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Quantum Phase Transition and 
Entanglement in Topological 
Quantum Wires
Jaeyoon Cho   1,2 & Kun Woo Kim3

We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting 
the two-site entanglements in the ground state. It is shown that the topological phase transition of 
the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for 
finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity 
has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We 
make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical 
nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type 
of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. 
This transition is characterised solely by quantum information theory and does not accompany the 
closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of 
the transition points.

Quantum phase transition is one of the pillars underpinning condensed matter physics1. Conventional wisdom 
states that different quantum phases are generally discriminated in terms of the symmetry carried by the ground 
state or other features that have an underlying topological interpretation2. The former is described by local order 
parameters associated with the symmetries and the latter by topological orders, which are nowadays classified 
into intrinsic and symmetry-protected ones2–9. In both cases, a continuous transition between different phases is 
mediated by a spectrally gapless critical point, in the vicinity of which thermodynamic quantities exhibit scaling 
behaviours classified into universality classes10.

Modern understanding of quantum phase transition has been significantly enriched by incorporating the con-
cept of entanglement7, 8, 11–17. Quantum phases are determined after all by the way how different particles or dif-
ferent parties in the system are mutually related. In this sense, it is natural to expect that entanglement would bear 
the fingerprint of the quantum phase. This perspective is especially powerful in the study of topological orders, 
which are a purely quantum effect. For example, states with an intrinsic topological order have a long-range 
entanglement and a nonzero topological entanglement entropy7, 14, 15. Symmetry-protected topological orders are 
signified by a degenerate entanglement spectrum8. Topological quantum phase transition would then be thought 
of as a rearrangement of the pattern of entanglement.

While it is a common practice to study macroscopic bipartite entanglements in topological phases, they appar-
ently reveal only a partial aspect of many-body entanglement and, on the practical side, are hardly accessible in 
experiments. It is thus worthwhile to carry out a more detailed inspection of the many-body entanglement for a 
deeper understanding of topological phases. In particular, when it comes to the aspect of phase transition, local 
entanglement may be enough to gain information on the critical singularities, as is suggested by earlier works on 
symmetry-breaking quantum phase transitions in Heisenberg spin chains11, 12. If then, an interesting question is 
how its singular nature differs from that of the symmetry-breaking transitions. Besides, from the viewpoint that 
different quantum phases are imprinted in different patterns of entanglement, to examine many-body entangle-
ment in topological models is an interesting problem in its own right.

The aim of this paper is to investigate the quantum phase transition of one-dimensional topological models in 
terms of the two-site entanglements, namely, the concurrences, in the ground state18. As a prototypical model, we 
consider the Su-Schrieffer-Heeger (SSH) model on a one-dimensional lattice, as shown in Fig. 119. The system has 
N unit cells, each consisting of two sites {an,bn}. The model Hamiltonian is given by
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where {an,bn} denote the fermion operators for the n-th unit cell and the periodic boundary condition 
{aN+1,bN+1} = {a1,b1} is taken. We take the hopping rates

λ λ= − = +t t1 , 1 (2)1 2

to have a single control parameter λ ∈ [−1, 1]. This model has been well studied in the context of the band topol-
ogy5, 9. It is in a topological phase for λ > 0 and in a trivial phase for λ < 0 (this distinction of the phase, of course, 
depends on the choice of the unit cell).

We first derive an analytic formula for the concurrence between any two sites and show that in the thermo-
dynamic limit, the first derivative of the concurrence between adjacent sites with respect to λ diverges logarith-
mically at the critical point λ0 = 0, the exact form of which is also derived. This result is similar to the case of the 
symmetry-breaking quantum phase transition in the Heisenberg spin chain11, 12. However, due to the topological 
origin, there exists an interesting difference: for finite even N, the concurrence is discontinuous at λ = λ0 with 
a gap inversely proportional to N, while it remains analytic for odd N. This feature contrasts with the case of 
symmetry-breaking quantum phase transitions wherein the nonanalyticity appears only in the thermodynamic 
limit. We provide a geometric interpretation of that, directly relating the singularity with the change of the band 
topology. This phenomenon has a universal nature in one-dimensional topological phase transitions of nonin-
teracting fermions. As an example, we show that for the Kitaev chain4, the local electron density is an analogous 
quantity exhibiting the identical nonanalyticity at the critical point: its first derivative, i.e., the local compressi-
bility, diverges logarithmically in the thermodynamic limit and it is discontinuous for finite even system sizes.

Another finding we present in this paper is that there exists a different type of phase transition in the SSH 
model whereby the many-body entanglement of the ground state undergoes a sudden change in the following 
sense. As a means to characterise the many-body entanglement, we represent the pairwise pattern of all the con-
currences as a (simple) graph, where each edge means the existence of entanglement, i.e., a nonzero concurrence, 
between the two vertices (sites). We call this graph an “entangled graph”, following ref. 20. If two many-body states 
have different entangled graphs, we will regard them as having different classes of many-body entanglement and 
hence belonging to different phases. This kind of characterisation of many-body entanglement has a relatively 
long tradition20–22. In the present work, our particular motivation is coming from the fact that at two extreme 
phases λ = ± 1, the ground state is dimerised in such a way that either two sites in every unit cell form a singlet 
(λ = −1) or every adjacent pair of sites across unit cells form a singlet (λ = + 1), the entanglement of which can 
be naturally represented by the entangled graphs shown in Fig. 2. The problem now is then to figure out how the 
entangled graph for λ ∈ (−1, 1) interpolates between the two. It turns out that at λ ± .±  0 138, the entangled 
graph changes suddenly along with a nonanalyticity of the concurrence. This singularity is reminiscent of the 
phenomenon called the entanglement sudden death23. We emphasise, however, that this transition should not be 
confused with conventional quantum phase transitions because it has nothing to do with a nonanalyticity of the 
ground-state wavefunction itself: the nonanalytic behaviour comes from the way the entanglement is defined and 
quantified. A further remark on this transition will be made later. In what follows, “quantum phase transition” will 
refer only to the transition at λ = λ0.

Results
Reduced density matrices in the Su-Schrieffer-Heeger model.  It is convenient to switch to the 
momentum space, in which the Hamiltonian (1) takes the Bogoliubov-de Gennes form:

∑ ϕ σ ϕ=






⋅




∈

→ →†H h k( ) ,
(3)k

k k
BZ

where ϕk = (akbk)T, σ σ σ σ= + +�� ˆ ˆ ˆx y zx y z  is the vector composed of Pauli matrices, and 


h k( ) is given by

= + + .


ˆ ˆh k t t k x t k y( ) ( cos ) ( sin ) (4)1 2 2

Our aim is to obtain the concurrences between all pairs of lattice sites, which we denote by (a , b )n m , (a , a )n m , 
and (b , b )n m . For this, we need to obtain the corresponding reduced density matrices ρa bn m

, ρa an m
, and ρb bn m

. To 
this end, we follow the method presented in ref. 8, which we also recast in Methods. The first step needed is to 
spectrally flatten the Hamiltonian, which means that all positive eigenvalues of the Hamiltonian are replaced by 

Figure 1.  Su-Schrieffer-Heeger model. A unit cell consists of two sites. The hopping rates are set to be t1 = 1 − λ 
and t2 = 1 + λ for 0 ≤ λ ≤ 1.
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+1, while all negative ones by −1. A crucial observation is that the spectral flattening actually amounts to replac-
ing 


h k( ) with a normalised one = + = | |
 ˆ ˆ ˆ ˆ ˆh k h k x h k y h k h k( ) ( ) ( ) ( )/ ( )x y . We can write
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→¯ † ^i c Mc h k
4

( ) ,
(5)
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where it is understood that the lefthand side is the conventional Majorana representation of the righthand side 
with M  being a real skew-symmetric matrix. The next step is to project c and M  onto the subspace under consid-
eration. For example, in order to obtain ρa bn m

, one takes
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∑η φ= − +
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The quantity ηa bn m
 will play a central role in our analysis. Once the 4 × 4 matrix M̄a bn m

 is obtained from Eq. (6), one 
can follow the prescription in Methods to have

ρ
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η η

η η
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in the basis | | | |† † † †b a a b{ 0 , 0 , 0 , 0 }m n n m , the subscript in ηa bn m
 being omitted for brevity.

Phase diagram of many-body entanglement.  The concurrence can be directly calculated from the 
reduced density matrix (9) as

 η η= + −{ }max 0,1
2

( 2 1) ,
(10)a b a b

2
a bn m n m n m

Figure 2.  Phase diagram of many-body entanglement in the thermodynamic limit. There exist four phases P{0,1} 
and Q{0,1} with transition points λ0 = 0 and λ ± .±  0 138. The corresponding entangled graphs are depicted in 
the figure. λd d/1  is omitted as it can be obtained from λ λ= −( ) ( )1 2  .
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which is nonzero only for η > −2 1a bn m

18. It turns out that η η= = 0a a b bn m n m
 for all {n, m}, which implies that 

ρa an m
 and ρb bn m

 are fully mixed states and thus = = 0a a b bn m n m
  . Furthermore, (a , b )n m  also all vanish except for 

(a , b )n n  and  +(b , a )n n 1 . As a result, there are only three possible entangled graphs associated with the ground 
state, as shown in Fig. 2. Hereafter, for a notational simplicity, we let η η≡1 a bn n

,  ≡1 a bn n
, η η≡

+2 b an n 1
, and 

 ≡
+2 b an n 1

. The two concurrences are related as

λ λ= − .( ) ( ) (11)1 2 

In Fig. 2, we plot  λ( )1 , λ( )2 , and λ λd d( )/2  with respect to λ. One can distinguish four different phases P{0,1} 
and Q{0,1}. The subscript represents the Z2 index for the band topology with 0 (1) representing the trivial (topolog-
ical) phase. In the trivial (topological) phase,  >1 2 ( <1 2  ). In the phase Q, the entangled graph is connected, 
while in the phase P, it is disconnected. The phase transition of the band topology occurs at λ0 = 0 and that of the 
entangled graph occurs at λ ± .±  0 138.

Quantum phase transition at λ = λ0.  The nonanalyticity of the concurrence here can be ascribed to the 
sudden change of the band topology. The vector 



h k( ) in Eq. (3) traverses a circle on the x − y plane as k sweeps 
over the Brillouin zone 0 ≤ k < 2π, as in Fig. 3. The Z2 topological index is then determined by whether the circle 
encloses the origin or not17. In order to make this topological distinction more pronounced, one can take the unit 
vector ĥ k( ), as in Fig. 3. In the trivial phase (λ < 0), ĥ k( ) wanders on the half circle in x > 0. To close the loop, it 
traverses the same path twice. In the topological phase (t1 < t2), on the other hand, ĥ k( ) traverses the full circle 
once.

Such a topological difference is in fact captured by the quantity η1:

∫∑η λ
π

=  → .
π

∈

→∞ˆ ˆ
N

h k h k dk( ) 1 ( ) 1
2

( )
(12)k

x
N

x1
BZ 0

2

At the phase transition, the trajectory of ĥ k( ) should change its shape from one to the other in Fig. 3. In the 
thermodynamic limit wherein the trajectory becomes continuous, such a change cannot be made continuously. In 
view of Eq. (12), this discontinuity should be reflected as a sudden jump of η1 in the vicinity of the critical point, 
rendering the derivative of η1 with respect to λ, and hence that of 1, diverging at the critical point.

This nonanalyticity, as shown in Fig. 2, is reminiscent of earlier results for the cases of symmetry-breaking 
quantum phase transitions in spin chains11, 12. However, a stark difference is found for finite systems due to the 
different origins of the singularity. In the present case, the behaviour of η1(λ) depends on the parity of N, as shown 
in Fig. 4. For even N, η1(λ) is discontinuous at λ = 0 even though the system size is finite. This can be understood 
by re-examining Fig. 3 and Eq. (12). One can realise that for even N, as the trajectory of 



h k( ) is made of N equally 
spaced points on the circle, the difference between η1(0+) and η1(0−) is made solely by the contribution of 

π=ĥ k( )x , which is either 1 or −1 depending on the phase. We thus find that

δ η η≡ − = .+ −N
N

( ) (0 ) (0 ) 2
(13)1 1

For odd N, due to the exclusion of k = π, the discrete nature of η1(λ) disappears.
We perform additional calculations taking more realistic situations into account. 4(d) shows  λ( )2  in the pres-

ence of disorder, which is introduced by adding ε ε∑ +† †a a b b( )n n
a

n n n
b

n n  to the Hamiltonian with εn
a b{ , } being taken 

randomly and uniformly from the interval [−0.1, 0.1]. It turns out that small disorder does not significantly alter 

Figure 3.  The trajectories of 


h k( ) and ĥ k( ) (a) in the topologically trivial phase (λ < 0) and (b) in the topological 
phase (λ > 0).
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the essential features of the entanglement including the distinction between the cases of even and odd N. 4(e) 
shows  λd d/2  obtained by taking the two sites at the centre of the chain in the case of the open boundary condi-
tion. In this case, the peak of  λd d/2  does not coincide with λ = 0 because the symmetry with respect to λ ↔ − λ, 
as in Eq. (11), is broken down. Also, the difference according to the parity of N is absent because its origin—the 
inclusion or exclusion of k = π in the Brillouin zone—now loses its meaning. Here, the chemical potential is 
placed in the gap either below or above the two zero-energy states that appear due to the open boundary condi-
tion. Either case produces the same results. As is expected, as N increases, the singularity is more pronounced and 
the peak approaches λ = 0.

It is worthwhile to interpret the nonanalyticity in terms of the conventional language of the phase transition. 
In fact, the derivative of the free energy with respect to λ picks up η:

λ
λ

η λ η λ

∂
∂

= − + + . .

= −
→

→⟨ ⟩† †F T N a b b a

N

( , ) H c

[ ( ) ( )], (14)
T

T
0

1 1 1 2 0

1 2

where λ = − λ−F T k T( , ) lnTr[e ]B
H( )/(k T)B . As the phase transition is second order, the derivative of η, and hence 

the derivative of the concurrence, diverges at the critical point. In the thermodynamic limit, η1(λ) diverges loga-
rithmically for λ  1 as

λ
η λ

π
λ∂

∂













 | |









e( ) 2 log
2

,
(15)

1

2

which can be derived by using the property of the elliptic integral: ∫ λ θ θ λ− +
π −

d( sin ) log( /4)
0

/2 2 2 1/2 .
The above arguments remain valid for arbitrary one-dimensional topological phase transitions governed by a 

two-band Hamiltonian as in Eq. (3). In the thermodynamic limit, there should be a local quantity corresponding 
to η1, which becomes nonanalytic at the critical point, reflecting the change of the winding number. For finite 
systems, it is discontinuous if the band-touching point belongs to the (discrete) Brillouin zone, which would be 
naturally related to a commensurability problem. For example, in the Kitaev chain4, the reduced density matrix 
for a single site, say, site 1, is obtained as

∑ρ = −
∈

ˆ † †

N
h k a a a a1 ( )( ),

(16)k
z1

BZ
1 1 1 1

where a1 is the fermion operator for site 1. Note that the coefficient is identical to Eq. (12) except for the orienta-
tion of the vector being different. In this case, the local electron density < >†a a1 1  as a function of the chemical 
potential is discontinuous at the critical point for finite even N and the local compressibility diverges logarithmi-
cally as Eq. (15) in the thermodynamic limit. The latter behaviour has been addressed in a recent work24.

Phase transition of entanglement at λ = λ±.  The nonanalyticity of the concurrence here is originated 
from the property of entanglement, which is defined as “not being separable”. In the Hilbert space of bipartite 
density operators, the set of all separable states forms a compact convex set25, 26. As a result, if one traces a contin-
uous path in the Hilbert space from an entangled to a separable state, the entanglement suddenly disappears when 
one crosses the hyperplane separating the sets of separable and entangled states. When this occurs in a dynamical 
problem, the phenomenon is called an entanglement sudden death (or sudden birth in the opposite way)23. The 
entanglement sudden death is observed occasionally when a state evolves in a dissipative environment. However, 
it is rare to see an analogous phenomenon in the course of a quantum phase transition (to our best efforts, we 

Figure 4.  (a) Different behaviour of  λ( )2  according to the parity of N.  λ( )2  is discontinuous at the critical 
point for even N.  λ λd d( )/2  for (b) even N and (c) odd N. (d) Typical behaviour of  λ( )2  in the presence of 
small disorder. (e)  λ λd d( )/2  at the centre of the chain in the case of the open boundary condition.
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could not find out a prior example). In view of Eq. (10), the existence of this phase transition should be robust 
against a small perturbation to the system. As the system remains gapped, one can transform it into a dynamical 
problem by considering an adiabatic evolution varying λ, making the link to the entanglement sudden death 
clearer.

Near λ = λ+, λ( )1  changes linearly for λ < λ+ and vanished for λ > λ+. In the thermodynamic limit, the for-
mer behaviour is given by

 λ λ λ− . − .+( ) 1 476( ) (17)1

For finite N, λ+ changes with N as shown in Fig. 5. For N = 2 or N = 4,  > 01  for λ < 0 and =01  for λ > 0, and 
hence we cannot find λ+.

As we have addressed in Introduction, this singularity is not originated from the nonanalyticity of the 
ground-state wave function and hence the transition is not a quantum phase transition in the conventional sense. 
Nonetheless, the transition may find meaning in the context of quantum information theory. For example, sup-
posing two parties, say, Alice and Bob, possess each of the two sites in a unit cell, the usefulness of the state as a 
resource for a quantum information processing depends on the phase27. Here, instead of considering entangle-
ment of the fermion occupation number, which is somewhat impractical, one can make the scenario more prac-
tical by turning the SSH model into an equivalent s = 1/2 spin-chain model with nearest-neighbour interaction. 
That is, regarding an and bn in Eq. (1) as s = 1/2 spin lowering operators, in the subspace with the half-filling 
∑ + =† †a a b b N( )n n n n n , one can realise that the equivalent spin-chain Hamiltonian is

∑= + + . . + + . . + − + . . .
=

−

+
−† † † †H t a b t b a t a b t b a( H c ) ( H c ) ( 1) ( H c )

(18)n

N

n n n n N N
N

Nspin
1

1

1 2 1 1
1

2 1

Note that the last term introduces a gauge field for even N, which would be responsible for the different behav-
iour at λ = λ0 for even and odd N. A deeper operational meaning of the entanglement phase transition at λ = λ± 
is open to question due to the lack of a relevant quantum informational protocol in the multipartite setting.

Discussion
We have fully characterised two-site entanglements in the ground state of the SSH model and obtained the phase 
diagram of the entanglement. It was found out that there are two kinds of singularities in the entanglement: one 
due to the topological quantum phase transition and the other one due to the entanglement sudden death.

Several remarks are in order. (i) The presented singularities are expected to be verifiable in optical lattices. For 
example, one could prepare a fermionic Mott insulator in a one-dimensional optical lattice and adiabatically 
change the potential shape by superimposing an additional lattice potential so that the number of sites is twice the 
number of atoms in the end28, 29. More detailed and rigorous analysis of its feasibility is left as a future work. (ii) As 
can be seen in Fig. 2, one can detect the topological order of the SSH model simply by comparing local quantities 
1 and 2 , instead of referring to the entanglement spectrum. This might greatly facilitate the experimental detec-
tion of the topological phase. However, the validity of this idea in the presence of disorder or interaction and its 
generalisation to other models are unclear. (iii) While our way of characterising the many-body entanglement 
seems reasonable for the SSH model, one can employ a different characterisation to see a different aspect of the 
many-body entanglement. The phases in Fig. 2 would then be divided into subphases, enriching the phase 
diagram.

Methods
Reduced density matrix for noninteracting gapped fermion systems.  We recast the formulae pre-
sented in refs 4, 8, 30. to derive a reduced density matrix of the ground state of a gapped quadratic fermion 
Hamiltonian. Consider a system described by N fermion annihilation (creation) operators aj ( †aj ) with 1 ≤ j ≤ N. 
It is convenient to introduce Majorana operators cl with 1 ≤ l ≤ 2N such that = +−a c ic( )j j j

1
2 2 1 2 . Let c be the 

Figure 5.  Phase transition point λ+ of the entangled graph for different system sizes.
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vector with 2N elements cl. Hereafter, we will use a similar convention for other operators as well. The Hamiltonian 
can be generally written as

=H i c Mc
4

, (19)
T

where M is a 2N × 2N real skew-symmetric matrix with Mjk = − Mkj. The matrix M is block diagonalised as

ε
ε

ε
ε

=
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
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−









WMW

0
0

0
0 (20)

T

N

N

1

1

by a 2N × 2N real orthogonal matrix W with WTW = WWT = I, where εj > 0. The Hamiltonian is then written as

∑ ∑ε ε= ′ ′ =


 ′ ′ −





=
−

=

†H i c c a a
2

1
2

,
(21)j

N

j j j
j

N

j j j
1

2 1 2
1

where c′ = Wc and ′ = ′ + ′−a c ic( )j j j
1
2 2 1 2 . The ground state in the density matrix form is thus

∏ ∏ρ = ′ ′ =


 − ′ ′ 


.

= =
−
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1
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N
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1 1

2 1 2

For later use, let us define a spectral flattening of the Hamiltonian H as

∑= =


 ′ ′ −





=

¯ ¯ †H i c Mc a a
4

1
2

,
(23)

T

j

N

j j
1

which amounts to replacing all εj with 1. We also define a Grassmann representation ω(X) for a polynomial X 
of Majorana operators, which is done by replacing all Majorana operators in X with Grassmann variables. For 
example, a Grassmann representation of ρ0 is obtained by replacing cl and c′l with Grassmann variables θl and 
θ′l = ∑mWlmθm, respectively, as

∏ω ρ θ θ θ θ=


 −



 =



−



.

=

′
−

′ ¯i i M( ) 1
2

1
2

1
2

exp
2 (24)j

N

j j N
T

0
1

2 1 2

Note that M  is obtained from the spectrally flattened Hamiltonian (23). A state that has a Gaussian form of a 
Grassmann representation as in Eq. (24) is called a Gaussian state. It can be checked that M  is in fact a two point 
correlation Matrix

ρ
=







− ≠

=
M̄

i c c j k
j k

Tr( ) for
0 for (25)

jk
j k0

and higher order correlations are given by

ρ =

( )c c c i MTr( ) Pf
(26)j j j

n
j j j0 n n1 2 2 1 2 2

for < < <j j j n1 2 2 , where |


M j j j n1 2 2
is a 2n × 2n submatrix of M  restricted to the designated indices and Pf(⋅) 

is the Pfaffian. All odd-order correlations vanish.
Now let us divide the system into two parts A and B. A is described by NA pairs of fermion operators and B 

by the rest. Our aim is to calculate the reduced density matrix ρA = TrB(ρ0). One can check that if the Grassmann 
representation of ρA is given by

ω ρ θ θ=


−





¯i M( ) 1
2

exp
2

,
(27)A N A

T
A AA

where θA and M A are the corresponding submatrices restricted to the indices for the subsystem A, then for an 
arbitrary polynomial XA of the Majorana operators supported on A,

ρ ρ= .X XTr( ) Tr( ) (28)A A A0

This implies that Eq. (27) is indeed correct. As M A is also skew-symmetric, it is block diagonalised as
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η
η

η
η

=







−

−









¯W M W

0
0

0
0

,

(29)

A A A
T

N

N

1

1

where WA is real orthogonal and 0 ≤ ηj ≤ 1. Taking the submatrix cA of c and letting c′A = WAcA, we finally obtain

∏ρ
η

=




− ′ ′




=
−i c c1

2 2
,

(30)
A

j

N
j

A j A j
1

,2 1 ,2

A

which has the Grassmann representation as in Eq. (27).
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