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ABSTRACT The fifth generation (5G) cellular network is upon us. Academia and Industry have intensively
collaborated together to bring the power of 5G cellular networks to the masses, and now the 5G millimeter-
wave (mmWave) platforms come into being in the market. One of the most popular 5GmmWave platforms
mounts the massive mmWave phased antenna arrays in order to transfer a huge number of bits in a
second (e.g., more than ten gigabits-per-second) to the baseband in the platform. While exploiting chip
multicore processors (CMPs) may be the best solution to process such huge data in the mmWave baseband
platform, power dissipate by the CMPs should become critical. Starting from an intuition that utilizing all
processors in every single time introduces inefficient energy consumption, this paper proposes an energy-
aware queue-stable control (EQC) algorithm to control the activation/deactivation of individual processors
and antenna arrays for pursuing time average energy consumption minimization subject to the stability of
queues in the 5G-mmWave baseband. Results from intensive simulations based on realistic experimental
setups demonstrate the efficacy of the proposed EQC that achieves significant energy savings while queue
stability is maintained.

INDEX TERMS Millimeter-wave, multicore baseband, chip multicore processor (CMP), dynamic control.

I. INTRODUCTION
5G denotes a new era in which connectivity will become
amazingly responsive, extraordinarily dense, blazingly fast,
highly reponsive and very low power. Academia and Industry
have intensively collaborated together on new demonstrations
and lab tests designed to bring the power of 5G cellular
networks to the masses. As a result, the 5G millimeter-
wave (mmWave) platforms now come into being in the mar-
ket. Samsung and SK have announced that they successfully
tested handover between 5G base stations at 28GHz in the
outdoor environment [1], and Intel and Ericsson have demon-
strated that their 5G radio prototype system works fairly well
with autonomous driving and virtual reality technology use
cases [2].

To support more than ten gigabits-per second (Gbps) trans-
mission, most 5G base stations exploit the massive mmWave
phased antenna arrays which is a kind of massive multi-
input-multi-output (MIMO) systems. Samsung’s and Intel’s
5G base stations are the representative examples of such

mmWave systems. Owing to the mmWave phase antenna,
the existing base stations prove that ultra-high data rate can be
achieved. However, another innovation that the 5G network
should ultimately achieve, energy efficiency [3], has not been
brought yet. For example, the mmWave baseband employs
chip multicore processors (CMPs) to process huge data, little
attention has been paid to the power consumption of the
CMPs, which may be critical, and the question of how to
minimize it.

This paper starts from the intuition of adopting the power-
gating (PG) technique and core-consolidation technique to
the CMPs in the mmWave baseband. Instead of utilizing all
processors in every single time, which introduces inefficient
energy consumption, using the minimum number of cores
and turning off the unnecessary cores should result in power
saving while processing performance is maintained. How-
ever, applying the well-known PG and core-consolidation
techniques to the mmWAVE baseband is not trivial. That is
because the queue stability should be taken into consideration
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FIGURE 1. A diagram of the target mmWave base station architecture composed of MAA and
baseband blocks.

in the mmWave baseband, namely any energy minimization
strategy should be performed only when the queue stability is
guaranteed. Therefore, decision to allocate data queue to the
cores can be done by considering not only how many cores
can be power gated, but also how to stabilize the remain-
ing data queues in the system. In this paper, we propose
an energy-aware queue-stable control (EQC) algorithm that
realize the energy minimization while maintaining the queue
stability in the system.

Meanwhile, the phase array antenna is another heavy
power consumer in the mmWave base station. Therefore,
we also propose an algorithm to minimize power consump-
tion of the array antenna. Among different phase array
antenna architectures, we choose the Intel’s modular array
antenna (MAA) architecture, due to its power and perfor-
mance superiority [4]–[6]. Then, we exploit the PG technique
along with using the minimum number of antenna modules.
The precise algorithm (dubbed to adaptive MAA allocation
algorithm) will be described in Section III.

Fig. 1 presents our target mmWave base station. To apply
the proposed EQC algorithm and adaptive MAA allocation
algorithm to the base station, we adopt reconfigurable net-
works between data queue buffers and processor cores, and
between processor cores and antenna array modules (Details
will be introduced in the following section). With the target
base station architecture, we perform intensive simulations
to evaluate the proposed algorithms. The simulation results
demonstrate that the proposed EQC algorithm guarantees the
queue stability, while it improve the energy efficiency of
the baseband. In addition, the efficacy of the adaptive MAA

allocation is proven in that energy saving is clearly achieved
in the mmWave base station.

II. MILIMETER-WAVE BASE STATION ARCHITECTURE
A. mmWave MODULAR ANTENNA ARRAY ARCHITECTURE
In general, conventional antenna system architectures used in
mmWave band are inadequate to combine wide-angles with
high directionality. Existing reflective, parabolic dishes and
lens antennas can create narrow beam, thus delivering the
needed 30–40 dB antenna gain, but they lack the flexibil-
ity to cover wide angle coverage and are relatively bulky.
Phased patch antenna arrays allows steering the beam to a
desired direction. However, to achieve the necessary direc-
tivity, the array must consist of a large number of elements
(several hundred to thousands).

Phase antenna arrays composed of a large number of
antenna elements have been proposed to achieve the neces-
sity of the wide directionality. The Phase antenna array
architectures currently used for mass production employ a
single module, containing a radio frequency integrated cir-
cuits (RFIC) chip that includes controlled analogue phase
shifters capable of providing several discrete phase shifting
levels. The antenna elements are connected to the RFIC chip
via feed lines. However, due to the loss inherent in the feed
lines, this approach reduces antenna gain and efficiency, and
becomes a severe problem when the number of antenna ele-
ments and RF increase [7].

More recently, modular antenna array (MAA) architec-
tures have been proposed to over come the limitation of
the single module array architecture [4], [5]. The presented
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MMA architectures provide flexibility in form factor choice,
beam steering, and array gain in a cost effective manner.
Instead of exploiting an individual antenna module, theMAA
is constructed using modular, composite mmWave antenna
arrays. Each module is implemented with a dedicated RFIC
chip serving several antenna elements and an RF beam form-
ing (RF-BF) unit with discrete phase shifters. The upper side
in Fig. 1 (as indicated by the dashed line) shows a block
diagram of the MAA architecture. Owing to the modularity,
the length of the feed lines in the MAA architecture can
be kept much shorter, thereby the feed line loss decrease
significantly. This makes the MAA architecture much more
flexible and efficient.

This paper targets such MAA architectures. Especially,
we explore an MAA architecture composed of multiple sub-
arrays, each of which has 8-by-2 elements. The measured
transmit power and transmit antenna gain of one MAA in
the target architecture are 10 dBm and 15 dBi at 60 GHz,
respectively. Note that the aperture of the MAA and total
transmitted power may exceed that of an individual sub-array
module proportionally to the number of the sub-array mod-
ules used in a linear scale. Therefore, much narrower beams
may be created and, thus, much greater antenna gains may
be achieved with the MAA rather than individual sub-arrays.
It is also possible that sectors of different sub-arrays may be
configured in such a way as to vary the coverage angle of the
composite array, thereby creating several coverage angles.

The target MAA architecture employs the main BF unit,
as described in Fig. 1. This main BF unit conceptually con-
sists of a switching network and a switching controller, so that
it controls the links between antenna modules in the MAA
and cores in the baseband. According to the amount of data
from the cores, the switching controller in the unit dynam-
ically assigns the data to the antenna modules by turning
on/off the switches in the switching network. In this paper,
we propose anMAA allocation algorithm (in Section III-B.2)
for the switching controller, which aims to minimize the
power consumption of the antenna modules while satisfying
the data transmission quality to users.

B. mmWave BASEBAND ARCHITECTURES
The proposed baseband architecture consists of CMPs,
a queue assignment unit, and data ports as shown in Fig. 1.
The cores (ARM Cortex A15 in this paper) in the CMPs pro-
cess data from data queue buffers inputted from the data port.
In Fig. 1, the queue assignment unit conceptually includes a
switching network and its controller, so that it can dynami-
cally assigns data to the cores.

This paper focuses on power consumption of the CMPs
in the baseband architecture and various data queue condi-
tions whereby some conditions may offer chances to turn
off some unused cores to save power. In fact, energy aware
task allocation is a traditional research topic and have stud-
ied in-depth. Diverse task allocation strategies have been
presented to minimize the energy consumption in multipro-
cessor System-on-Chip (MPSoC), including stochastic and

energy-gradient techniques [8], bin-packing algorithms with
task migration techniques [9], and energy-reliability joint
optimization methods [10]. More recently, the energy-
aware task allocation strategies have extended to GPU [11],
real-time embedded system [12], and energy-harvesting sys-
tem [13]. According to the specific characteristics and con-
strains of the target systems, the presented strategies have
successfully carried out the energy savings.

Unfortunately, applying the previous task allocation strate-
gies directly to the mmWave base station may be impossible.
That is because the mmWave base station is different to the
other platforms, in that the queue stabilization in the base
station is a top-priority. Namely, any energy minimization
technique should be performed only when the queue stabi-
lization is guaranteed. Therefore, taking into consideration
the queue stabilization, we propose a tailor-made task allo-
cation strategy for the mmWave baseband.

Especially for energy minimization, we exploit the power
gating (PG) technique [14], whereby all the used cores are
fully utilized but the unused cores are power-gated to save
energy. Note that we do not consider the dynamic voltage
and (frequency) scaling technique (DV(F)S) in this paper,
whichmay needmultiple dedicatedDC-DC converters whose
power consumption should be accounted for (i.e., it may be
significant [15], [16].) Furthermore, it can make our objective
problem of the time average energy consumption minimiza-
tion subject to the stability of queue to be too complicated.
Instead, we uses the simple but powerful PG technique to
save the CMP energy consumption, while guarantying the
queue stabilization in the proposed baseband architecture.
The detailed algorithm will be introduced in the following
Section III-B.1.

III. ENERGY-AWARE QUEUE-STABLE CONTROL (EQC)
ALGORITHM
A. ALGORITHM DESIGN RATIONALE
The proposed EQC algorithm aims at the minimization of
selected (i.e., activated) cores for low-power system opera-
tion. As the power-gated cores increases, the queue-backlog
will increase because the processing from the queue becomes
slow. Therefore, the queue stability condition should be con-
sidered at the same time.

With the fundamental concept of stochastic network
optimization [17], we design a core selection algorithm for
multiple users in terms of time-average power consump-
tion minimization subject to queue stability (details are in
Sec. III-B.1). After that, the MAA module selection for each
user is additionally considered for more power saving in the
target base station architectures (details are in Sec. III-B.2).

B. ADAPTIVE CONTROL FOR CMP-BASED
mmWave BASEBAND
The proposed adaptive control for CMP-based mmWave
baseband algorithm consists of two phases, i.e., (i) adap-
tive core allocation for each queue in order to minimize
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time-average power expenditure under queue stabilization
condition; and (ii) MAA allocation for each user.

1) ADAPTIVE CORE ALLOCATION FOR EACH QUEUE
The baseband queue dynamics for a CMP-based mmWave
base station in t ∈ {0, 1, · · · } can be formulated as fol-
lows [17]:

Qi[t + 1] , {Qi[t]− µi[t], 0} + λi[t] (1)

for all associated users ui ∈ U where Qi[t] is the baseband
queue-backlog size for user ui ∈ U (i.e., data queue buffers
in Fig. 1), where U is the set of associated users (unit: Million
Whetstones Instructions Per Second (MWIPS)), Qi[0] = 0,
µi[t] is the departure process that is depending on the capa-
bilities of multi-core CMP for Qi[t], and λi[t] is the arrival
process into the queue Qi[t] from backbone networks (i.i.d.
random), respectively. Note that MWIPS is one of major
performance metrics in embedded computer systems. The
departure process in (1) denoted byµi[t] depends the number
of selected cores, i.e.,

µi[t] , fMWIPS

 ∑
∀pk∈K

∑
∀cj∈Ck

x i(j,k)[t]

 (2)

for all ui ∈ U where fMWIPS(·) stands for the number of
processed MWIPS (i.e., processing capabilities) where the
input variable is the number of scheduled cores, cj stands
for the core with the index of j, and the Ck stands for the set
of cores in a CMP-based processor pk (i.e., CMP in Fig. 1).
Note that K number of CMP-based processors exist in the
system. In addition, x i(j,k)[t] is a boolean scheduling variable,
i.e., x i(j,k)[t] ∈ {0, 1}, for queue Qi[t] and core cj where
x i(j,k)[t] = 1 when the core cj in processor pk is selected for
the processing instructions from queue Qi[t] (vice versa).
The power expenditure that is depending on the number of

scheduled cores can be obviously expressed as follows:

Ei[t] , fpower

 ∑
∀pk∈K

∑
∀cj∈Ck

x i(j,k)[t]

 ,∀ui ∈ U . (3)

The mathematical optimization program for the minimiza-
tion of the time-average expected power expenditure in a
queue Q[t] can be formulated as follows:

min : lim
t→∞

1
t

t−1∑
t ′=0

E
[
t ′
]
, (4)

where E
[
t ′
]
can be obtained by (3); and this objective func-

tion has a queue rate stability constraint:

lim
t→∞

1
t

t−1∑
t ′=0

E
[
Q
[
t ′
]]
<∞. (5)

Then, a new variable EQ[t] is defined which denotes the
vector of all queues, i.e., EQ[t] ,

[
Q1[t], · · · ,Q|U |[t]

]T where
T denotes the transpose of the given vector. In addition, L[t] is

also defined which presents the quadratic Lyapunov function
L[t] = 1

2
EQT[t] EQ[t]. Then, let 1[t] be a conditional quadratic

Lyapunov function that can be formulated as E[L(t + 1) −
L[t]| EQ[t]], i.e., the drift on time t . The dynamic policy is
designed in order to solve the given optimization formulation
by observing queue backlog sizes Q[t] and to determine
the amount of power expenditure to maximize a bound on
E[ EE[t]| EQ[t]] − γ1[t] where EE is the column vector of Ei[t],
and γ is a positive constant control parameter of the policy.
The proposed algorithm conducts minimizing a bound on the
E[ EE[t]| EQ[t]]−γ1[t] expression, and this gives the following
dynamic algorithm, which minimizes

Ei[t]+ γQi[t] (λi[t]− µi[t]) (6)

and this can be re-formulated as follows by (2) and (3):

fpower (ki)+ γQi[t]λi[t]− γQi[t]fMWIPS (ki) (7)

where

ki =
∑
∀pk∈K

∑
∀cj∈Ck

x i(j,k)[t]. (8)

Since λi[t] is not controllable, the associated term is elim-
inated from (7), i.e.,

fpower (ki)− γQi[t]fMWIPS (ki) , (9)

where ki =
∑
∀pk∈K

∑
∀cj∈Ck x

i
(j,k)[t], and thus our final

closed-form equation in order to compute the number of cores
for minimizing time-average power expenditure under queue-
stability in each queue Qi[t] should be presented as follows:

x̃ i(j,k)[t]

= arg min
∀xi(j,k)[t]∈{0,1}

fpower
 ∑
∀pk∈K

∑
∀cj∈Ck

x i(j,k)[t]


− γQi[t]fMWIPS

 ∑
∀pk∈K

∑
∀cj∈Ck

x i(j,k)[t]

 ,∀ui ∈ U

(10)

where x̃ i(j,k)[t] stands for the optimal core selection vector
for queue Qi[t] under the stochastic network optimization in
terms of time-average power expenditure minimization with
queue stability condition. The pseudo-code of this proposed
algorithm is presented in the [Phase 1] part of Algorithm 1.

2) MAA ALLOCATION FOR EACH USER
The link budget estimation procedure (depending on the num-
ber of MAA modules) is illustrated in Fig. 2. The proce-
dure consists of two steps: (i) calculating the received signal
strength; and (ii) finding the supportable modulation and
coding scheme (MCS) set that is defined in IEEE 802.11ad
specification [18]. For the first step, the transmitted signal
from MAA modules (transmitter, Tx) to user (receiver, Rx)
over 60 GHz mmWave channels will be attenuated by path-
loss depending on the separation distance, as shown in Fig. 2.

VOLUME 5, 2017 16587



J. Kim et al.: Energy-Efficient Stabilized Automatic Control for Multicore Baseband in mmWave Systems

FIGURE 2. Link budget calculation procedure.

When the signal arrives at the user after experiencing atten-
uation effects, a receiver antenna gain will be added. This
procedure can be formulated as follows:

PRxdBm (ni, d) = GTx
dBi (ni)+P

Tx
dBm (ni)−L(d)+G

Rx
dBi (11)

where PRxdBm (ni, d) is a received signal strength at user ui
where the base-station is equipped with ni number of MAA
modules in a dB scale, GTx

dBi (ni) stands for the transmit
antenna gain with ni number of MAA modules, PTxdBm (ni)
stands for the transmit power with ni number of MAA mod-
ules, L(d) is path-loss depending on the separation distance d ,
and GRx

dBi is the receive antenna gain at user ui, respectively.
In (11), the PTxdBm (ni) andG

Tx
dBi (ni) of one MAAmodule (i.e.,

ni = 1) are measured to 10 dBm and 15 dBi. For ni number
of modules where ni ≥ 1, following formulation can be used:

PTxdBm (ni) = fdBm
(
fmW

(
PTxdBm (1)

)
× ni

)
, (12)

GTx
dBi (ni) = fdBm

(
fmW

(
GTx
dBm (1)

)
× ni

)
, (13)

where fmW(x) , 10(x/10) and fdBm(x) , 10 log10(x). In (11),
the path-loss L(d) can be obtained as follows [20]:

L(d) = A+ 20 log10(f )+ 10n log10(d) (14)

in a dB scale where A = 32.5 dB, which is a specific
value for the selected type of antenna and beamforming
algorithm relying on the antenna beamwidth. Further, a path-
loss coefficient is set as n = 2, and f is a carrier frequency
in GHz (i.e., f = 60). In (11), GRx

dBi is assumed to be
15 dBi (i.e., oneMAAmodule due to usermobile phone space
limitation).

In this second step, the supportable MCS can be found
using the IEEE 802.11ad based on the calculated received
signal strength using (11). This is done by comparing the cal-
culated values with receiver sensitivity values defined in the
IEEE 802.11ad Table 21-3 [18]. For example, if the calculated
received signal strength is−61.5 dBm, the supportable MCS
is MCS7 and its associated achievable rate is 1925 Mbps.
Finally, this obtained achievable rate is denoted by Ri (ni, d),
i.e., data rate between MAA base-station (with ni number
of MAA modules) and user ui where the separation distance
is d .

With these given equations and parameters, the achievable
data rates between MAA base station and user ui can be

FIGURE 3. Achievable rate comparison between IEEE 802.11ad
MCS-based method (in sec. III-B.2) and shannon formula based
method (in appendix).

calculated depending on the number of allocated MAA mod-
ules. In the first phase, the numbers of cores for each associ-
ated user are determined, and thus the number of processed
MWIPS for each user can be also calculated with fMWIPS(·).
Then the MAA modules for each user can be allocated for
processing the instructions as much as fMWIPS(·) while acti-
vating as small as possible for power expenditure minimiza-
tion in radio architectures. The pseudo-code of this proposed
algorithm is presented in the [Phase 2] part of Algorithm 1.

Note that this practical link budget calculation procedure
with IEEE 802.11ad standard is doable only when the MCS
set is provided. In theoretical contributions, the link capac-
ity calculation with Shannon’s capacity formula is widely
used when the MCS set is not specified. The actual per-
formance gap between the two methods are simulated as
shown in Fig. 3; and more details about the link capacity
calculation procedure with Shannon’s formula is presented
in Appendix.

IV. EVALUATION
In order to evaluate the efficacy of the proposed energy-aware
queue-stable control (EQC) algorithm, the required parame-
ters are measured from Juno ARM platforms in advance [19].
We measure the power consumption of each core in the
big.Little processor (i.e., it contains two Cortex A15 cores
and four Cortex A7 cores) equipped in the platform. Note that
due to the fact that the processing at base-station baseband
is heavy, we suppose that only A17 cores are used in our
target baseband. The measured average power consumption
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Algorithm 1 The Proposed Algorithm Including EQC
Algorithm and Adaptive MAA Allocation Algorithm

Given Parameters;
• ui: user with the index of i
• cj: core with the index of j
• pk : processor with the index of k
• xi(j,k)[t]: core scheduling vector for user ui and the core cj in

processor pk
• x̃i(j,k)[t]: optimal core selection for user ui and the core cj in

processor pk
• U : the set of users associated with CMP-based baseband
• Ck : the set of cores in CMP-based processor pk
• K: the set of processors
• γ : a tradeoff parameter for energy-delay
• Qi[t]: queue-backlog at baseband for user ui
• fMWIPS (ki): processing capability when ki cores are

utilized for user ui
• fpower (ki): power expenditure when ki cores are utilized

for user ui
• d : distance between MAA and user
• Ri (ni, d): achievable rates from MAA

(with ni number of MAA modules) to user ui
• ñi: optimal number of MAA modules for user ui

Proposed Algorithm;
// T : the number of discrete-time operation ;
t ← 0;
while t ≤ T do

For each ui ∈ U ;
[Phase 1] Energy-Aware Queue-Stable Control;
• Observes Qi[t];
• Computes x̃i(j,k)[t] as follows:

arg min
∀xi(j,k)[t]∈{0,1}

fpower
 ∑
∀pk∈K

∑
∀cj∈Ck

xi(j,k)[t]


− γQi[t]fMWIPS

 ∑
∀pk∈K

∑
∀cj∈Ck

xi(j,k)[t]




[Phase 2] Adaptive MAA Allocation;
• ncorei [t]← the number of selected cores for

user ui ∈ U at time t; and this can be calculated
as;

ncorei [t] =
∑
∀pk∈K

∑
∀cj∈Ck

xi(j,k)[t].

• α1 ← fMWIPS
(
ncorei [t]

)
;

• Obtains d
• ni ← 1; π ← 0;

while (π == 0) do
• Calculates Ri (ni, d) with

(11), (12), (13), (14), and Table 1
• α2 ← Ri (ni, d);

if α1 ≤ α2 then

– ñi ← ni; π ← 1;

• ni ← ni + 1;

t ← t + 1;

(unit: mW) and processing capabilities (unit: MWIPS) are as
shown in Table 2.

TABLE 1. IEEE 802.11ad Rx sensitivity table [18].

TABLE 2. Measurement data with juno platforms.

To use the measurement data in Table 2, the (2) and (3)
should be alternatively updated as follows:

µi[t] = fMWIPS
(
c∗
)
, ∀ui ∈ U , (15)

Ei[t] = fpower
(
c∗
)
, ∀ui ∈ U , (16)

where c∗ is the number of cores in Table 2. For the perfor-
mance evaluation, we assume that five CMPs are embedded
in the proposed mmWave base-station baseband, where the
CMP has dual A15 cores. Therefore, c∗ ∈ {0, 1, · · · , 10}.

The performance evaluation results of the EQC algorithm
are presented in Fig. 4. In this figure, the buffer/queue-
backlog dynamics are presented in terms of (i) all cores are
deactivated (no processing from the queue) and (ii) the pro-
posed energy-aware queue-stable control (EQC) algorithms
with various γ settings (i.e., 1.5 × 10−20, 3.5 × 10−20, and
5.0×10−20). As shown in the figure, it is verified that the pro-
posed EQC algorithm guarantees the stability of the queues in
the baseband.When the tradeoff constant γ is relatively large,
the queue-stability is more important, whereas the system
works for more energy-efficiency if γ is relatively small,
as also mathematically expressed in (10). This theoretical
argument is proved with the resulting performance evalua-
tion. When γ = 5.0 × 10−20, which is the largest setting
among the given three, the queue-backlog converges in a
lower level (≈ 1.8 × 1012 MWIPS), i.e., more cores are uti-
lized for more queue stability. On the other hand, the queue-
backlog converges in a higher level (≈ 5.8× 1012 MWIPS),
when γ is the lowest setting as 1.5× 10−20.

In Fig. 5, it can be observed that the accumulated power
consumption is high when γ = 1.5 × 10−20 due to the
fact that the lowest γ setting works for energy-efficiency.
Therefore, this theoretical formulation in Sec. III-B.1 is
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FIGURE 4. Queue dynamics.

FIGURE 5. Accumulated power consumption.

FIGURE 6. Power consumption comparison: when the adaptive MAA
allocation algorithm is applied or not.

verified via this performance evaluation with measurement-
based traces.

Fig. 6 presents the power consumption results, where the
blue red line indicate the cases when the proposed MAA
allocation algorithm is applied or not applied (thus all MAA
are activated), respectively. The power consumption consists
of the activated core and MAA power expenditure. Note that
the EQC algorithm is applied to both cases. As presented
in Fig. 6, the applying the adaptiveMAA allocation algorithm
clearly decreases the power consumption of the system.

Finally, Fig. 7 shows the accumulated power consumption
results when the adaptive MAA allocation is applied or not
applied. As seen in the figure, the adaptive MAA allocation

FIGURE 7. Accumulated power consumption comparison: when the
adaptive MAA allocation algorithm is applied or not.

algorithm obviously improves energy efficiency, in that about
1.2 × 106 mW less power consumption is maintain after
400 unit time.

V. CONCLUSION
This paper have proposed the EQC algorithm to control the
activation/deactivation of individual CMP core for pursuing
time average energy consumptionminimization subject to the
stability of queues in the baseband. In addition, this paper
also have proposed the adaptiveMAA allocation algorithm to
minimize power consumption of the modular antenna arrays
in the base station. With the practical experimental setup,
intensive simulations have been performed to demonstrate the
efficacy of the proposed algorithms. The simulation results
show that the EQC and adaptive MAA allocation algorithms
achieve significant energy savings while maintaining the sta-
bility of the mmWave base station.

As a future research direction, baseband calculation
load should be taken account for more precise latency
consideration.

Appendix
60 GHz LINK CAPACITY WITH SHANNON’S FORMULA
Then the wireless link capacity (i.e., data rate) from MAA to
the associated user ui ∈ U can be obtained as follows [20]:

Ri (ni, d) = BW · log2

(
1+

PRxmW (ni, d)

NmW

)
(17)

where Ri (ni, d) stands for the achievable data rate between
MAA base-station (with ni number of MAA modules) and
user ui where the separation distance is d , BW is the channel
bandwidth (2.16 GHz in IEEE 802.11ad [18]), and NmW is
background noise in a milli-Watt scale. In (17), PRxmW (ni, d)
(received signal power) can be as follows:

PRxmW (ni, d)= fmW

(
GTx
dBi (ni)+P

Tx
dBm (ni)−L(d)+G

Rx
dBi

)
.

(18)

Due to the fact that the transmit antenna gains
and transmit power are 15 dBi and 10 dBm in one
MAA module [5], the total power at a transmitter is
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25 dBm (=316.227766 mW). Therefore, the total power at
the transmitter with ni number of MAA modules is:

GTx
dBi (ni)+ P

Tx
dBm (ni) = fdBm (316.227766 · ni) . (19)

In (17), NmW is obtained as [21]:

NmW = fmW
(
kBTe + 10 log10

(
BW

)
+ L+ FN

)
(20)

where kBTe is a noise power spectral density
(−174 dBm/Hz [21]), L is implementation loss (10 dB [20]),
and FN is a noise figure (5 dB [20]). Therefore, NmW is
2.7193× 10−7 mW.
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