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ABSTRACT This paper proposes a distributed optimization algorithm for scheduling the energy consump-
tion of multiple smart homes with distributed energy resources. In the proposed approach, the centralized
optimization problem for home energy management is decomposed into a two-level optimization problem,
corresponding to the local home energy management system (LHEMS) at the first level and the global home
energy management system (GHEMS) at the second level. The controllable household appliances (e.g., air
conditioner and washing machine) are scheduled in the LHEMS within the consumer’s preferred appliance
scheduling and comfort level, while the energy storage system and power trading between households
are scheduled in the GHEMS. In the simulation study, the proposed distributed algorithm shows almost
equivalent performance to the centralized algorithm in terms of the electricity cost and the consumer’s
comfort level. The impact of different network topologies on the proposed algorithm is also analyzed, and
the result provides insight into the selection of the optimal network configuration in view of the consumer’s
electricity cost saving.

INDEX TERMS Home energy management system (HEMS), energy consumption scheduling, demand side
management, distributed algorithm.

I. INTRODUCTION
As home energy consumption has increased considerably due
to population growth and housing expansion along with the
deployment of smart home appliances (e.g., air conditioners,
washing machines, and refrigerators), home energy manage-
ment is becoming increasingly important for consumers to
reduce their electricity costs and maintain the efficiency of
their home appliances. With an increasing energy consump-
tion in the residential sector, the emerging smart grid tech-
nologies including distributed energy resources (DERs) (e.g.,
rooftop solar photovoltaic (PV) and residential energy storage
system (ESS)), advanced metering infrastructure (AMI) with
smart meters, and demand side management (DSM), have
rendered home energy management more complex.

A home energy management system (HEMS) is the key
solution to the efficient and economical management of the
residential energy usage of the future smart grid. The main
functions of HEMS are to monitor the real-time energy
usage of consumers using a smart meter and to schedule the
optimal energy consumption of home appliances for reducing

consumers’ electricity costs in the consumers’ comfortable
and preferred environments. According to a report on [1],
the global HEMS market is expected to grow from USD
864.2 million in 2015 to USD 3.15 billion by 2022 due
to factors such as increasing real-time energy conservation
approach, cloud computing technologies and data analytics,
and increased device interconnectivity. It is worth noting that
this market forecast would be correct when HEMS has com-
putational capability to efficiently process very large amounts
of heterogeneous data from various sources such as DERs,
smart meters, smart home appliances, consumer preferences,
and weather centers.

One approach to reduce the increasing computational
complexity due to overwhelming data is to distribute the
centralized computation to decentralized entities that are
capable of managing the energy consumption of the corre-
sponding households. The aim of this paper is to develop
a distributed two-level optimization framework, where the
energy consumption scheduling for individual households is
conducted at the local level and the control of energy trade
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FIGURE 1. Conceptual architecture of the distributed HEMS (DHEMS).

between neighboring households is coordinated at the global
level. Fig. 1 illustrates the system model for the proposed
distributed HEMS (DHEMS) that comprises the local home
energy management system (LHEMS) and the global home
energy management system (GHEMS).

A core technology in HEMS is the optimizationmethod for
an economic load reduction and load shifting. A considerable
amount of literature has been published recently on the devel-
opment of the HEMS optimization algorithm, including the
scheduling of electric vehicles (EVs) and various types of res-
idential loads using linear programming (LP) [2], [3], the load
scheduling within consumer comfort level using mixed inte-
ger nonlinear programming (MINLP) [4], the efficient calcu-
lation of load scheduling using relaxed MINLP method with
an L1 regularization term [5], community load scheduling for
a neighborhood with multiple consumers using mixed integer
linear programming (MILP) [6], [7], the MILPmethod-based
demand response (DR) aggregation framework in wholesale
electricity markets [8], and an interdisciplinary approach
between optimization and machine learning [9], [10]. Joint
optimization approaches have been developed for HEMS
and the building energy management system (BEMS) [11].
A new HEMS algorithm with voltage control was proposed
for minimizing the load shifting operation [12]. A method
for the prediction of the energy consumption of appliances
was presented based on a stochastic approach [13]. The
HEMS was designed with the Internet of things (IoT) tech-
nology [14] and load disaggregation algorithm, namely non
intrusive load monitoring (NILM) [15], in order to improve
the accuracy of the load scheduling. A data sensitivity anal-
ysis framework was developed to quantify the impact of
erroneous data on the HEMS using the perturbed Karush-
Kuhn-Tucker (KKT) conditions from theHEMSoptimization
formulation [16]. The general optimization problem and the
architecture of the HEMS are summarized in [17] and [18].
While much work has focused on the development of cen-
tralized HEMS (CHEMS) optimization algorithms, several
studies have been conducted recently to develop distributed
HEMS (DHEMS) optimization algorithms to reduce the
computational complexity of CHEMS. In general, these
DHEMS optimization algorithms were designed in a two-
level architecture, where each consumer’s energy scheduling

obtained at the local level is coordinated at the global level
with a focus on (i) sharing a single community ESS among
consumers in a cooperative manner [19] and (ii) tracing the
desired aggregate scheduled load [20], [21]. However, these
works have not explicitly considered consumer comfort level
and power trade between households in the distributed opti-
mization framework.

In comparison with existing DHEMS optimization algo-
rithms, our proposed approach provides a two-level opti-
mization framework, where each consumer’s preferred home
appliance scheduling is executed and the consumer com-
fort level is adjusted at the local level (LHEMS), while the
scheduling of each consumer’s ESS operation and power
transactions between consumers are conducted at the global
level (GHEMS), subsequently reducing the total electric-
ity cost. Compared to the CHEMS optimization algorithm,
the proposed DHEMS optimization algorithm is beneficial
in several ways as follows. The computation complexity
of DHEMS can be reduced significantly by decentralizing
the computation burden to multiple LHEMSs. In addition,
the proposed algorithm is developed based on an efficient
data exchange scheme that requires minimum communica-
tion between GHEMS and LHEMSs. In terms of smart grid
cyber security, a single point of failure due to a cyber attack
on CHEMS can be eliminated. Furthermore, a strong privacy
protection of each consumer can be ensured because the
GHEMS schedules the operation of only ESS, the operation
of which does not reveal the consumer’s energy usage pat-
terns to attackers. Specifically, the three main contributions
of the proposed approach are as follows.
• We present a two-level distributed system model con-
sisting of the local home energy management sys-
tem (LHEMS) and global home energy management
system (GHEMS), where the computation time can
be significantly reduced by distributing the centralized
computation to local systems as shown in Fig. 1.

• We propose a distributed home energy management
optimization algorithm with the following two schedul-
ing steps: i) the controllable household appliances are
scheduled at the LHEMS, while the consumer’s pre-
ferred appliance scheduling and comfort level are main-
tained through the participation of the consumer and
ii) each consumer’s ESS and power trade between
neighboring households are scheduled at the GHEMS,
consequently leading to the optimal electricity cost for
all households.

• Simulation results confirm that the proposed distributed
algorithm shows almost equivalent performance to the
centralized algorithm in terms of the electricity cost
and the consumer’s comfort level under various com-
fort level settings. In addition, we analyze the impact
of different network topologies (e.g., radial, ring, and
mesh networks) with varying line flow limits on the
proposed algorithm, and verify that the mesh network
yields the maximum electricity cost saving among the
three networks.
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This paper is organized as follows. Section II defines the
various types of smart home appliances and introduces the
optimization formulation for the centralized home energy
management. Section III presents the proposed distributed
home energy management optimization algorithm using
MILP in the time of use (TOU) pricing tariff where the
electricity price varies according to a different time block.
Section IV presents the simulation of the proposed optimiza-
tion algorithm with four households equipped with smart
home appliances and DERs. Finally, concluding remarks are
presented in Section V.

TABLE 1. Notations.

II. BACKGROUND
The notations used in this paper are summarized in Table 1.
Other undefined symbols are explained within the text.

A. TYPE OF SMART HOUSEHOLD APPLIANCES
Automatic energy management is conducted by HEMS,
which schedules and controls the following types of house-
hold appliances.
• Uncontrollable appliance (Auc

u ): An uncontrollable
appliance such as a TV, PC, or lighting cannot be sched-
uled and operated by the HEMS. Auc

u thus follows the
fixed energy consumption scheduling.

• Controllable appliance (Ac
u): A controllable appli-

ance includes an appliance of which the operation is

scheduled and controlled by the HEMS. Their oper-
ation characteristic categorizes controllable appliances
into incentive-based reducible appliances (Ac

u,r ) and
price-based shiftable appliances (Ac

u,s). An example of
a reducible appliance is an air conditioner in which
the energy consumption can be curtailed during the
DR period. On the other hand, under the TOU pricing
scheme, the energy consumption of a shiftable appliance
can shift from one time slot to another time slot to
minimize the total electricity cost. A shiftable appli-
ance has two types of loads: (1) a non-interruptible
load (Ac,NI

u,s ); and (2) an interruptible load (Ac,I
u,s). The

operation of shiftable appliances with non-interruptible
loads must not be stopped by the HEMS control during
the task period of the appliance. For example, a washing
machine must perform a washing cycle prior to dry-
ing. A shiftable appliance with interruptible load can
be allowed to be interrupted at any time. For example,
the HEMS should be able to terminate the discharg-
ing process of ESS and initiate the charging process
instantly when the PV power generation is greater than
the load demand.

B. CENTRALIZED HOME ENERGY
OPTIMIZATION PROBLEM
In general, an algorithm for HEMS that solves the opti-
mal operating schedule of home appliances and DERs is
formulated as a MILP optimization problem with the follow-
ing linear objective function (J (x, a)) and the linear equal-
ity/inequality constraints (Fx = a,Gx ≤ a):

min
x
J (x, a) = J1(x, a)+ J2(x, a) (1)

s.t. Fx = a (2)

Gx ≤ a. (3)

The goal of this optimization problem is to compute the
optimal operating schedule x of home appliances (e.g., con-
tinuous energy consumption, the on/off status of a washing
machine) and DERs (e.g., the binary charging/discharging
status of ESS) by minimizing the electricity cost (J1(x, a))
and the consumer’s discomfort (J2(x, a)) in (1) while satisfy-
ing the operating constraints of appliances, network, and con-
sumer comfort preference in (2) and (3). a represents the data
vector that includes the operation parameter of the appliance,
consumer’s comfort setting, weather information, etc. From
the aforementioned optimization formulation, the optimiza-
tion problem for the centralized home energy management
system (CHEMS) is formulated in the following subsections
where the vector x includes the decision variables (Pcostu,t , P

net
u,t ,

Pimp
u,t ,P

exp
u,t ,Pu,a,t , T

in
u,t , δu,t , SOCu,a,t , b

s
u,a,t , vu,a,τ , b

s,I
u,a,t ). The

other parameters and data belong to the vector a.

1) OBJECTIVE FUNCTION
The objective function (1) for the CHEMS optimization prob-
lem consists of two parts, each of which has different decision
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variables (Pcostu,t , δu,t ):

min
Pcostu,t ,δu,t

∑
u∈U

∑
t∈T

πtPcostu,t︸ ︷︷ ︸
J1(Pcostu,t )

+

∑
u∈U

εu
∑
t∈T

δu,t︸ ︷︷ ︸
J2(δu,t)

. (4)

In (4), J1
(
Pcostu,t

)
is the total electricity cost that is computed

using the TOU price πt and Pcostu,t during the time period T
(24 hours with one hour scheduling resolution). Pcostu,t consists
of two types of power consumptions: 1) the net consumption
Pnetu,t (the total energy purchased from the grid) and 2) the
trade consumption (the total energy purchased Pimp

u,t or sold
Pexpu,t from or to the neighborhood, respectively). J2

(
δu,t
)

is the total amount of penalty that involves the consumer’s
discomfort cost. The discomfort implies the deviation of the
consumer’s preferred temperature from the indoor temper-
ature. δu,t is a relaxation variable to ensure the feasibility
of the CHEMS optimization problem. εu is a penalty for
the relaxation variable. A smaller εu yields a larger δu,t and
hence burdens the consumer with increasing discomfort, yet
prevents the optimization problem from becoming infeasible
due to more relaxed constraints. The value of εu can be
determined by the HEMS operator to satisfy the consumer’s
preferred comfort level. The following subsections illustrate
equality/inequality constraints (2) and (3) for the CHEMS
optimization problem.

2) NET POWER CONSUMPTION AND POWER
TRADE CONSTRAINTS
Equation (5) is the constraint on the energy consumption
for the total electricity cost, i.e. the sum of the net energy
consumption and the gap between the energy purchased from
the neighborhood and sold to the neighborhood. Equation (6)
is the constraint on the net energy consumption, i.e. the differ-
ence between the total consumption for all appliances and the
generated solar output along with the energy purchased from
neighborhood. In (7), the total consumption for all appliances
in (6) is decomposed into four different types of reducible
appliances (a ∈ Ac

u,r ), for shiftable appliances with non-
interruptible load (a ∈ Ac,NI

u,s ), shiftable appliances with
interruptible load (a ∈ Ac,I

u,s), and uncontrollable appliances
(a ∈ Auc

u ).

Pcostu,t = Pnetu,t + P
imp
u,t − P

exp
u,t (5)

Pnetu,t =
∑
a∈Au

Pu,a,t − P̂solaru,t − P
imp
u,t (6)

∑
a∈Au

Pu,a,t =
∑

a∈Ac
u,r

Pu,a,t +
∑

a∈Ac,NI
u,s

Pu,a,t

+

∑
a∈Ac,I

u,s

(
Pcu,a,t − P

d,home
u,a,t

)
+

∑
a∈Auc

u

Pu,a,t (7)

The energy trade balance of all households is described
by (8). Equation (9) ensures that the energy from only
shiftable appliances with interruptible load can be sold to
neighbors. Constraints (10) and (11) limit the energy trade

between households, where bflowu,t represents the binary deci-
sion variable that determines the status of the energy import
and export. Without the energy trade limit, the parameter N
is set to be a very large number.∑

u∈U
Pimp
u,t =

∑
u∈U

Pexpu,t (8)

Pexpu,t =
∑
a∈Ac,I

u,s

Pexpu,a,t (9)

0 ≤ Pimp
u,t ≤ Nbflowu,t (10)

0 ≤ Pexpu,t ≤ N (1− bflowu,t ) (11)

3) CONTROLLABLE APPLIANCE CONSTRAINTS
Equation (12) is the constraint for temperature dynam-
ics of the reducible appliance (e.g., air conditioner) at
time t (T in

u,t ), which is expressed in terms of T in
u,t−1 at time

t−1, the predicted outdoor temperature at time t−1 (T̂ out
u,t−1),

the power consumption of the reducible appliances (Pu,a,t ),
and the environmental parameters (αu, βu) that specify the
indoor thermal condition. Equation (13) presents the range
of relaxed indoor temperatures. The relaxation variable δu,t
in (13) is limited by δmax

u in (14).

T in
u,t = T in

u,t−1 + αu(T̂
out
u,t−1 − T

in
u,t−1)+ βuPu,a,t (12)

Tmin
u − δu,t ≤ T in

u,t ≤ T
max
u + δu,t (13)

0 ≤ δu,t ≤ δmax
u (14)

Equation (15) is the constraint on the predicted daily
energy consumption for controllable appliances with non-
interruptible load.∑

t∈T
Pu,a,t = P̂u,a, ∀a ∈ Ac,NI

u,s (15)

Equations (16), (17), and (18) guarantee the desired opera-
tion of shiftable appliances with non-interruptible load (e.g.,
washing machine): i) for the operation period Lu,a hours
during a day in (16), ii) for the starting time with the binary
value once a day in (17); and iii) a consecutive operation
period Lu,a hours in (18).∑

t∈T
bsu,a,t = Lu,a (16)∑

τ∈T
vu,a,τ = 1 (17)

bsu,a,t =
∑
τ∈Tτ

vu,a,τ , Tτ = [t − Lu,a + 1, t] (18)

The capacity of power consumption for the shiftable appli-
ances with non-interruptible load and reducible appliances is
described by

Pmin
u,a ≤ Pu,a,t ≤ P

max
u,a (19)

Equation (20) defines the operational dynamics of the state
of charge (SOC) for ESS at the current time t in terms of
the SOC at the previous time t-1, battery capacity Emax

u,a ,
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charging and discharging efficiency, ηcu,a and η
d
u,a, charging

and discharging power for the consumer u, Pcu,a,t and P
d,home
u,a,t ,

respectively, and discharging power for his or her neighbor
households,Pexpu,a,t . Equation (21) gives the capacity constraint
of SOC for ESS. Equations (22) and (23) present the con-
straints on charging (Pcu,a,t ) and discharging power (P

d,home
u,a,t +

Pexpu,a,t ) of the ESS, respectively, where bs,Iu,a,t represents the
binary decision variable that determines the on/off status
of ESS.

SOCu,a,t = SOCu,a,t−1 +
ηcu,aP

c
u,a,t

Emax
u,a

−

(
Pd,home
u,a,t + P

exp
u,a,t

)
ηdu,aEmax

u,a
, ∀a ∈ Ac,I

u,s

(20)

SOCmin
u,a ≤ SOCu,a,t ≤ SOCmax

u,a (21)

Pc,min
u,a bs,Iu,a,t ≤ Pcu,a,t ≤ P

c,max
u,a bs,Iu,a,t (22)

Pd,min
u,a (1− bs,Iu,a,t ) ≤ Pd,home

u,a,t + P
exp
u,a,t ≤ P

d,max
u,a (1− bs,Iu,a,t )

(23)

4) DR CONSTRAINTS
Consumers who participate in a DR program receive a
DR signal from a utility via the smart meter and curtail
their energy demand based on the signal. This could help to
reduce peak demand, thus resulting in the alleviation of power
system stress conditions. The DR constraint is described by∑

t∈TDR

Pnetu,t ≤ DR(Qu,Du) (24)

where the DR signal (DR(Qu,Du)) consists of a demand
reduction request Qu (kW) and DR period Du (hours).

5) POWER FLOW CONSTRAINTS
Equation (25) gives the relationship between the power asso-
ciated with consumer u’s electricity cost and power flows to
his/her neighbors under different types of network topolo-
gies (e.g., radial, ring, and mesh). In (25), au,l is the element
of a node-branch matrix A: au,l = ±1 if node u is the
receiving or sending terminal of branch l; otherwise au,l = 0.
Equation (26) simply states that the total power flow from
the grid is the sum of the net consumption of all consumers.
The constraint (27) ensures that the power flow between
households remains within the line capacity limit.

Pcostu,t =
∑
l∈L

au,lFl,t (25)

F1,t =
∑
u∈U

Pnetu,t (26)

−Fmax
l ≤ Fl,t ≤ Fmax

l , l 6= 1 (27)

III. PROPOSED DISTRIBUTED HOME ENERGY
MANAGEMENT ALGORITHM
In this section, we propose a distributed optimization algo-
rithm to schedule the energy consumption of home appliances

FIGURE 2. Conceptual system model for HEMS.

with ESSs and power trades in multiple smart households.
As shown in Fig. 2, in the proposed algorithm, the CHEMS
optimization problem illustrated in subsection II-B is decom-
posed into a two-level hierarchical optimization problem
that consists of local optimization problem for LHEMS
and a coordinator problem for GHEMS, corresponding to
subsections III-A and III-B, respectively. In the first level,
the LHEMS problem for each household is optimized inde-
pendently to schedule the consumption of appliances, given
the consumer’s preferred appliance scheduling and comfort
level. In the second level, using the solution obtained from
LHEMS and the additional information such as DR signal
from a utility, GHEMS schedules the charge/discharge of
ESSs for all households, coordinates the power trade between
neighboring households, and calculates their electricity costs,
which are finally returned to the households. More detailed
formulations for LHEMS and GHEMS optimization prob-
lems are illustrated in the following two subsections.

A. LOCAL HEMS OPTIMIZATION MODEL: LEVEL 1
The goal of the LHEMS optimization problem is to find
the optimal net power consumption and deviation of the
consumer’s preferred indoor temperature by minimizing the
following electricity cost and consumer discomfort:

min
Pnetu,t ,δu,t

∑
t∈T

πtPnetu,t + εu
∑
t∈T

δu,t (28)

s.t. Pnetu,t =
∑
a∈Au

Pu,a,t − P̂solaru,t (29)

∑
a∈Au

Pu,a,t =
∑

a∈Ac
u,r

Pu,a,t+
∑

a∈Ac,NI
u,s

Pu,a,t+
∑
a∈Auc

u

Pu,a,t

(30)

Eqn. (12)− (19). (31)

In the LHEMS formulation, the net power constraint (6)
and the total power consumption constraint for all appli-
ances (7) in the CHEMS formulation are modified to con-
straints (29) and (30), where the power trade and ESS
operation are excluded, respectively. All the constraints of
controllable appliances (air conditioner, washing machine)
(12)− (19) are added to the LHEMS problem.
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B. GLOBAL HEMS OPTIMIZATION MODEL: LEVEL 2
In the second level, the GHEMS optimization algorithm com-
putes the optimal electricity cost of each household in the
following optimization problem:

min
Pcostu,t

∑
u∈U

∑
t∈T

πtPcostu,t (32)

s.t. Pcostu,t = Pnetu,t + P
imp
u,t − P

exp
u,t (33)

Pnetu,t = Pnet
∗

u,t + P
c
u,a,t − P

d,home
u,a,t − P

imp
u,t (34)

0 ≤ Pimp
u,t ≤ P

net∗
u,t − P

d,home
u,a,t (35)

Eqn. (8)− (11) (36)

Eqn. (20)− (27). (37)

Compared to constraints (5) and (6) in the CHEMS formu-
lation, the constraints of electricity cost (33) and net power
consumption (34) in the GHEMS formulation involve the
scheduling of only the ESS operation and power trade with
Pnet

∗

u,t obtained from LHEMS. Constraint (35) illustrates the
limit of import power from consumer u’s neighbors. Finally,
the constraints for power trade (8)− (11) and the constraints
for ESS operation, DR, and power flow (20)−(27) in CHEMS
are also included in the GHEMS formulation.

FIGURE 3. Flowchart of the procedure of the DHEMS algorithm.

Finally, as shown in Fig. 3, the procedures of the proposed
DHEMS algorithm at the local level and the global level
involve the following three steps.
Step 1): Before the recursive step, in this preliminary step, all

input data that are required for the DHEMS opera-
tion are prepared, and the optimization problems for
the LHEMS and the GHEMS are formulated.

Step 2): Each consumer u sets its own data such as preferred
indoor temperature range and the corresponding
LHEMS performs the scheduling of energy con-
sumption of home appliances. Then, using the solu-
tion obtained from LHEMS, the plot of (εu,

∑
δu,t )

can be obtained (e.g., Fig. 8(b) in Section IV).
According to the value of εu, the consumer’s ther-
mal discomfort is classified into several levels in

TABLE 2. Appliance type ratings for four households.

the plot. Each consumer u chooses their preferred εu
in the classified discomfort levels, and the LHEMS
algorithm is executed again with the selected εu.
If the consumer is satisfied with the indoor tem-
perature and the schedule of appliances calculated
by LHEMS, the procedure moves to Step 3). Oth-
erwise, the procedure returns to the initial stage in
Step 2)

Step 3): Using the optimal solution from LHEMS with addi-
tional data such as DR information, the GHEMS
algorithm is carried out. The solution calculated
by the GHEMS is returned to all LHEMSs, which
provide the final operation schedules of home appli-
ances, ESSs, power trade, and the total electricity
cost to all consumers.

IV. SIMULATION RESULTS
A. SIMULATION SETUP
Under the TOU tariffs shown in Fig. 4(a), we consider four
smart households where the proposed DHEMS optimiza-
tion algorithm schedules the operation of two tasks: i) two
major controllable appliances (air conditioner and washing
machine) at the local level (LHEMS); and ii) the residential
ESS and the power trade between households at the global
level (GHEMS). The simulations are carried out for 24 hours
with one hour scheduling resolution. Table 2 shows the
maximum power consumption of an air conditioner, wash-
ing machine, and aggregated uncontrollable appliances. It is
assumed that the predicted PV generation output P̂solaru,t and
the outdoor temperature T̂ out

u,t−1 in Figs. 4(b) and 4(c) as well
as the predicted daily consumption of appliances P̂u,a, can
be accurately obtained. For each household, the comfort-
able temperature range prior to the relaxation is assumed
to be [22◦C,24◦C] with the maximum relaxed temperature
δmax
u = 3◦C. The parameters α and β, which illustrate the
thermal characteristics of the air conditioner, are set as 0.9 and
-0.012, respectively. For ESS, the battery capacity Emax

u,a is
10 kWh, the maximum charging and discharging powers are
both 2 kW, the initial, minimum, and maximum SOC are 0.5,
0, and 1.0, respectively, and the charging and discharging
efficiencies ηcu,a and η

d
u,a are both 95%. The capacity limits

of all lines between households Fmax
l are set to be identical at

9 kW. For simplicity, all houses are equipped with appliances
that have the same specifications, and the preferred indoor
temperature ranges of all consumers are also the same under
identical temperature relaxation. Numerical testing is per-
formed with the optimization toolbox in MATLAB R2015b.
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FIGURE 4. Profiles of electricity price and weather. (a) TOU price. (b) Solar power. (c) Outdoor temperature.

FIGURE 5. CHEMS-based optimized appliance schedules of four households throughout the day. (a) Household A. (b) Household B. (c) Household C.
(d) Household B.

TABLE 3. Impact of different topologies on DHEMS.

B. CASE 1: NO RELAXED TEMPERATURE CONDITION
In Case 1, the algorithms for CHEMS and DHEMS are
simulated and compared when no relaxation of the con-
sumer preferred temperature constraint is allowedwith a large
value of ε. Through a comparison between Figs. 5 and 6,
we observe that the operating schedules of ESS and net
power trade (Pnet,tradeu,t = Pimp

u,t − Pexpu,t ) in each household
differ between CHEMS and DHEMS, whereas the operations
of the air conditioner and washing machine are scheduled
identically. This implies that without the relaxed indoor tem-
perature constraint, the proposed DHEMS algorithm main-
tains the same operating schedules of the air conditioner and
washing machine of each house as those of the CHEMS
algorithm. However, Figs. 5 and 6 show that the scheduling
of the operations of the ESS and net power trade differs
in both algorithms. This is because, in CHEMS, all appli-
ances, ESSs, and power trades are scheduled considering all
operating constraints simultaneously, whereas in DHEMS,
the scheduling of ESS and the power trade at GHEMS are
carried out separately with the scheduling of appliances at
LHEMS. In general, ESS is charged when the TOU price is
low during off-peak periods and is discharged when the TOU
price is high during high peak periods in order to reduce the

electricity cost. In this simulation, the ESS of each household
u becomes fully charged at 8 am (i.e., SOCu,a,8 = 1) in
both algorithms because ESS charges the maximum possible
power during the low price period (1 ∼ 8 am), as shown
in Fig. 4(a). Therefore, we can observe from Figs. 5 and 6
that charge of all ESSs finishes at 8 am with different and
irregular charging patterns between households. On the other
hand, we verify that the amount of fully discharged status
of ESS decreases from house A with the largest load to
house D with the smallest load from 9 am to 22 pm. This is
expected because a higher (or lower) load demand requires
more (or less) discharging power of ESS. It is noted that
the remaining electricity of ESS after discharging ends can
be exported to neighboring households of which the energy
demand is higher than the energy supply, which are illustrated
in Figs. 5(c), 5(d) and 6(d).

Finally, the simulation results show that even though
the scheduling of ESS and the net power trade differ in
each household between the aforementioned CHEMS and
DHEMS algorithms, the optimal electricity cost of each
house in both algorithms becomes identical: the optimal elec-
tricity costs of houses A, B, C, and D are listed in decreas-
ing order of $4.15, $3.65, $2.51, and $1.78, respectively.
In summary, under the scenario without indoor tempera-
ture relaxation, the scheduling of the ESS and power trade
yielded by the proposed distributed approach differs from that
yielded by the centralized approach, although the proposed
distributed approach achieves the same value as that of the
objective function in the centralized approach. This conclu-
sion is also verified under fully relaxed indoor temperature
conditions.

Next, we study the impact of different network topolo-
gies on the performance of the proposed DHEMS algorithm.
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FIGURE 6. DHEMS-based optimized appliance schedules of four households throughout the day. (a) Household A. (b) Household B. (c) Household C.
(d) Household B.

FIGURE 7. Three types of network topology. (a) Radial. (b) Ring. (c) Mesh.

TABLE 4. Comparison of the performance between CHEMS and DHEMS under same εu setups.

In this study, three network topologies (radial, ring, andmesh)
are considered, as shown in Fig. 7. The radial, ring, and
mesh topologies have three, four, and five interconnected
lines among neighboring households, respectively. Table 3
shows the total electricity cost of each network topology with
varying line flow capacity limit (2, 000W ∼ 9, 000W).
From this table, we first observe that as the limit of the

line flow decreases, the electricity cost increases in all net-
work topologies due to the tighter restriction of power trade
between neighboring households. In particular, when the line
limit decreases to 3,000W, the proposed algorithm becomes
infeasible in only a radial topology. In addition, in Table 3,
comparing the values in the columns for each row, the mesh,
ring, and radial topologies are listed in ascending order of the
total electricity cost. This is because an increasing number
of interconnections among neighboring households provide
additional operation flexibilities to households by exchanging

power in order to reduce the electricity cost. Based on the
aforementioned observations, we can conclude that in view
of electricity cost saving for consumers, the mesh network is
more effective than the ring and radial networks. As the LV
network size increases with more deployed ESSs, the elec-
tricity cost saving for consumers becomes more significant
in the mesh network.

C. CASE 2: PARTIALLY RELAXED TEMPERATURE
CONDITION
In Case 2, the performance of both the CHEMS and DHEMS
algorithms is compared under a partially relaxed temperature
condition with some value of ε. Figs 8 (a) and 8(b) show the
impact of varying ε on the performance of both algorithms
for all four households in terms of the electricity cost and
the discomfort cost. In these figures, the plots appear to be
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TABLE 5. Comparison of the performance between CHEMS and DHEMS under different εu setups.

FIGURE 8. Comparison of the performance between CHEMS and DHEMS
with varying ε. (a) Electricity cost. (b) Discomfort cost.

step functions, which are divided into two cases according
to the interval of ε: (1) ε = [30, 36] and [44, 50] in Case 1,
as illustrated in the previous subsection, and (2) ε = [37, 43]
in Case 2. As expected, we observe that for houses A, B,
C, and D (with total load in descending order), both the
electricity cost and the discomfort cost in CHEMS appear in
descending order. That is, as the electricity load of the house
increases, the electricity cost increases and the violation of
preferred indoor temperature range also increases. Fig. 8(b)
also verifies that the discomfort costs of all households in
DHEMS reaches the same value. This is expected because
the preferred indoor temperature range of each consumer is
assumed to be identical. If this range is set differently for each
consumer, the plots of the discomfort costs for all consumers
differ.

It is noted that the plots in DHEMS have constant ampli-
tudes, while the plots in CHEMS generally have fluctuat-
ing amplitudes. We conclude from this observation that the
operator in the DHEMS can adjust the individual consumer
comfort level more easily than in the CHEMS because in the
DHEMS, the change of ε in one house does not affect that of
another house. We also observe that, in Case 2, at the same ε,
the electricity cost of DHEMS is less than that of CHEMS,
whereas the discomfort cost of DHEMS is larger than that of
CHEMS. This is because the LHEMS problem in DHEMS
is formulated without considering the scheduling of the ESSs
and energy trade, consequently leading to further reduction of
the electricity cost than GHEMS at the expense of a larger ε.
Table 4 shows the trade-off between the electricity cost and
the discomfort cost for both CHEMS and DHEMS with the
same ε.
Next, we investigate the impact of different ε in each

household on the performance of the DHEMS. Table 5 shows
the result of the comparison of the performance between the
CHEMS and the DHEMS when they have an identical and
different setup of εu, respectively. In this simulation, εu for
houses A and B in the DHEMS is smaller than that in the
CHEMS, whereas εu for houses C and D in the DHEMS is
larger than that in the CHEMS. From this table, we observe
that the DHEMS achieves an equivalent performance to that
of the CHEMS by setting different εu for each household u.
We can conclude from this observation that delicate tuning of
the parameter εu could decrease the performance gap between
the CHEMS and the DHEMS mentioned in the previous
paragraph. The optimal εu could be selected by the operator
heuristically, using Fig. 8. A theoretical analysis for calculat-
ing εu is beyond the scope of this paper and will be considered
in future work.

V. CONCLUSIONS
In this paper, we propose a distributed two-level HEMS opti-
mization algorithm that minimizes the total electricity cost of
multiple households with distributed energy resources while
maintaining the consumer’s thermal comfort level. In the first
level, the local home energy management system for each
household schedules the energy consumption of the home
appliances in each household through the selection of the
consumer’s preferred thermal comfort level. In the second

VOLUME 5, 2017 15559



I.-Y. Joo, D.-H. Choi: Distributed Optimization Framework for Energy Management of Multiple Smart Homes With DERs

level, the global home energy management system coordi-
nates the operation of ESSs for all households and the power
trade between neighboring households, and then calculates
the optimal electricity cost for all consumers. Numerical
results demonstrate that the proposed distributed algorithm
achieves almost equivalent performance to that of the central-
ized optimization algorithm in terms of consumer’s electricity
cost and comfort level. Furthermore, we verify that the mesh
network is more economical than the radial and ring networks
in terms of the consumer’s electricity cost saving. Finally,
in comparison with the centralized optimization algorithm
for home energy management, the proposed algorithm has
the following advantages: 1) the computation time can be
reduced significantly by distributing the centralized compu-
tation to local systems; 2) the comfort level of each consumer
can be adjusted more readily and accurately; 3) a single point
of failure due to cyber attacks can be avoided; and 4) a
consumer’s privacy can be further enhanced by conducting
the scheduling of home appliances at only local home energy
management system.

In future work, a theoretical framework to investigate the
effect of the consumer’s discomfort parameter εu on a dis-
tributed HEMS as well as tune it optimally will be devel-
oped. Also, the practical implementation of the proposed
distributed algorithmwill be tested in large-scale realistic low
voltage network.
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