency regime of
the oscillating electric field, Phys. Rev. A 91, 023416 (2015).

[49] M. Rodriguez-Vega, M. Lentz, and B. Seradjeh, Floquet per-
turbation theory: Formalism and application to low-frequency
limit, New J. Phys. 20, 093022 (2018).

115136-12

https://doi.org/10.7566/JPSJ.85.013708
https://doi.org/10.7566/JPSJ.85.013708
https://doi.org/10.7566/JPSJ.85.013708
https://doi.org/10.7566/JPSJ.85.013708
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevLett.113.236803
https://doi.org/10.1103/PhysRevLett.113.236803
https://doi.org/10.1103/PhysRevLett.113.236803
https://doi.org/10.1103/PhysRevLett.113.236803
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevB.92.195144
https://doi.org/10.1103/PhysRevB.92.195144
https://doi.org/10.1103/PhysRevB.92.195144
https://doi.org/10.1103/PhysRevB.92.195144
https://doi.org/10.1038/ncomms13489
https://doi.org/10.1038/ncomms13489
https://doi.org/10.1038/ncomms13489
https://doi.org/10.1038/ncomms13489
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
http://arxiv.org/abs/arXiv:1811.03522
https://doi.org/10.1088/0305-4470/34/16/305
https://doi.org/10.1088/0305-4470/34/16/305
https://doi.org/10.1088/0305-4470/34/16/305
https://doi.org/10.1088/0305-4470/34/16/305
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1103/PhysRevA.68.013820
https://doi.org/10.1063/1.3610943
https://doi.org/10.1063/1.3610943
https://doi.org/10.1063/1.3610943
https://doi.org/10.1063/1.3610943
https://doi.org/10.1103/PhysRevB.93.155434
https://doi.org/10.1103/PhysRevB.93.155434
https://doi.org/10.1103/PhysRevB.93.155434
https://doi.org/10.1103/PhysRevB.93.155434
https://doi.org/10.1103/PhysRevB.96.075409
https://doi.org/10.1103/PhysRevB.96.075409
https://doi.org/10.1103/PhysRevB.96.075409
https://doi.org/10.1103/PhysRevB.96.075409
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.91.023416
https://doi.org/10.1103/PhysRevA.91.023416
https://doi.org/10.1103/PhysRevA.91.023416
https://doi.org/10.1103/PhysRevA.91.023416
https://doi.org/10.1088/1367-2630/aade37
https://doi.org/10.1088/1367-2630/aade37
https://doi.org/10.1088/1367-2630/aade37
https://doi.org/10.1088/1367-2630/aade37



