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Purpose To develop a denoising convolutional neural network-based image processing tech-
nique and investigate its efficacy in diagnosing breast cancer using low-dose mammography 
imaging. 
Materials and Methods A total of 6 breast radiologists were included in this prospective study. 
All radiologists independently evaluated low-dose images for lesion detection and rated them 
for diagnostic quality using a qualitative scale. After application of the denoising network, the 
same radiologists evaluated lesion detectability and image quality. For clinical application, a 
consensus on lesion type and localization on preoperative mammographic examinations of 
breast cancer patients was reached after discussion. Thereafter, coded low-dose, reconstructed 
full-dose, and full-dose images were presented and assessed in a random order.  
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Results Lesions on 40% reconstructed full-dose images were better perceived when compared with 
low-dose images of mastectomy specimens as a reference. In clinical application, as compared to 40% 
reconstructed images, higher values were given on full-dose images for resolution (p < 0.001); diagnos-
tic quality for calcifications (p < 0.001); and for masses, asymmetry, or architectural distortion (p = 
0.037). The 40% reconstructed images showed comparable values to 100% full-dose images for overall 
quality (p = 0.547), lesion visibility (p = 0.120), and contrast (p = 0.083), without significant differences.
Conclusion Effective denoising and image reconstruction processing techniques can enable breast 
cancer diagnosis with substantial radiation dose reduction.

Index terms   Deep Learning; Artificial Intelligence; Radiation; Mammography; Breast Neoplasm

INTRODUCTION

Although mammography is a reliable method for breast cancer screening (1), the increasing 
awareness of the need for radiation protection raises concern, which is particularly relevant 
when a patient needs to be repeatedly screended. It is standard practice that the radiation 
dose should be maintained as low as reasonably achievable (ALARA) while still providing an 
image quality adequate to enable accurate diagnosis (1, 2). A higher radiation dose will lower 
the noise level and improve image quality but impart an unnecessary radiation dose to the pa-
tient (2), while a lower radiation dose will lower the signal to noise ratio (SNR) of the image 
and may negatively affect diagnostic performance. Thus, the appropriate radiation dose for 
mammography should be dictated by the radiation required to achieve an adequate SNR for 
an accurate diagnosis. Indeed, digital mammography systems are equipped with automatic 
exposure control (AEC) to adjust the kilovoltage peak (kVp), milliampere-second (mAs), and 
filter, to provide an acceptable radiation dose and image contrast. In addition, digital breast 
tomosynthesis (DBT), which is a three-dimensional imaging technology with multiple projec-
tions over a limited angle, presents a further issue regarding radiation exposure. DBT has rap-
idly disseminated as a routine breast screening tool with increased cancer detection rate, de-
creased recall rate and improved performance metrics of screening, specifically among 
women with dense breast (3). Repeated DBT for annual screening may increase the cumula-
tive radiation exposure and lifetime attributable risk of radiation-induced breast cancer (4). 
Although many studies have examined the relationship between reduced-radiation dose and 
accuracy in the detection of lesions on mammography (5-7), the reduction of noise and arti-
facts arising from a decreased number of photons and increased Poisson noise remains a 
challenge. There has been previous attempts to compensate low image contrast by image en-
hancement and de-noising methods, such as the kernel-based iterative scatter correction 
method used for X-ray cone-beam CT (8) and iterative image de-noising methods used for 
mammography (9-11). However, these methods are rather impractical and its performances 
are not enough to use a low dose X-ray mammography images in real situations. Unlike CT, 
there are few researches related to X-ray mammography image quality improvement, because 
its resolution is too high incomparable to CT images and hard to modeling the measurement 
acquisition process with detector’s characteristic such as grid. This problem can be solved by 
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machine learning approach which has network with huge capacity and good ability to esti-
mate the non-linear model distribution 

Thus, we hypothesized that the low-dose image reconstruction problem in mammography 
could be solved with a machine learning approach using a high capacity network. Deep-
learning methods have shown great potential in medical imaging applications such as image 
reconstruction and de-noising (12, 13) and indeed, a previous study (14) proposed a genera-
tive adversarial network (GAN) for mammography synthesis that could be used for data aug-
mentation processes. Recently, Liu et al. (15) investigated a deep-learning-based supervised 
image-processing technique for radiation dose reduction in DBT. They trained a convolutional 
neural network (CNN) on quarter-dose and corresponding high-dose DBT images of a breast 
phantom, and demonstrated a 79.0% dose reduction with the application of their deep-learn-
ing technique. However, to the best of our knowledge, no previous study has investigated 
deep-learning-based solutions for digital mammography image reconstruction. 

Therefore, we here propose a de-noising CNN specialized for digital mammography. This 
CNN converts low-dose images to reconstructed full-dose images, with the noise and artifact 
present in the low-dose images largely eliminated. Our study involved two steps: first, we eval-
uated our CNN image-processing technique with breast cancer mastectomy specimens ac-
quired at different mammographic radiation dose levels; and second, using the acceptable 
low dose determined in the first step, we examined breast cancer patients using the reduced 
dose and investigated reduced dosage images by applying our CNN technique and evaluated 
the detection performance in breast cancer diagnosis compared to original images. 

MATERIALS AND METHODS

STUDY POPULATION
This prospective study was approved by the Institutional Review Boards of six institutions 

(Chung-Ang University Hospital [IRB No. 1771-002-288], Asan Medical Center [IRB No. S2018-
0913-0002], Korea University Ansan Hospital [IRB No. 2018AS0189], Konkuk University Medi-
cal Center [IRB No. KUH 1140134], Ajou University Hospital [IRB No. AJIRB-MED-OBS-18-274], 
Catholic Kwangdong University International St. Mary’s Hospital [IRB No. IS16OCMI0036]). 
After receiving the relevant permissions of the ethics committees and written informed pa-
tients’ consents, mastectomy specimens were acquired from 31 patients with a recent diag-
nosis of breast cancer and who were treated with total mastectomy. The standard full-dose X-
ray level was determined through the AEC, and the mastectomy specimens were subsequently 
imaged at five different radiation dose levels (80%, 60%, 40%, 20%, and 10% of AEC) on Selenia 
Dimension (Hologic Inc., Bedford, MA, USA; n = 8), Senographe DS, or Senographe Essential 
scanners (GE Healthcare, Milwaukee, WI, USA; n = 23). The low-dose images were acquired by 
changing the mAs with the tube voltage fixed (ranges, 26–30 kVp for the Selenia Dimension; 
25–29 kVp for the Senographe DS/Essential). Three cases were excluded because of poor image 
quality with unavoidable artifact, and 28 mastectomy specimen cases were finally included 
in the analysis. 



jksronline.org4

Image Reconstruction Using Deep Learning Algorithm

TRAINING, TESTING, AND VALIDATION OF THE CNN DE-NOISING METHOD 
USING THE MASTECTOMY SPECIMENS

The CNN was trained using low-dose and full-dose images as inputs. As there could be a 
mismatch between low-dose and full-dose images due to potential deformation of the speci-
men during multiple acquisitions, a de-noising method based on unsupervised learning us-
ing cyclic consistency was utilized. The proposed framework is described in Fig. 1. 

For a subset of the data, the CNN de-noising method was validated by measuring the struc-
tural similarity index (SSIM) (16), which is a quantitative value allowing the evaluation of im-
age quality according to noise characteristics in comparison with the full-dose image. SSIM is 
a widely accepted image quality measure that overcomes a limitation of the conventional SNR 
measure, which lacks the incorporation of spatial information in the evaluation. In the pro-
duction of the “simulated” low-dose image, Poisson noise was added to the full-dose image. 
The SNR of the “simulated” low-dose image was 17 decibel (dB). The SSIM is represented by 

SSIM(x, y) = 
(2μxμy + c1)(2σxy + c2)

(μx
2 + μy

2 + c1)(σx
2 + σy

2 + c2) 

where μx, μy, and σx
2σy

2σxy are the average, variance, and covariance of x and y, respectively; c1 = 
(k1L)2 and c2 = (k1L)2 are two variables that stabilize the division with a weak denominator; L is 
the dynamic range of the pixel-values; and k1 = 0.01 and k2 = 0.03 by default.

IMAGE INTERPRETATION USING THE MASTECTOMY SPECIMENS
Six breast radiologists (S.M.H., with 6 years of breast imaging experience; H.H.K, with 27 

years of experience, B.K.S, with 21 years of experience, N.M.C, with 15 years of experience, 

Fig. 1. Our network contained two functions, G: X → Y and F: Y → X, wherein we trained two generators (Net-
work G and Network F) and two discriminators (Network Dx and Network Dy), with the use of three loss 
functions.

Classifier for routine-dose images and denoised image

Classifier for low-dose images and noise-generated image

Network Dy

Network Dx

Network G

Network F

Noise generation

Denoising

Routine-dose domain YLow-dose domain X

Cyclic loss:  ‖F(G[x])-x‖1 

+   ‖G(F[y])-y‖1



https://doi.org/10.3348/jksr.2020.0152 5

J Korean Soc Radiol 

T.H.K, with 12 years of experience, and Y.J.K. with 5 years of experience) were involved in the 
image evaluation procedure. All radiologists independently evaluated the low-dose images 
(80%, 60%, 40%, 20%, and 10% of AEC) for lesion detection (no detection, detection), and by 
comparing them with the respective reference full-dose images, rated them for diagnostic 
quality using a qualitative 3-point scale (equivalent, acceptable, or unacceptable) while blind-
ed to dose-level information. Each radiologist interpreted the images stored in DICOM format 
and was allowed to alter the window/level settings as required. After application of the de-
noising network to the low-dose images, the same radiologists again recorded whether the le-
sion was detectable or not, and they were presented with full-dose images and randomly cor-
responding low-dose and reconstructed full-dose images, and were again asked to rate their 
quality on the 3-point scale (decreased, equivalent, improved) compared to low-dose and full-
dose images as reference standard. 

APPLICATION FOR CLINICAL CASES
For the second step of our study, 102 patients with a recent diagnosis of breast cancer and 

who gave written informed consent, with approval by the institutional review boards of the 
above same six institution, underwent preoperative routine mammography consisting of cra-
nio-caudal (CC) and mediolateral oblique (MLO) views with an additional MLO projection 
view using the pre-determined reduced low dose (obtained from the first step of our study). 
The patients were examined using Hologic (n = 62) or GE Healthcare systems (n = 40). The 
low-dose images were acquired by changing the mAs with the tube voltage fixed (ranges, 24–
33 kVp for the Selenia Dimension; 26–34 kVp for the Senographe DS/Essential). All methods 
were carried out in accordance with relevant guidelines and regulations. 

TRAINING, TESTING, AND VALIDATION OF THE CNN DE-NOISING ON 
CLINICAL CASES 

The network was trained with low-dose and full-dose images as input. As there were mis-
matches between input and full-dose images during multiple acquisitions, a de-noising meth-
od based on unsupervised learning using cyclic consistency was applied. The proposed frame-
work is described in Fig. 2. For a subset of the data, the CNN de-noising method was validated 
by measuring SSIM (16).

IMAGE INTERPRETATION ON CLINICAL CASES
For the second step of our study, before performing independent analysis, the same radiol-

ogists reviewed altogether and made consensus decisions on the lesion types (mass, calcifi-
cation, mass with calcification, architectural distortion, asymmetry) and localizations (upper, 
middle, lower) on the preoperative mammographic examinations. Then, one radiologist 
(S.M.H.) provided the other five radiologists with coded low-dose, reconstructed full-dose, and 
full-dose images, with all dose-level and patient information being blinded. The three images 
were presented in a random order for each patient. The five readers then used a known-loca-
tion paradigm to score all the images considering the overall image quality, visibility of the le-
sion, image contrast, image resolution, and diagnostic quality of the lesion (calcification, mass, 
asymmetry, architectural distortion) on 1–10 point scales. The diagnostic quality of the lesion 
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was defined as the ability to describe mammographic findings according to breast imaging-re-
porting and data system (BI-RADS) lexicon such as margin of the mass or morphology of cal-
cifications. The type of breast tissue was also determined independently according to the 
American College of Radiology (ACR) guidelines (17).

Fig. 2. De-noising method based on unsupervised learning using cyclic consistency.
A. Overview of the proposed framework (X, low-dose domain; Y, routine-dose domain), wherein the genera-
tor G denoted the mapping from X to Y, and F similarly defined the mapping from Y to X; there are two ad-
versarial discriminators Dx and Dy, which distinguished between measured input images and reconstructed 
images from the generators. 
B. Network architecture of the generators G and F. 
C. Network architecture of the discriminators Dx and Dy.
Conv = convolutional, ReLU = rectified linear unit

A

B

C

Noise generation

Network Dy

Network Dx

Network G

Network F

Denoising

Routine-dose domain YLow-dose domain X

Cyclic loss:  ‖F(G[x])-x‖1 

+   ‖G(F[y])-y‖1

* Identity preserving loss: 
   ‖G[x]-x‖1 

* Total variation loss: 
   ‖

Δ

G(x)‖1

64 × 64 × 1

Module 1 Module 6
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2

Module 
5
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: 4 × 4 Conv (stride 2), LeakyReLU 

: 4 × 4 Conv (stride 1), BatchNorm, LeakyReLU
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                        :  Fully connected Layer (4 × 4 Conv)

6 × 6 × 1

32 × 32 × 64
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: 3 × 3 Conv, BatchNorm, ReLU           : ReLU                : 3 × 3 Conv
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STATISTICAL ANALYSIS
For the first step of the study, the mean percentage of the lesion detectability and diagnos-

tic quality assessment scale from the readers was calculated for each lesion type (mass, calci-
fication) according to each dose. The trends were analyzed using the Mantel–Haenszel statis-
tic. After application of the de-noising and image reconstruction method, lesion detectability 
and diagnostic quality assessments were compared with McNemar’s test or a marginal homo-
geneity test using a generalized estimating equations (GEE) model to account for data cluster-
ing effects. SSIM improvement was also assessed using the Wilcoxon signed-rank test or 
paired t test. 

For the second step of the study, the observer results for each low-dose, reconstructed full-
dose, and full-dose image were assessed using a two-way random effects model with provi-
sion of intraclass correlation coefficients (ICCs). An ICC reflects the reliability of ratings for 
data that have been collected as a group or sorted into groups. An ICC greater than 0.9 means 
excellent reliability, 0.75–0.9 good reliability, 0.5–0.75 moderate reliability, and less than 0.5 
poor reliability. The multiple assessment criteria for each image were compared with analysis 
of variance (ANOVA) adjusted by Dunnett’s method. Whether lesion size or parenchymal den-
sity affected the image assessment and diagnostic quality of the lesions was assessed using a 
linear mixed model. A p value of less than 0.05 was considered to indicate a statistically sig-
nificant difference. Statistical analyses were performed using SPSS software (version 14.0; 
Statistical Package for the Social Sciences, Chicago, IL, USA). 

RESULTS

Evaluation of Mastectomy Specimens before and after Application of the De-Noising Meth-
od Similar trends were observed in the qualitative assessments for lesion detection and diag-
nostic quality, except for mass quality (p = 0.173) (Supplementary Table 1 in the online-only 
Data Supplement). Mass and calcification detection rates decreased substantially for the 10% 
low-dose image. The ‘not acceptable’ quality rating for masses showed a notable increase with 
10% low-dose images, while for calcifications, a notable increase was observed at 20%. As the 
lesion detection rate was maintained with a 20% low dose, and the diagnostic quality of mass-
es and calcifications was maintained at 20% and 40% low-dose levels, respectively, the de-
noising and image reconstruction method was applied to 20% and 40% low-dose images. 

Masses and calcifications showed detection rates of 87.4% and 90.0%, respectively, on the 
20% reconstructed full-dose images, and rates of 96.8% and 100.0% on the 40% reconstructed 
full-dose images (Table 1). The ‘no detection’ assessment for both lesion types was significant-
ly higher for the 20% reconstructed full-dose images than for the 40% reconstructed full-dose 
images (12.6% vs. 3.2%, p = 0.003 for masses; 10.0% vs. 0.0%, p < 0.001 for calcifications). When 
20% and 40% reconstructed full-dose images were compared with the reference full-dose im-
ages, there was a significantly higher proportion of ‘equivalent’ image quality assessments for 
both masses and calcifications at the 40% dose level (65.3% for masses; 65.0% for calcifica-
tions) than at the 20% dose level (41.1% for masses; 20.8% for calcifications; p < 0.001). With 
low-dose images as a reference, the lesions on the 40% reconstructed full-dose images were 
better perceived (20.0% for masses; 18.3% for calcifications), whereas the quality of the recon-
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structed full-dose images was rather decreased with the 20% dose (25.3% for masses; 19.2% 
for calcifications). In addition, CNN de-noising method was validated by improved SSIM val-
ues in eight subsets of our data (average value, 0.63 ± 0.05; range, 0.55–0.69 vs. 0.79 ± 0.07; 
range, 0.63–0.86; p = 0.01) (Fig. 3).

APPLICATION OF THE DE-NOISING METHOD TO CLINICAL CASES
From the first step result, additional MLO projection views with 40% reduced dose were 

obtained from breast cancer patients (n = 102). Among 102 lesions, the lesion types were com-
posed of mass (n = 49, 48.0%), calcification (n = 17, 16.7%), mass with calcification (n = 23, 
22.5%), architectural distortion (n = 5, 4.9%), and asymmetry (n = 8, 7.8%). The tumor stage ac-
cording to pathologic tumor size for these patients were composed of T1 (n = 29, 28.4%), T2 (n = 
49, 48.0%) and T3 (n = 24, 23.5%). Using 100% full-dose images as a reference, comparisons of 
assessment criteria concerning overall image quality, lesion visibility, contrast, resolution, di-
agnostic quality for calcifications, diagnostic quality of masses, asymmetry, or architectural 
distortion with low-dose images all revealed lower mean values with significant differences, 
with p values < 0.05 (Table 2). Though still lower than 100% full-dose images, reconstructed 
full-dose images showed comparable values for overall image quality (p = 0.547), visibility of 

Table 1. Detection and Diagnostic Quality of Lesions on Reconstructed Full-Dose Mammography 

Lesion Type Detection Assessment
Mean %*

p-Value
Reconstructed 20% Dose Reconstructed 40% Dose

Mass
No detection 12.6   3.2

  0.003
Detection 87.4 96.8

Calcification
No detection 10.0   0.0

< 0.001
Detection 90.0 100.0

Lesion Type Quality Assessment
Mean %*

p-Value
Reconstructed 20% Dose Reconstructed 40% Dose

Mass

Decrease† 54.7 14.7
< 0.001Equivalent† 41.1 65.3

Improve†   4.2 20.0
Decrease‡ 25.3   4.2

< 0.001Equivalent‡ 62.1 75.8
Improve‡ 12.6 20.0

Calcification

Decrease† 78.3 26.7
< 0.001Equivalent† 20.8 65.0

Improve†   0.8   8.3
Decrease‡ 19.2   5.8

< 0.001Equivalent‡ 70.8 75.8
Improve‡ 10.0 18.3

p value calculated with McNemar’s test or marginal homogeneity test using a generalized estimating equations model to account for data 
clustering effect.
*Mean refers to the mean percentage of the lesion detectability and diagnostic quality assessment scale from the readers calculated for each 
lesion type (mass, calcification) according to each dose.
†Full-dose used as the reference standard for diagnostic quality assessment. 
‡Low-dose (20% or 40%) was used as the reference standard for diagnostic quality assessment. 
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lesions (p = 0.120) and contrast (p = 0.083). The readers gave higher mean values for 100% full-
dose images for image resolution (p < 0.001), diagnostic quality for calcifications (p < 0.001), 
and diagnostic quality for masses, asymmetry, or architectural distortion (p = 0.037). Reduc-

Fig. 3. Reconstructed full-dose (middle) results from  specimen with calcification, which is improved in comparison to low-dose images and 
was deemed comparable to routine dose images by all readers. The magnified views (× 2) indicated by the yellow boxes demonstrate how 
the conspicuity of the calcifications is maintained (routine dose image at right).

Table 2. Comparisons of Low-Dose, Full-Dose, and Reconstructed Full-Dose Images according to Different 
Assessment Parameters (n = 102)

Parameters Image Reader p-Value p-Value† p-Value*

Overall image quality
100% 8.15 ± 1.02

< 0.001
 0.547

40% 7.41 ± 1.07 0.900 < 0.001
Reconstructed 40% 7.46 ± 1.10 0.547

Visibility of lesion
100% 8.48 ± 1.31

 0.01 
 0.120

40% 7.94 ± 1.46  0.547 0.011
Reconstructed 40% 8.12 ± 1.39 0.120

Contrast
100% 8.14 ± 1.23

< 0.001
 0.083

40% 7.46 ± 1.31  0.150 < 0.001
Reconstructed 40% 7.78 ± 1.38 0.083

Resolution
100% 8.26 ± 1.23

< 0.001
< 0.001

40% 7.41 ± 1.29  0.958 < 0.001
Reconstructed 40% 7.45 ± 1.28 < 0.001

Diagnostic quality of calcification
100% 8.38 ± 1.20

< 0.001

< 0.001
40% 7.39 ± 1.52  0.883 0.002
Reconstructed 40% 7.26 ± 1.31 < 0.001

Diagnostic quality of mass/ 
  symmetry/architectural distortion

100% 8.02 ± 1.27
< 0.001

 0.037
40%   7.43 ± 11.34  0.796 0.007
Reconstructed 40% 7.54 ± 1.37 0.037

40% (low dose), 100% (full-dose), reconstructed 40% (reconstructed full-dose).
*100% image as the reference standard.  
†Reconstructed 40% image as the reference standard.

Low dose image Reconstructed full-dose image Routine dose image
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tions in overall image quality, visibility of lesions, contrast, resolution, and diagnostic quality 
of masses, asymmetry, or architectural distortion were significant as parenchymal density in-
creased (p < 0.05), but the diagnostic quality of calcifications did not show such a change (p = 
0.851) (Table 3). Notably, the diagnostic quality of calcifications was affected along with the 
dose amount (low dose, full-dose, reconstructed full-dose) and parenchymal density (p = 0.024) 
(Table 3). As lower the dose amount and higher the parenchymal density, its diagnostic quality 
was decreased. As lesion size increased, better assessments were observed in all criteria (p < 
0.05) (Table 3), although when assessed with parenchymal density, it lost its significance. In ad-
dition, de-noising method was validated by higher SSIM value obtained in our clinical assess-
ment (0.34 ± 0.05 vs. 0.77 ± 0.02; p < 0.001) (Fig. 4). Comparisons of assessments of overall im-
age quality among readers showed moderate reliability for 40% low-dose, full-dose and 40% 
reconstructed full-dose images (Supplementary Table 2 in the online-only Data Supplement). 
Inter-reader comparisons of lesion visibility, contrast, resolution, and diagnostic quality of cal-
cifications also showed moderate to good reliability (Supplementary Table 2 in the online-only 

Table 3. Effect of Lesion Size and Parenchymal Density on Assessment Parameters

Parameters
Lesion Size Parenchymal Density 

β p-Value p-Value* Β p-Value p-Value*
Overall image quality 0.08    0.010 0.926 -0.58 < 0.001 0.135
Visibility of lesion 0.18 < 0.001 0.864 -0.83 < 0.001 0.078
Contrast 0.15 < 0.001 0.938 -0.83 < 0.001 0.214
Resolution 0.12 < 0.001 0.967 -0.81 < 0.001 0.098
Diagnostic quality of calcification 0.26 < 0.001 0.282   0.06    0.851 0.024
Diagnostic quality of mass/asymmetry/architectural distortion 0.12    0.013 0.920 -0.80 < 0.001 0.112
p < 0.05 means as the lesion size increases, the assessment criteria (i.e. overall image quality) rate increases or decreases by β.
*p value is the interaction p value, with p < 0.05 meaning that the assessment criteria (i.e., diagnostic quality of calcification) is affected by two 
factors, the image (low dose, full-dose, reconstructed full-dose) and increased parenchymal density.

Fig. 4. Reconstructed full-dose (middle) results from a breast cancer patient with mass on mammography, which was rated as higher than 
routine dose images by two readers, but lower than routine dose images by three readers. The magnified views indicated by the yellow boxes 
show how the mass margin is better demarcated by application of the network (routine dose image at right).

Low dose image Reconstructed full-dose image Routine dose image
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Data Supplement). Furthermore, the diagnostic quality of masses, asymmetry, or architectur-
al distortion showed moderate to good reliability and assessment of parenchymal density 
showed excellent reliability (Supplementary Table 2 in the online-only Data Supplement).

DISCUSSION

We demonstrated that application of a de-noising and image reconstruction method to low-
dose mammographic images of mastectomy specimens improved their image quality. In par-
ticular, 40% reconstructed full-dose images showed an improvement in image quality com-
pared with the original low-dose images, with rates of 20% for masses and 18.3% for 
calcifications. In our clinical study, application of the de-noising and image reconstruction al-
gorithm reduced noise and achieved better structural preservation with higher SSIM value. In-
deed, with 100% full-dose as reference, all parameters were assessed inferior on low-dose im-
ages, but after application of our reconstruction algorithm, overall image quality, lesion 
visibility and contrast were assessed as comparable on the 40% reconstructed full-dose images 
without significance differences. However, image resolution and the diagnostic quality for cal-
cifications, masses, asymmetry, or architectural distortion on the 40% reconstructed full-dose 
images were judged significantly lower than on the full-dose images. With the combination of 
a substantial radiation dose reduction and image reconstruction using our de-noising and 
image reconstruction method, there is still limitation but our results imply an opportunity to 
potentially reduce the radiation hazard from digital mammography, which is especially im-
portant for high-risk young patients who are exposed to more frequent mammographic ex-
aminations.

Mammographic screening reduces mortality through early detection of breast cancer (18). 
However, the radiation dose associated with mammographic screening has always presented 
a concern (19-22). When optimizing the mammographic protocol, the radiation dose should 
be considered together with image quality, and dose optimization is therefore a prerequisite. 
Because of concern over the potential loss of image quality and its effect on diagnostic accu-
racy, clinical implementations of mammographic dose reduction have been limited. Two 
phantom studies suggested that dose reductions of up to 50% may be possible in digital 
mammography without affecting diagnostic accuracy (23, 24), but these studies used phan-
toms with homogeneous backgrounds, and phantoms are generally not designed to be sensi-
tive to the large range of dose levels that exist in digital mammography (25). Thus, in our 
study, a closer match to clinical practice was achieved by using actual mammograms of breast 
mastectomy specimens with heterogeneous backgrounds. An earlier study using clinical im-
ages obtained on a Senographe 2000D mammography system during a screening program (26) 
indicated that half of the reference average glandular dose level was adequate for maintaining 
a clinically acceptable image quality. Another study also revealed no statistically significant 
difference in image quality between full- and half-dose levels, suggesting the possibility of re-
ducing the AEC dose level by half (5). Similarly, we found that a dose reduction to 60% had a 
minimal effect on lesion detection and image quality. However, at the 40% level there was a 
gradual degradation in image quality with fewer details being clearly visualized. Mostly, the 
characterization of calcifications was more dose-dependent at levels below 40%, and the ef-
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fect of dose reductions on masses became evident at the 20% dose level, concordant with a 
previous phantom study (5), which revealed a significant degradation in image quality of cal-
cifications at a 50% dose level and of masses at a 30% dose level. Two studies using phantom 
and clinical images with calcifications found significant reductions in detection rates at a 
quarter-dose level but not at a half-dose level (6, 7). Yakabe et al. (6) demonstrated that calcifi-
cation detection was not affected by a half-dose reduction, but that accuracy deteriorated at a 
quarter dose level. In agreement, Samei et al. (7) reported that a quarter dose had a significant 
effect on the screening detection of calcifications. Several previous studies investigated the ef-
fect of image processing on calcification detection (27-30), except one found no significant dif-
ference in detection due to image processing (29). In our results, the readers perceived masses 
and calcifications better on reconstructed 40% full-dose images of mastectomy specimens 
than on the unenhanced 40% dose images. In addition, our study explored the effect of our 
reconstruction algorithm on actual mammograms of breast mastectomy specimens obtained 
with varying doses, which means that our results should be more generalizable to clinical 
practice. 

Image de-noising is essential to address the image quality degradation caused by minimiz-
ing the radiation dose (31) because it maximizes the restoration of the original image details 
by reducing noise, as well as by enhancing contrast (32). A previous study revealed that al-
though calcification detection and mass discrimination decreased significantly from a full-
dose to a quarter dose, the detection of malignant masses did not appear to be affected (7); 
thus we hypothesized that a 40% dose reduction would be possible in breast cancer patients. 
In our clinical study, we used a CNN-based de-noising method to convert 40% low-dose mam-
mographic images to resemble images acquired at the higher standard-dose (AEC level). CNNs 
were previously used to classify calcifications and masses in computer aided detection (CAD) 
for mammography (33), while Samala et al. (34) demonstrated that mammography images 
could be useful for training CNNs to detect masses on DBT. Liu et al. (15) demonstrated a 
CNN to convert low-dose DBT images to virtual high-dose DBT images while preserving calci-
fication and breast tissue structures, with their conversion technique resulting in a 79% radi-
ation dose reduction and an increased SSIM index. However, in this study (15), the authors 
simply assessed conspicuity of the lesion with provision of SSIM index. In our clinical study, 
we demonstrated that the application of a de-noising and image reconstruction algorithm im-
proved the SSIM value. Although resolution and diagnostic quality of calcifications, masses, 
asymmetry, or architectural distortions were rated as being higher on full-dose images than 
40% reconstructed full-dose images, the slight inferiorities in the assessment criteria on the 
40% reconstructed full-dose images, in relation to the notable reduction in radiation dose, our 
results imply that the radiation dose may potentially be decreased with possibility for im-
provement with reconstruction method, but should be validated with larger number of pa-
tients before clinical implementation. In addition, the image enhancement using our recon-
struction method was more influential in patients with less-dense background parenchyma 
and a larger lesion size, although when we assessed the effect of radiation dose and parenchy-
mal density, it lost its statistical significance. Effective de-noising and image reconstruction 
processing techniques can pave the way for a substantial dose reduction in mammographic 
screening, while maintaining image consistency. 
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There are several limitations to this study. First, we analyzed a relatively small number of 
specimens. As mentioned, we used mastectomy specimens rather than breast phantoms be-
cause phantoms have a uniform background with noise characteristics that are not represen-
tative of the true anatomical background encountered in clinical practice. Second, we could 
not evaluate diagnostic performance in our study because the breast cancer cases were al-
ready judged before assessment. Third, observer variability was generally the largest source of 
variability. Previously, Bernhardt et al. (35) studied SNR normalized to AEC levels and showed 
that a W/Rh node/filter combination was superior. However, we did not evaluate the impact of 
this combination. In addition, most diagnostic performance experiments involve rating imag-
es for the presence of abnormalities, with multiple grades ranging from 4 to 100 being used 
(36, 37). However, such an approach is limited for many diagnostic tasks when they are per-
formed in a clinical setting. Also due to technical limitation, for both first and second steps of 
our study, the specimen and breast cancer patients had to be examined with additional pad-
dle compression for additional mammographic images, which may have cause patient mo-
tion artifact. In addition, each mammography scanning system had an imaging characteris-
tic, therefore, we had to divide overall dataset into two groups by scanning system. Lastly, in 
our clinical study, we investigated the effect of dose reduction using a signal-known-exactly 
paradigm, in which the interpreting radiologists knew the approximate location of a lesion. 
This strategy eliminated visual searching and kept other sources of variability under control; 
however, there could have been additional differences if we had used full images with visual 
searching. A clinical study involving a larger number of patients should be performed to con-
firm the preliminary conclusions of our study. Moreover, our image-processing technique 
needs to be shared and external validation needs to be performed.

In summary, the findings of our preliminary study suggest that by application of our CNN 
image reconstruction algorithm, a reduction in radiation dose to 40% of the standard digital 
mammography dose is possible, with only modest effects on diagnostic information in breast 
cancer patients. Whether there is a difference in the ability to accurately discriminate between 
benign and malignant masses between the full-dose and 40% dose enhanced images still 
needs to be investigated in more extensive studies. However, there appears to be a substan-
tial potential for our CNN image-processing technique to improve low dose images for better 
breast cancer detection with reduced radiation hazard. 

Supplementary Materials
The online-only Data Supplement is available with this article at http://doi.org/10.3348/jksr.2020.0152.

Author Contributions
Conceptualization, K.H.H., Y.J.C.; data curation, all authors; formal analysis, H.S.M., K.E., Y.J.C.; 

funding acquisition, all authors; investigation, S.B.K., C.N., K.T.H., K.Y.J.; software, K.E., Y.J.C.; super-
vision, K.H.H.; visualization, K.E., Y.J.C.; writing—original draft, H.S.M., K.E., S.B.K., C.N., K.T.H., 
K.Y.J., Y.J.C.; and writing—review & editing, H.S.M., K.E., S.B.K., C.N., K.T.H., K.Y.J., Y.J.C.

Conflicts of Interest
Hak Hee Kim has been a Section Editor of the Journal of the Korean Society of Radiology since 2012; 

however, she was not involved in the peer reviewer selection, evaluation, or decision process of this 
article. Otherwise, no other potential conflicts of interest relevant to this article were reported.



jksronline.org14

Image Reconstruction Using Deep Learning Algorithm

Funding
This research was supported by Korean Society of Breast Imaging & Korean Society for Breast Screen-

ing (KSBI&KSFBS-2017-03).

REFERENCES

1. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer 
with mammography: recent advances. IEEE Trans Inf Technol Biomed 2009;13:236-251

2. National Research Council. Committee to assess health risks from exposure to low level of ionizing radia-
tion. Health risks from exposure to low levels of ionizing radiation. Washington DC: National Academies 
Press 2006

3. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening 
using tomosynthesis in combination with digital mammography. JAMA 2014;311:2499-2507

4. Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammographic screening. Radiology 
2011;258:98-105

5. Svahn T, Hemdal B, Ruschin M, Chakraborty DP, Andersson I, Tingberg A, et al. Dose reduction and its influ-
ence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study 
using an anthropomorphic breast phantom. Br J Radiol 2007;80:557-562

6. Yakabe M, Sakai S, Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, et al. Effect of dose reduction on the abil-
ity of digital mammography to detect simulated microcalcifications. J Digit Imaging 2010;23:520-526

7. Samei E, Saunders RS Jr, Baker JA, Delong DM. Digital mammography: effects of reduced radiation dose 
on diagnostic performance. Radiology 2007;243:396-404

8. Sun M, Star-Lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med 
Biol 2010;55:6695-6720

9. Mencattini A, Salmeri M, Lojacono R, Frigerio M, Caselli F. Mammographic images enhancement and de-
noising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrum Meas 2008;57: 
1422-1430

10. Gorgel P, Sertbas A, Ucan ON. A wavelet-based mammographic image denoising and enhancement with 
homomorphic filtering. J Med Syst 2010;34:993-1002

11. Vikhe PS, Thool VR. Contrast enhancement in mammograms using homomorphic filter technique. Pro-
ceedings of the 2016 International Conference on Signal and Information Processing (IConSIP); 2016 Octo-
ber 6-8; Nanded, India: IEEE; 2016:1-5

12. Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Samann P, et al. Q-space deep learning: twelve-fold 
shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35:1344-1351

13. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learn-
ing. Nature 2018;555:487-492

14. Sun Y, Liu X, Cong P, Li L, Zhao Z. Digital radiography image denoising using a generative adversarial net-
work. J Xray Sci Technol 2018;26:523-534

15. Liu J, Zarshenas A, Qadir A, Wei Z, Yang L, Fajardo L, et al. Radiation dose reduction in digital breast tomo-
synthesis (DBT) by means of deep-learning-based supervised image processing. Proceedings of the SPIE 
10574, Medical Imaging: image processing; 2018 Feb 10-15; Houston, TX, USA: SPIE; 2018  

16. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural 
similarity. IEEE Trans Image Process 2004;13:600-612

17. American College of Radiology. ACR BI-RADS breast imaging and reporting data system: breast imaging at-
las. 4th ed. Reston: American College of Radiology 2003 

18. Nyström L, Andersson I, Bjurstam N, Frisell J, Nordenskjöld B, Rutqvist LE. Long-term effects of mammog-
raphy screening: updated overview of the Swedish randomised trials. Lancet 2002;359:909-919

19. Parker MS, Hui FK, Camacho MA, Chung JK, Broga DW, Sethi NN. Female breast radiation exposure during 
CT pulmonary angiography. AJR Am J Roentgenol 2005;185:1228-1233

20. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diag-
nostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 2000;25:2052-2063

21. Law J, Faulkner K. Two-view screening and extending the age range: the balance of benefit and risk. Br J 
Radiol 2002;75:889-894



https://doi.org/10.3348/jksr.2020.0152 15

J Korean Soc Radiol 

22. Law J, Faulkner K. Concerning the relationship between benefit and radiation risk, and cancers detected 
and induced, in a breast screening programme. Br J Radiol 2002;75:678-684

23. Hemdal B, Bay TH, Bengtsson G, Gangeskar L, Martinsen AC, Pedersen K, et al. Comparison of screen-film, 
imaging plate and direct digital mammography with CD phantoms. In Peitgen HO, ed. Digital mammogra-
phy. Berlin, Heidelberg: Springer 2003:105-107 

24. Gennaro G, Katz L, Souchay H, Alberelli C, di Maggio C. Are phantoms useful for predicting the potential of 
dose reduction in full-field digital mammography? Phys Med Biol 2005;50:1851-1870 

25. Huda W, Sajewicz AM, Ogden KM, Scalzetti EM, Dance DR. How good is the ACR accreditation phantom for 
assessing image quality in digital mammography? Acad Radiol 2002;9:764-772

26. Hemdal B, Andersson I, Grahn A, Håkansson M, Ruschin M, Thilander-Klang A, et al. Can the average glan-
dular dose in routine digital mammography screening be reduced? A pilot study using revised image quali-
ty criteria. Radiat Prot Dosimetry 2005;114:383-388

27. Cole EB, Pisano ED, Zeng D, Muller K, Aylward SR, Park S, et al. The effects of gray scale image processing 
on digital mammography interpretation performance. Acad Radiol 2005;12:585-595

28. Zanca F, Jacobs J, Van Ongeval C, Claus F, Celis V, Geniets C, et al. Evaluation of clinical image processing al-
gorithms used in digital mammography. Med Phys 2009;36:765-775

29. Uematsu T. Detection of masses and calcifications by soft-copy reading: comparison of two postprocess-
ing algorithms for full-field digital mammography. Jpn J Radiol 2009;27:168-175

30. Cole EB, Pisano ED, Kistner EO, Muller KE, Brown ME, Feig SA, et al. Diagnostic accuracy of digital mam-
mography in patients with dense breasts who underwent problem-solving mammography: effects of im-
age processing and lesion type. Radiology 2003;226:153-160

31. Chatterjee P, Milanfar P. Is denoising dead? IEEE Trans Image Process 2010;19:895-911
32. Cesarelli M, Bifulco P, Cerciello T, Romano M, Paura L. X-ray fluoroscopy noise modeling for filter design. Int 

J Comput Assist Radiol Surg 2013;8:269-278
33. Chan HP, Lo SC, Sahiner B, Lam KL, Helvie MA. Computer-aided detection of mammographic microcalcifi-

cations: pattern recognition with an artificial neural network. Med Phys 1995;22:1555-1567
34. Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: 

deep convolutional neural network with transfer learning from mammography. Med Phys 2016;43:6654 
35. Bernhardt P, Mertelmeier T, Hoheisel M. X-ray spectrum optimization of full-field digital mammography: 

simulation and phantom study. Med Phys 2006;33:4337-4349 
36. Riedl CC, Jaromi S, Floery D, Pfarl G, Fuchsjaeger MH, Helbich TH. Potential of dose reduction after marker 

placement with full-field digital mammography. Invest Radiol 2005;40:343-348
37. Chesters MS. Human visual perception and ROC methodology in medical imaging. Phys Med Biol 1992;37: 

1433-1476 



jksronline.org16

Image Reconstruction Using Deep Learning Algorithm

딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 
영상의 복원: 예비 연구

하수민1,2 · 김학희3* · 강은희4 · 서보경5 · 최나미6 · 김태희7 · 구유진8 · 예종철4

목적 깊은 컨볼루션 신경망 기법을 결합한 영상 잡음 제거 알고리즘을 개발하고 이를 응용하

여 저선량 유방 촬영 영상으로 유방암을 진단하는 데 그 효능을 조사하고자 한다. 

대상과 방법 6명의 유방 영상 전문의가 전향적 연구에 참여하였다. 모든 영상 전문의는 병변 

감지를 위해 저선량 영상을 독립적으로 평가하고 정성적 척도를 사용하여 진단 품질을 평가

하였다. 영상 잡음 제거 알고리즘을 적용한 후, 동일한 영상 전문의가 병변 감지 가능성과 영

상 품질에 대한 평가를 하였다. 임상 적용을 위해 동일한 영상 전문의가 병변 유형과 위치에 

대한 합의 결정 후, 저선량 영상, 재구성된 영상, 기존 선량 영상을 무작위 순서로 제시하여 

평가하였다.  

결과 전 절제 표본의 저선량 영상을 참조로 40% 재구성된 영상에서 병변이 더 잘 인식되었

다. 임상 적용단계에서 40% 재구성된 영상과 비교하여, 기존 선량 영상이 해상도(p < 0.001), 

석회에 대한 진단 품질(p < 0.001), 유방 종괴, 비대칭, 구조왜곡의 진단 품질(p = 0.037)에 대

해 더 높은 평균값을 보였다. 40% 재구성된 영상은 100% 영상과 비교 시 전반적 화질(p = 

0.547), 병변의 가시성(p = 0.120), 대조도(p = 0.083)에서 비슷한 성적을 보였으며 유의미한 

차이도 보이지 않았다.

결론 깊은 컨볼루션 신경망 기법을 결합한 효과적인 잡음 제거 및 영상 재구성 처리 알고리

즘은 유방 촬영의 상당한 선량 감소를 위한 길을 열어 유방암 진단을 가능하게 할 것이다. 
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