
www.thelancet.com/digital-health   Vol 3   March 2021 e158

Articles

Application of a novel machine learning framework for 
predicting non-metastatic prostate cancer-specific mortality 
in men using the Surveillance, Epidemiology, and End Results 
(SEER) database
Changhee Lee*, Alexander Light*, Ahmed Alaa, David Thurtle, Mihaela van der Schaar†, Vincent J Gnanapragasam†

Summary
Background Accurate prognostication is crucial in treatment decisions made for men diagnosed with non-metastatic 
prostate cancer. Current models rely on prespecified variables, which limits their performance. We aimed to 
investigate a novel machine learning approach to develop an improved prognostic model for predicting 10-year 
prostate cancer-specific mortality and compare its performance with existing validated models.

Methods We derived and tested a machine learning-based model using Survival Quilts, an algorithm that 
automatically selects and tunes ensembles of survival models using clinicopathological variables. Our study 
involved a US population-based cohort of 171 942 men diagnosed with non-metastatic prostate cancer between 
Jan 1, 2000, and Dec 31, 2016, from the prospectively maintained Surveillance, Epidemiology, and End Results 
(SEER) Program. The primary outcome was prediction of 10-year prostate cancer-specific mortality. Model 
discrimination was assessed using the concordance index (c-index), and calibration was assessed using Brier 
scores. The Survival Quilts model was compared with nine other prognostic models in clinical use, and decision 
curve analysis was done.

Findings 647 151 men with prostate cancer were enrolled into the SEER database, of whom 171 942 were included in 
this study. Discrimination improved with greater granularity, and multivariable models outperformed tier-based 
models. The Survival Quilts model showed good discrimination (c-index 0·829, 95% CI 0·820–0·838) for 10-year 
prostate cancer-specific mortality, which was similar to the top-ranked multivariable models: PREDICT Prostate 
(0·820, 0·811–0·829) and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram (0·787, 0·776–0·798). 
All three multivariable models showed good calibration with low Brier scores (Survival Quilts 0·036, 95% CI 
0·035–0·037; PREDICT Prostate 0·036, 0·035–0·037; MSKCC 0·037, 0·035–0·039). Of the tier-based systems, the 
Cancer of the Prostate Risk Assessment model (c-index 0·782, 95% CI 0·771–0·793) and Cambridge Prognostic 
Groups model (0·779, 0·767–0·791) showed higher discrimination for predicting 10-year prostate cancer-specific 
mortality. c-indices for models from the National Comprehensive Cancer Care Network, Genitourinary Radiation 
Oncologists of Canada, American Urological Association, European Association of Urology, and National Institute 
for Health and Care Excellence ranged from 0·711 (0·701–0·721) to 0·761 (0·750–0·772). Discrimination for the 
Survival Quilts model was maintained when stratified by age and ethnicity. Decision curve analysis showed an 
incremental net benefit from the Survival Quilts model compared with the MSKCC and PREDICT Prostate models 
currently used in practice.

Interpretation A novel machine learning-based approach produced a prognostic model, Survival Quilts, with 
discrimination for 10-year prostate cancer-specific mortality similar to the top-ranked prognostic models, using only 
standard clinicopathological variables. Future integration of additional data will likely improve model performance 
and accuracy for personalised prognostics.
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Introduction
Prostate cancer is the most common cancer in men and 
its global incidence is rising.1 More than 80% of men 
diagnosed present with non-metastatic disease. Treatment 
decisions are particularly complex and need to balance 
the risk of progression with therapy-related morbidity.2 

Accurate prognostication is therefore crucial to identify 
patients who could benefit most from treatment.3,4

Many nationally and internationally endorsed tools for 
risk modelling are available. Most stratify men into risk 
groups and are derived from the three-tiered D’Amico 
system, originally developed to predict biochemical 
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recurrence.5–10 However, biochemical recurrence is a 
poor surrogate for survival, and prognostic models 
should therefore be based on survival outcomes.11,12 The 
simple combination of prostate-specific antigen (PSA), 
grade, and stage can enable the creation of effective prog-
nostic models, and refining group-stratification systems 
can improve model dis crimination.5,9,10,13 Addition ally, 
studies14–16 have shown that using continuous data rather 
than categorisation can make prognostication more 
accurate and personalised for clinical decision making. 
For example, the PREDICT Prostate tool14 and Memorial 
Sloan Kettering Cancer Center (MSKCC) nomogram15 
have shown high discriminative ability for predicting 
survival in robust external validation and are available 
as accessible web-based decision aids for patients and 
clinicians.

However, even these more personalised tools rely 
on traditional statistical modelling, with prespecified 
variables and interactions. Machine learning is a data-
driven application of artificial intelligence, in which 
systems automatically learn and improve without explicit 
programming. Accordingly, machine learning is able to 
autonomously exploit datasets to identify new variables 

and more complex relationships between them. Its 
application is growing rapidly in health care and is 
increasingly being used to develop novel prognostic 
models in several diseases.17 We hypothesise that 
machine learning might produce a superior predictive 
model for prostate cancer. For prostate cancer prog-
nostication, machine learning has so far been restricted 
to small, proof-of-concept studies without comparison 
with reference standards.18–21 We aimed to investigate a 
novel machine learning approach, Survival Quilts, using 
a large national observational dataset to develop an 
improved prognostic model for predicting 10-year 
prostate cancer-specific mortality in men with non-
metastatic disease,22 and compare its performance with 
existing validated models available in clinical practice.

Methods
Data source and study population
We used data collected from the Surveillance, 
Epidemiology, and End Results (SEER) Program. SEER 
collects data regarding cancer diagnoses and survival for 
approximately 30% of the US population, and benefits 
from extensive quality review.23 Men aged 35–95 years 

Research in context

Evidence before this study
Prognostic models for non-metastatic prostate cancer have 
been built using traditional statistical modelling with 
prespecified variables and interactions. These typically place 
patients into risk groups or categories using clinicopathological 
variables. However, a major aim for future health care is to 
make treatment decisions more personalised, particularly for 
men diagnosed with non-metastatic prostate cancer, for whom 
treatment choices and decisions are complex. Machine learning 
systems offer the possibility of individualising predictions for 
this population, but no such tools are in use. We searched 
PubMed from database inception to April 10, 2020, using the 
search term “prostate cancer artificial intelligence”. This search 
identified very few machine learning studies in prostate cancer 
prognostics, mostly small, single ethnic cohorts, and proof-of-
concept studies. There are no studies in large population 
cohorts, and to our knowledge, none have compared model 
performance with or added value to  currently used risk 
prediction models.

Added value of this study
We used a large (n=171 942), multiethnic, population-based, 
prospectively maintained SEER dataset to produce a model 
trained using machine learning to predict 10-year prostate 
cancer-specific mortality. We used a novel algorithm called 
Survival Quilts, which exploits an ensemble of traditional and 
machine learning-based modelling techniques. The survival 
function learned by Survival Quilts is a combination of 
survival profiles from these modelling techniques; therefore, 
the algorithm is optimised to account for discriminative 

performance and calibration. The Survival Quilts model 
produced in this study predicted 10-year prostate cancer-
specific mortality with good discrimination and was well 
calibrated. In comparison with nine other models in clinical use, 
our model showed similar discrimination to the top-ranked 
models in predicting the outcome, even when stratified by age 
and ethnicity. Further, we observed that applying Survival Quilts 
in clinical decision model analysis might be beneficial. To our 
knowledge, this is the first study that shows the advantages of 
a data-driven, variable-agnostic, machine learning approach in 
predicting prostate cancer-specific mortality. This approach will 
probably improve with further training on new datasets and the 
addition of variables (eg, new imaging or molecular markers). 
With development and refinement, this method could be used 
clinically to provide superior, more individualised, survival 
predictions.

Implications of all the available evidence
Clinicians and patients need to balance the risks and benefits 
of treatment and consider multiple variables that might 
affect prognosis. Machine learning algorithms can adapt to 
quickly integrate data from multiple variables, such as those 
in prostate cancer, for individual prognostic modelling. 
The data-driven and variable-agnostic approach inherent to 
machine learning also allows for an information gain from 
previously unsuspected contributing factors. Therefore, 
machine learning could form the basis for a new era of 
prognostic models that more accurately predict individualised 
survival outcomes and enhance decision making in prostate 
cancer and other cancers.
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diagnosed with histologically confirmed non-metastatic 
prostate cancer (site code C61·9) between Jan 1, 2000, 
and Dec 31, 2016, were included. Men with evidence of 
metastatic disease (including lymph node metastasis); 
those with missing survival data or data on PSA, Gleason 
grade, or stage; and men younger than 35 years or older 
than 95 years were excluded. Complete data were 
required for PSA, Gleason grade, stage, and prostate 
cancer-specific mortality. Time-to-event or censoring 
was derived from the date of diagnosis or the date of 
last contact (either death or last follow-up). Biopsy 
core involvement was available for 66 885 (38·9%) of 
171 942 men in the final cohort and derived by mean 
imputation where missing. Access to the SEER database 
does not need formal ethics approval and is covered by its 
open access policy.

Model development
The following variables, measured at diagnosis, were 
included in model development: age, PSA, primary and 
secondary Gleason grades or grade groups, T stage, total 
number of biopsy cores examined, and core positivity 
(number of cores positive for cancer divided by number of 
cores taken). MRI, comorbidity, and treatment data were 
not available. We derived our machine learning-based 
survival model using Survival Quilts: an open-source 
software developed to automate deployment of machine 
learning in survival analysis.22 Survival Quilts is an 
ensemble of different survival models. Because different 
models exhibit varying discriminative performance and 
calibration accuracy between datasets, Survival Quilts 
learns to automatically weigh these models and tune the 
parameters of each individual model in a single ensemble 
for the specific dataset. The survival function learned 
by Survival Quilts is a combination of survival profiles 
produced by many models, optimised to account for 
discriminative performance and calibration. Therefore, 
Survival Quilts is a superset of many statistical models and 
machine learning-based models for survival prediction. 
This software is automated and frees researchers from 
choosing one survival model without the need for in-depth 
knowledge of machine learning. The four models included 
in this study ranged from traditional statistical models to 
state-of-the-art deep learning models: Cox proportional 
hazards, random survival forest, conditional inference 
survival forest, and DeepHit models (appendix p 1).24–26 
The turning parameters were chosen using a grid search, 
on the basis of validation performance determined by the 
concordance index (c-index), to predict prostate cancer-
specific mortality.22 The primary outcome was prediction 
of prostate cancer-specific mortality at 10 years, assessed 
in men aged 35–95 years with non-metastatic prostate 
cancer. The SEER cohort was randomly split (64:16:20) into 
the training, validation, or testing sets, using the Python 
(version 3.6.5) package scikit-learn. For model evaluation, 
we used bootstrapping of 10 000 patients in the testing set, 
with more than 100 iterations on average. Time-dependent 

c-indices were calculated for model discrimination and 
Brier scores for calibration. Model calibration, reflecting 
predicted versus observed outcomes, was also assessed by 
visual inspection of calibration plots. Discrimination was 
assessed in the full cohort and then stratified by age groups 
on the basis of the cohort median, resulting in the 
following age groups: younger than 65 years (n=79 003) 
and 65 years or older (n=92 939). We also stratified by 
different ethnicities (Black, White, other; appendix p 4).

Head-to-head model comparison
The Survival Quilts model was compared with nine other 
prognostic models in clinical use. The attributes of 
each model are shown in the appendix (p 2). The fol-
lowing models were included: the tier-based Cambridge 
Prognostic Groups, European Association of Urology, 
National Institute for Health and Care Excellence 
(NICE), Genitourinary Radiation Oncologists of Canada, 
American Urological Association, and the National 
Comprehensive Cancer Care Network.5–10 We also com-
pared Survival Quilts with the point-based Cancer of the 
Prostate Risk Assessment model, and the multivariable 
MSKCC nomogram and PREDICT Prostate models.14–16 
Due to unavailable data on treatment and comorbidity for 
the PREDICT Prostate model, we removed these variables 
from hazard calculations. Using the testing set, model 
performance at 10 years was compared by calculating the 
c-index to show how well models discriminate the risk of 
prostate cancer-specific mortality. A sensitivity analysis 
was also done without the biopsy core involvement 
variable. For each of the three models, the probability of 
10-year prostate cancer-specific mortality risk was 
calculated across a range of threshold probabilities and 
plotted against default strategies of treating all or no 
patients regardless of prognosis. Decision curve analysis 
was used to calculate a clinical net benefit for each 
prediction model. The net benefit of following these 
strategies was compared with the three models (Survival 
Quilts, PREDICT Prostate, and MSKCC) for a prognosis-
based intervention—ie, an intervention with a predicted 
risk that exceeds a specific risk threshold. Net benefit was 
defined as the value achieved by making decisions on the 
basis of model predictions. The statistical tools used for 
these analyses included R (version 3.6.1) and Python 
(version 3.6.5), and relevant packages are detailed in the 
appendix (p 3).

Role of the funding source
There was no funding source for this study.

Results
Figure 1 shows our data assembly process. 647 151 men 
were enrolled into the SEER database with histolo-
gically confirmed prostate cancer in the study period 
between Jan 1, 2000, and Dec 31, 2016. Of these, 7340 did 
not have survival data or censoring information, 
21 528 presented with evidence of lymph nodes or 

For the SEER database see 
https://seer.cancer.gov/data/
access.html

See Online for appendix

https://seer.cancer.gov/data/access.html
https://seer.cancer.gov/data/access.html
https://seer.cancer.gov/data/access.html
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metastasis, and 446 294 had missing data for at least 
one of the essential domains of PSA, Gleason grade, or 
clinical stage data. 47 men were outside of the study 
age range (35–95 years) and were also excluded. The 
final study population included 171 942 men. Table 1 
shows baseline characteristics of the study cohort, and 
ethnicities are shown in the appendix (p 4). The mean 
age was 65·6 years (SD 8·9). Most men were White 
(78·0% [134 139] of 171 942), 14·2% (24 488) were Black, 
and 5·2% (8962) were Asian. Almost all cancers were 
T stage 1 or 2 (168 573 [98·0%] of 171 942) and grade 
group 1–3 (146 599 [85·3%]). Only a low proportion of 
patients (0–0·01%) had a primary Gleason score of less 
than 3 and were included. Median time to event for men 
who died with prostate cancer was 4·4 years (IQR 4·5) 
and for the remaining cohort (including other causes of 
death) was 6·2 years (IQR 5·7), giving an overall median 
follow-up of 6·1 years. At 10 years, 4157 of 171 942 men 
died of prostate cancer, and 26 488 died of other causes.

The c-index for predicting prostate cancer-specific 
mortality was consistently high in training, validation, 
and testing sets (0·829, 95% CI 0·820–0·838), with good 
calibration (Brier score 0·036, 0·035–0·037; table 2; 
figure 2). c-index was also high when the cohort was 
subdivided by age (table 3) For Survival Quilts, model 

performance was marginally better in men younger 
than 65 than in men aged 65 years or older (table 3). 
Next, we tested performance in different ethnic groups. 
The Survival Quilts model was consistent, with small 
differences in the c-index between ethnicities (table 4).

Our Survival Quilts model was favourable in terms 
of performance, compared with other tier-based and 
multivariable models. Variables used for these different 
modelling systems are shown in the appendix (p 2). 
The Cancer of the Prostate Risk Assessment model 

Overall (n=171 942)

Mean age, years 65·6 (8·9)

Mean prostate-specific antigen, ng/mL 10·1 (13·3)

Mean core involvement*

Cores taken 12·4 (2·5)

Cores positive 4·2 (2·1)

Cores negative 8·1 (2·7)

T stage

1a 1811 (1·1%)

1b 1026 (0·6%)

1c 101 036 (58·8%)

2a 48 690 (28·3%)

2b 11 282 (6·6%)

2c 4728 (2·8%)

3a 1699 (1·0%)

3b 1195 (0·7%)

4 475 (0·3%)

Primary Gleason score

1 0

2 9 (0·0%)

3 126 083 (73·3%)

4 42 588 (24·8%)

5 3262 (1·9%)

Secondary Gleason score

1 0

2 6 (0·0%)

3 94 715 (55·1%)

4 67 284 (39·1%)

5 9937 (5·7%)

Grade group

1 72 548 (42·2%)

2 52 245 (30·4%)

3 21 806 (12·7%)

4 14 675 (8·5%)

5 10 668 (6·2%)

Prostate cancer-specific mortality

5 years 2469 (1·4%)

10 years 4157 (2·4%)

All-cause mortality

5 years 14 825 (8·6%)

10 years 26 488 (15·4%)

Data are mean (SD) or n (%). *Data available for 66 885 (38·9%) of 171 942 men.

Table 1: Demographic characteristics of patients included in the analysis

Figure 1: Patient data selection process
SEER=Surveillance, Epidemiology, and End Results.

647 151 men with prostate cancer were 
enrolled in the SEER Program (C61.9)

639 811 men with survival data 

618 283 men with non-metastatic prostate 
cancer 

171 989 men with non-metastatic prostate 
cancer and survival data

171 942 men included in study 

7340 men without time-to-event or 
censoring information

21 528 men with positive regional lymph 
nodes, cancer-specific lymph nodes, 
or cancer-specific metastases at 
diagnosis

446 294 men with missing prostate-specific 
antigen, Gleason grade, or T-stage data

47 men who were younger than 35 
or older than 95 years at diagnosis
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(c-index 0·782, 95% CI 0·771–0·793) and Cambridge 
Prognostic Groups model (0·779, 0·767–0·791) showed 
higher discrimination for predicting 10-year prostate 
cancer-specific mortality (table 2). c-indices for models 
from the National Comprehensive Cancer Care Net-
work, Genitourinary Radiation Oncologists of Canada, 
American Urological Association, European Association 
of Urology, and NICE ranged from 0·711 (0·701–0·721) 
to 0·761 (0·750–0·772). The multivariable models 
generally discriminated 10-year prostate cancer-specific 
mortality similarly to the tier-based models, with a 
c-index of 0·820 (95% CI 0·811–0·829) for the PREDICT 
Prostate model and 0·787 (0·776–0·798) for the MSKCC 
model. Our Survival Quilts model had a similarly high 
c-index in this cohort (0·829, 0·820–0·838). Model 
discrimination was maintained when the cohort was 
stratified by age (table 3) and ethnicity (table 4).

All three multivariable models showed good 
calibration with low Brier scores (Survival Quilts 0·036, 
95% CI 0·035–0·037; PREDICT Prostate 0·036, 
0·035–0·037; MSKCC 0·037, 0·035–0·039; table 2; 
figure 2). We further tested whether these comparisons 
were valid given that the PREDICT Prostate and 
MSKCC models were originally derived from different 
cohorts. We refitted these models to the training set, 
before reapplying them to the validation set. We found 
similar performance characteristics for the PREDICT 
Prostate model and improved c-index performance 
for the MSKCC model (appendix p 5). Both models 
performed similarly to the Survival Quilts model. 
Finally, given that biopsy core data were only available 
in less than half of the cohort (66 885 [38·9%] of 

171 942 men), we reassessed the PREDICT Prostate and 
Survival Quilts models without this variable and found 
similar performance characteristics (appendix p 6).

We next assessed model performance using decision 
curve analysis, considering the effect on treatment 
decision making (eg, surveillance vs radical treatment). 
The heterogeneous profile of the patient population 
renders a uniform treatment strategy (treat all or no 
patients) inferior to strategies informed by any one of 
the three models (figure 2). Among the three 
multivariable models, MSKCC provided the least net 
benefit whereas Survival Quilts provided the greatest 
gain. The gain from Survival Quilts was particularly 
higher than the PREDICT Prostate model with threshold 
probabilities of risk between 0·1 and 0·3 (figure 3), with 
added net incremental benefits across each threshold. 
The difference was even greater when compared with 
the MSKCC model (figure 3; appendix pp 7–8).

Discussion
In this study we used a large dataset to develop and test a 
machine learning-trained prognostic model for predicting 
10-year prostate cancer-specific mortality and assessed its 
performance against a range of tiered and multivariable 
prediction models. To our knowledge, our study is the 

c-index (95% CI) Brier score (95% CI)

Multivariable models

Survival Quilts 0·829 (0·820–0·838) 0·036 (0·035–0·037)

PREDICT Prostate 0·820 (0·811–0·829) 0·036 (0·035–0·037)

Memorial Sloan Kettering 
Cancer Center

0·787 (0·776–0·798) 0·037 (0·035–0·039)

Tier-based models

Cancer of the Prostate Risk 
Assessment score

0·782 (0·771–0·793) 0·037 (0·035–0·039)

Cambridge Prognostic 
Groups

0·779 (0·767–0·791) 0·037 (0·035–0·039)

National Comprehensive 
Cancer Care Network

0·761 (0·750–0·772) 0·038 (0·036–0·040)

Genitourinary Radiation 
Oncologists of Canada

0·750 (0·739–0·761) 0·039 (0·037–0·041)

American Urological 
Association

0·749 (0·738–0·760) 0·039 (0·037–0·041)

European Association of 
Urology

0·711 (0·701–0·721) 0·039 (0·037–0·041)

National Institute for 
Health and Care Excellence

0·711 (0·701–0·721) 0·039 (0·037–0·041)

Data are shown for the testing set. c-index=concordance index.

Table 2: Discrimination and calibration of each model at predicting 
10-year prostate cancer-specific mortality

Age <65 years (n=79 003) Age ≥65 years (n=92 939)

Survival Quilts 0·834 (0·817–0·851) 0·797 (0·786–0·808)

PREDICT Prostate 0·819 (0·802–0·836) 0·789 (0·778–0·800)

Memorial Sloan Kettering Cancer Center 0·830 (0·813–0·847) 0·749 (0·737–0·761)

Cancer of the Prostate Risk Assessment score 0·818 (0·801–0·835) 0·742 (0·730–0·754)

Cambridge Prognostic Groups 0·824 (0·807–0·841) 0·742 (0·729–0·755)

National Comprehensive Cancer Care Network 0·807 (0·790–0·824) 0·725 (0·713–0·737)

c-index=concordance index.

Table 3: Comparative c-index for 10-year prostate cancer-specific mortality stratified by age

Figure 2: Calibration plots of observed versus predicted risk
Prostate cancer-specific mortality at 10 years, assessed in men aged 35–95 years with non-metastatic prostate 
cancer. Survival Quilts model compared with the top two performing prognostic models: (A) PREDICT Prostate and 
(B) MSKCC model. MSKCC=Memorial Sloan Kettering Cancer Center.
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first to use the SEER cohort to compare numerous models 
for predicting prostate cancer-specific mortality. We 
observed that multivariable models outperform tiered 
systems, which is consistent with previous findings of 
head to head comparisons.13,27 Our study introduces an 
innovative approach to predicting mortality by using a 
novel machine learning algorithm that automatically 
combines optimal attributes from different modelling 
methods.

There are few machine learning studies in prostate 
cancer prognostics, and these studies have included 
small cohorts in terms of model development. The only 
study18 to assess prostate cancer-specific mortality 
trained several artificial neural network models with 
19 pretreatment variables in 7267 Korean men. Koo and 
colleagues18 long short-term memory artificial neural 
network model produced a c-index of 0·815 for dis-
crimination of 10-year prostate cancer-specific mortality 
and all-cause mortality. However, the model has not yet 
been externally validated. The largest study19 to date using 
machine learning in prostate cancer prognostics included 

data from 8581 Taiwanese men. A support vector 
machine-trained model incorporated comorbidity data 
with standard clinicopathological variables (but not PSA) 
and showed an accuracy of 0·852 at predicting cancer-
related post-treatment recurrence and mortality.

Datasets are often limited by which variables prostate 
cancer specialists have traditionally considered important 
and therefore collected (eg, clinicopathological and 
comorbidity variables). Our study supports the notion 
that model performance improves with greater granu-
larity, and machine learning-trained models should have 
an advantage when incorporating new variables.13,18–21,28 
As an example, Donovan and colleagues20 combined 
standard variables with five molecular bio markers and 
automated histopathological image analysis to derive a 
prediction tool for biochemical recurrence after treat-
ment. Their Precise Post-op model had a c-index of 0·77 
for recurrence-free survival. Zhang and colleagues21 
combined somatic mutation signatures in a 43 gene 
panel with NICE risk criteria and improved the area 
under the curve for prediction of postsurgical biochemical 
recurrence from 0·62 to 0·75.

The data-driven and variable-agnostic approach 
inherent to machine learning allows for an information 
gain from previously unsuspected contributing factors. 
For example, the machine learning AutoPrognosis 
model for predicting cardiovascular risk was trained on 
473 variables and identified walking pace as the third 
most important variable for death after systolic blood 
pressure and body-mass index.17 The Survival Quilts 
approach used in our study also permits a modelling 
gain whereby the most robust model among several can 
be objectively chosen without previous assumptions 
regarding model characteristics and variable interac-
tions.22 Notably, by using just a few standard clinico-
pathological factors (rather than employing new or 
different variables) the method was able to achieve high 
c-indices and good calibration.

In the decision curve analysis, we also found an 
incremental gain in net benefit when Survival Quilts was 
applied compared with the other top two performing 
models. There is no consensus on what is a clinically 
useful range for a net benefit in treatment prognostic 
models.29 In clinical practice, if the uncertainty is 10% or 
less then a decision model is not needed. Therefore, 
we reasoned that threshold probabilities higher than 
10% would benefit from using a decision model. In this 
analysis we found a net benefit when the threshold 
probabilities of risk were between 0·1 and 0·3. We accept 
that there might be other interpretations of a clinically 
important range, but believe that our approach was 
pragmatic to define a range for which prognostic 
model improvements have a clinical benefit on decision 
making. Training the Survival Quilts model on multiple 
large datasets and incorporating more factors will 
probably produce a more superior model than the one we 
achieved in this study. Owing to the autonomous nature 

White (n=134 139) Black (n=24 488) Other* (n=13 315)

Survival Quilts 0·832 (0·824–0·841) 0·815 (0·795–0·834) 0·836 (0·813–0·860)

PREDICT Prostate 0·825 (0·816–0·833) 0·802 (0·783–0·822) 0·827 (0·802–0·851)

Memorial Sloan Kettering Cancer 
Center

0·779 (0·767–0·790) 0·811 (0·791–0·831) 0·778 (0·745–0·811)

Cancer of the Prostate Risk 
Assessment score

0·773 (0·762–0·785) 0·801 (0·781–0·821) 0·775 (0·744–0·807)

Cambridge Prognostic Groups 0·774 (0·762–0·787) 0·799 (0·777–0·820) 0·744 (0·707–0·780)

National Comprehensive Cancer 
Care Network

0·759 (0·747–0·771) 0·777 (0·755–0·798) 0·728 (0·693–0·764)

*Full list of ethnicities shown in the appendix (p 4). c-index=concordance index.

Table 4: Comparative c-index for 10-year prostate cancer-specific mortality stratified by ethnicity

Figure 3: Decision curve analysis
The clinical net benefit for each prediction model is calculated across a range of 
risk threshold probabilities. Clinical net benefit is defined as the minimum 
probability of disease at which further intervention would be warranted. 
MSKCC=Memorial Sloan Kettering Cancer Center.
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of machine learning, such models could be quickly 
and automatically updated whenever new data become 
available. A further opportunity is the ability to continu-
ously add data as the patient’s treatment progresses and 
visualise the effects on prognosis, which is not currently 
possible with static prognostic models.

Our machine learning-based model was trained in a 
large, contemporary, ethnically heterogeneous population 
using real-world data from a high-quality database.24 
To our knowledge, this study is the largest to apply 
machine learning to prostate cancer prognostics. 
However, this study has some important limitations. The 
cohort distribution is heavily skewed to earlier stage 
disease and represents a population heavily screened 
using PSA. Consequently, few death events occurred, and 
follow-up was limited. However, the performance of other 
prognostic models we tested was consistent with results 
seen in large population studies that had a more balanced 
case-mix.13,27 We did not have data for a larger starting 
population and cannot account for bias that might have 
been introduced when the final cohort was derived. We 
also did not explore the geographical distribution of 
this US cohort or any social differences, so we cannot 
comment on the effects that these might have had on our 
results. Similarly, biopsy core data had to be imputed for a 
substantial proportion of the cohort and we acknowledge 
that using imputation for such a large amount of 
information might have introduced bias. As the SEER 
database does not collect comorbidity or treatment data, 
we could not model the effect of comorbidity on outcomes 
nor could we consider the effects of treatment, both of 
which are key variables in other models (eg, PREDICT 
Prostate). Comparison of different models could also 
introduce inherent bias because of input variable 
heterogeneity, and changes in performance might reflect 
this heterogeneity. SEER also does not collect data on 
prostate MRI, although whether MRI findings improve 
prognostic capabilities remains unclear.30 We additionally 
did not have any molecular markers to assess, although 
their addition to standard models does show some 
promise.31 Questions remain on the usefulness of these 
tests and how their addition to models such as Survival 
Quilts, PREDICT Prostate, or the MKSCC nomogram 
will improve performance given the substantial additional 
cost. This study focused on non-metastatic cancer, but in 
future work we would be keen to take the methods here 
and apply them to metastatic cancer, for which there is 
paucity of robust and validated models.

Our novel machine learning-trained model is capable 
of predicting 10-year prostate cancer-specific mortality at 
similar performance to the top existing models. Machine 
learning might confer numerous future advantages, 
especially its potential to readily incorporate new data, its 
ability to self-train, and its flexibility for input variables 
to evolve. Consequently, machine learning represents a 
unique future framework for producing more granular, 
individualised, and iterative prognostic models. This 

study showed in a PSA-screened population the crucial 
need to move away from tier-based risk grouping and 
increasingly use multivariable and more personalised 
prognostic models to guide patient management.
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