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1 Introduction

Dark matter(DM) is the dominant component of matter in the Universe, and evidences

for dark matter from galaxy rotation curves, gravitational lensing, and Cosmic Microwave

Background have been getting more diverse and precise. For instance, the averaged relic

density of dark matter is inferred by Planck data to be ΩDMh
2 = 0.1198 ± 0.0015 [1].

Weakly Interacting Massive Particles (WIMP) have been a well-motivated candidate for

dark matter carrying weak interaction and weak-scale mass. The freeze-out mechanism

for producing dark matter in the early Universe sets the annihilation cross section of dark

matter to 〈σv〉ann ∼ pb · c, which enables us to take different approaches to test the WIMP

scenario. Therefore, there have been a lot of complementary efforts1 for discovering WIMP

dark matter, from direct detection, indirect detection and collider searches, but there have

been null results until now. In particular, various direct detection experiments such as

1See, for instance, ref. [2] for the interplay between collider excesses and dark matter detection in

mediator models.
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XENON100 [3] as well as LUX [4, 5] and PandaX-II [6] have quite much constrained the

WIMP-nucleon scattering cross section at the order of sub-zepto barn (10−46 cm2).

On the other hand, dark matter is assumed to be collisionless, namely, carry no self-

interactions, in Standard Cosmology, the so called ΛCDM. But, the numerical simulation

with collisionless dark matter would lead to cuspy DM profiles that are not consistent with

observed galaxies (core-cusp problem), as well as too many sub-halos (missing satellite

problem) and too large masses for sub-halos (too-big-to-fail problem). These are the so

called small-scale problems at galaxy scales [7–10]. Although the inclusion of baryons and

supernova feedback in simulations might resolve such tensions in massive galaxies [11, 12],

the small-scale problems persist in the lowest mass galaxies where the discrepancy ex-

ists [13]. Therefore, small-scale problems may call for strong dark matter self-interactions,

leading to σself/mDM = 0.1− 10 cm2/g or σself/mDM ∼ barn for mDM ∼ 1 GeV.

Strongly Interacting Massive Particles(SIMP) [14] have recently drawn attention, due

to the fact that the thermal freeze-out with 3 → 2 annihilation [15] allows for a large

self-scattering of light dark matter. It is the Boltzmann suppression factor associated with

an extra dark matter particle in the 3 → 2 process that naturally generates a hierarchy

between the thermal annihilation cross section of about pico-barn and the self-scattering

cross section of about barn [18]. However, the Boltzmann suppression factor is more or

less fixed to e−xf with xf = mDM/Tf at freeze-out temperature Tf . Therefore, the relic

density condition needs a relatively large self-interaction of SIMP dark matter, that is on

the verge of violating unitarity or perturbativity and is in a tension with the bounds from

Bullet cluster and halo shapes in most of the parameter space. There have been quite a

few works in the literature for proposing concrete models to realize the SIMP [16–23] and

its variations [24–26]. There have been growing interests in detecting the light dark matter

of sub-GeV scale from direct detection [27–33] and cosmic rays [34–39].

In this article, we consider a complex scalar dark matter with gauged Z3 symmetry in

light of self-interacting dark matter [19]. The Z3 coming from the spontaneous breaking of a

local U(1)d stabilizes dark matter while the resultant dark photon and dark Higgs can con-

tribute to the determination of the relic density. In particular, the semi-annihilation of dark

matter [40] into heavier dark photon or dark Higgs, the so called forbidden channels [41, 42],

can be suppressed by a Boltzmann factor e−∆ixf , with ∆i = (mi−mDM)/mDM, where mDM

is the DM mass and mi is the mass of dark photon or dark Higgs. Then, taking ∆i . 1,

it is possible to accommodate a smaller self-interaction of dark matter being compatible

with the relic density, as compared to the SIMP case. Interestingly, the cubic self-coupling

of dark matter in our model contributes to both SIMP and forbidden channels.

Furthermore, there exists a standard 2 → 2 annihilation of light dark matter into a

pair of SM particles, in the presence of a Z ′ portal coupling [43]. In this case, the smallness

of the standard 2→ 2 annihilation (SM-annihilation) could be attributed to the smallness

of the gauge kinetic mixing between U(1)d and hypercharge gauge group. We provide the

general discussion on the thermal production of self-interacting dark matter in our model,

in cases that one or some of SM-annihilation, SIMP and forbidden channels are relevant.

The paper is organized as follows. We begin with a review on the model with gauged Z3

symmetry for dark matter and discuss the resultant mass spectrum and vacuum stability
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of the model. Then, we make general discussion on self-scattering and Boltzmann equation

and kinetic equilibrium condition in the model. Next we study three mechanisms for ther-

mal production, namely, SM-annihilation, SIMP and forbidden channels, in the presence of

non-decoupled dark photon and dark Higgs, and discuss the constraints on the model from

the relic density, self-scattering and various collider searches for light dark matter. Then,

conclusions are drawn. There is one appendix dealing with the 2 → 2 forbidden channels

involving dark photon and dark Higgs in our model.

2 Model for self-interacting dark matter

We consider dark matter as a complex scalar χ having a charge qχ = +1 under the dark

local U(1)d symmetry, which is spontaneously broken to Z3 by the VEV of another complex

scalar φ with charge qφ = +3. Thus, the remaining discrete Z3 symmetry2 ensures the

stability of scalar dark matter χ [19, 44].

The Lagrangian for SM singlet scalars, χ, φ, and the SM Higgs doublet H, is given [19,

44] by

L = −1

4
VµνV

µν − 1

2
sin ξ VµνB

µν + |Dµφ|2 + |Dµχ|2 + |DµH|2 − V (φ, χ,H) (2.1)

where the field strength tensor for dark photon is Vµν = ∂µVν − ∂νVµ, and covariant

derivatives are Dµφ = (∂µ − iqφgdVµ)φ, Dµχ = (∂µ − iqχgdVµ)χ, with gd being dark gauge

coupling, and DµH = (∂µ− ig′YHBµ− 1
2 igT

aW a
µ )H, and the gauge kinetic mixing between

dark photon Vµ and hypercharge gauge boson Bµ is introduced by sin ξ. Then, the dark

photon communicates between dark matter and the SM particles through the gauge kinetic

mixing. Here, the scalar potential is V (φ, χ,H) = VDM + VSM with

VDM = −m2
φ|φ|2 +m2

χ|χ|2 + λφ|φ|4 + λχ|χ|4 + λφχ|φ|2|χ|2

+

(√
2

3!
κφ†χ3 + h.c.

)
+ λφH |φ|2|H|2 + λχH |χ|2|H|2, (2.2)

VSM = −m2
H |H|2 + λH |H|4. (2.3)

We note that the presence of a dark Higgs φ allows a triple coupling for χ after the U(1)d
is spontaneously broken. Therefore, the corresponding κ coupling leads to SIMP processes

as well as (forbidden) semi-annihilation processes of dark matter, which will be relevant

for the later discussion.

2.1 Mass spectrum

For a nonzero VEV of dark Higgs field with 〈φ〉 = 1√
2
vd, the U(1)d symmetry is broken to a

discrete subgroup Z3 and dark photon gets massive and can mix with photon and Z-boson.

After expanding the dark Higgs as φ = 1√
2
(vd + hd) and taking the SM Higgs doublet to

be HT = 1√
2
(0, vew + h), the dark Higgs can mix with the SM Higgs by Higgs-portal

2See ref. [21, 45] for the discussion on global Z3 symmetry for dark matter.
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interaction, λφH . Then, the SM and dark Higgs bosons are mixed [19] by(
h1

h2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
hd
h

)
(2.4)

where h1, h2 are mass eigenstates. The mass eigenvalues of Higgs-like states are

m2
h1,h2 = λφv

2
d + λHv

2
ew ∓

√
(λφv

2
d − λHv2

ew)2 + λ2
φHv

2
dv

2
ew (2.5)

and the mixing angle is

tan 2θ =
λφHvdvew

λHv2
ew − λφv2

d

. (2.6)

On the other hand, the effective mass of dark matter is given by m2
χ,eff = m2

χ + 1
2λλχv

2
d +

1
2λχHv

2
ew, but we can absorb the contributions from symmetry breaking into the bare mass

of dark matter. The details of interaction terms for dark/SM Higgses and dark photon can

be found in ref. [19].

Moreover, the mass eigenvalues of Z-boson and dark photon are

m2
1,2 =

1

2

[
m2
Z(1 + s2

W t
2
ξ) +m2

V /c
2
ξ ±

√
(m2

Z(1 + s2
W t

2
ξ) +m2

V /c
2
ξ)

2 − 4m2
Zm

2
V /c

2
ξ

]
(2.7)

where m2
Z = 1

4(g2 + g′2)v2 and m2
V = 9g2

dv
2
d, and the mixing angle between Z-boson and

dark photon is given by

tan 2ζ =
m2
ZsW sin 2ξ

m2
V −m2

Z(c2
ξ − s2

W s
2
ξ)
. (2.8)

Then, taking ζ ' −sW ξ for mV � mZ , we obtain the current interactions for dark pho-

ton as

LZ2,int ≈ Z2µ

(
− eεJµEM + gdJ

µ
d

)
(2.9)

where ε ≡ cW ξ, and JµEM and Jµd are electromagnetic, neutral and dark currents, respec-

tively. In this case, we get m2 ≈ 3gdvd ≡ mZ′ . See the appendix A of ref. [19] for

the details.

2.2 Vacuum stability

The absolute vacuum stability requires the potential to be bounded from below, meaning

that V > 0 for large field values away from the local minimum with V = 0. In this section,

for simplicity, we focus on the vacuum stability in the hidden sector with dark Higgs and

dark matter scalars only. Although the mixing quartic couplings with the SM Higgs can

affect our discussion too, they can be safely ignored, when they take positive or small values

as compared to couplings in the hidden sector.

Taking φ = 1√
2
α and χ = 1√

2
β eiγ for large field values, the vacuum stability is

determined by the quartic couplings in VDM, which becomes

VDM =
1

4
λφα

4 +
1

4
λχβ

4 +
1

4
λφχα

2β2 +

√
2

12
καβ3 cos(3γ). (2.10)
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After minimizing the potential for γ along any field values with α 6= 0 and β 6= 0, the above

hidden sector potential becomes

VDM =
1

4
λφα

4 +
1

4
λχβ

4 +
1

4
λφχα

2β2 −
√

2

12
|κ||α||β|3. (2.11)

Therefore, the vacuum stability conditions are given by

λφ > 0, λχ > 0, (2.12)

and

f(Xmin) > 0 (2.13)

with

f(X) =
1

4
λφX

4 +
1

4
λφχX

2 −
√

2

12
|κ|X +

1

4
λχ, (2.14)

where Xmin is the global minimum satisfying f ′(Xmin) = 0. Then, solving f ′(Xmin) = 0,

we obtain the third condition (2.13) as

λχ > −
1

2
λφχX

2
min +

√
2

4
|κ|Xmin (2.15)

with

Xmin =


(P +

√
P 2 +Q3)1/3 + (P −

√
P 2 +Q3)1/3, D > 0,

2
√−Q cos

(
1
3 arccos

(
P√
−Q3

))
, D < 0,

(2.16)

where D ≡ P 2 +Q3 with P ≡
√

2|κ|
24λφ

and Q ≡ λφχ
6λφ

.

For instance, for κ = 0, the third vacuum stability condition (2.13) becomes trivial for

λφχ > 0, while it is given by 4λφλχ − λ2
φχ > 0 for λφχ < 0, which is the standard result for

two scalar fields with a mixing quartic coupling. On the other hand, for λφχ = 0, the third

vacuum stability condition (2.13) becomes 192λφλ
3
χ − κ4 > 0.

The vacuum stability condition equivalent to eq. (2.13) can be also derived by the

condition that there is no real solution to the quartic polynominal f(X), in a more explicit

form [46],

λφχ + 2
√
λφλχ > 0 (2.17)

and

36λχ(λ2
φχ − 4λφλχ)2 > 2λφχκ

2(λ2
φχ − 36λφλχ) + 3λφκ

4. (2.18)

Then, the conditions, (2.13), (2.17) and (2.18), turn out to be equivalent.

For negative Higgs mixing quartic couplings with λφH < 0 and λχH < 0, there are

corresponding vacuum stability conditions for them too. But, in the later analysis, we

assume λφH , λχH to be positive if they are nonzero, so there is no extra conditions for

vacuum stability. The general discussion on the vacuum stability conditions with arbitrary

λφH and λχH are given in ref. [46].

For the later sections, we will impose the vacuum stability conditions, (2.12) and (2.18),

for the consistency of the vacuum breaking the U(1)d.
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3 Dynamics of self-interacting dark matter

We discuss the self-scattering of dark matter and resulting unitarity bounds and present

the general Boltzmann equation for the early Universe in our model. Then, we comment

on the kinetic equilibrium condition for dark matter and the elastic scattering between

light dark matter and electron.

3.1 Dark matter self-scattering and unitarity bounds

The squared amplitude for the χχ→ χχ self-scattering is given [19] by

|Mχχ|2 = 2

(
2λχ + 3R2 +

4g2
dm

2
χ

m2
Z′
−
λ2
φχm

2
Z′

9g2
dm

2
h1

)2

(3.1)

with R ≡
√

2κvd/(6mχ). On the other hand, the squared amplitude for the χχ∗ → χχ∗

self-scattering is given [19] by

|Mχχ∗ |2 = 4

(
2λχ − 9R2 −

2g2
dm

2
χ

m2
Z′

+
λ2
φχ(−2m2

χ +m2
h1

)m2
Z′

9g2
d(4m

2
χ −m2

h1
)m2

h1

)2

. (3.2)

Therefore, in the non-relativistic limit for dark matter, the effective scattering cross section,

σself ≡ 1
4(σχχself + σχ

∗χ∗

self + σχχ
∗

self ) with σχ
∗χ∗

self = σχχself , is

σself =
1

64πm2
χ

(
|Mχχ|2 + |Mχχ∗ |2

)
. (3.3)

The perturbativity and unitarity bounds on the DM couplings are given as follows,

λφ, λχ < 4π, |Mχχ|, |Mχχ∗ | < 8π. (3.4)

In the later sections, we will impose the above unitarity and perturbativity conditions for

the consistency of the model.

3.2 General Boltzmann equation

Assuming CP conservation in the dark sector, we obtain the general Boltzmann equation

for dark matter number density in our model, nDM = nχ + nχ∗ , with nχ = nχ∗ , as

dnDM

dt
+ 3HnDM = −〈σv2〉3→2(n3

DM − n2
DMn

eq
DM)

−1

2
〈σv〉χχ∗→f̄f (n2

DM − (neq
DM)2)

−1

2
〈σv〉χχ∗→Z′Z′n2

DM + 2〈σv〉Z′Z′→χχ∗(neq
Z′)

2

−1

2
〈σv〉χχ→Z′χ∗n2

DM + 〈σv〉Z′χ∗→χχneq
Z′nDM

−1

2
〈σv〉χχ∗→h1h1n2

DM + 2〈σv〉h1h1→χχ∗(neq
h1

)2

−1

2
〈σv〉χχ→h1χ∗n2

DM + 〈σv〉h1χ∗→χχneq
h1
nDM. (3.5)

– 6 –
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In principle, three annihilation processes, SM-annihilation, SIMP and forbidden channels

can contribute equally in determining the number density of dark matter. In the next

sections, we discuss the cases where one or some of annihilation processes become dominant.

In particular, in order to make the model unitarity up to relatively large masses for self-

interacting dark matter, it is necessary to introduce relatively light dark photon and/or

dark Higgs so forbidden channels can be important too.

3.3 Kinetic equilibrium and DM detection

We assume that dark matter keeps in kinetic equilibrium during the freeze-out process,

meaning that nSM〈σv〉χ,SM > H, where nSM is the equilibrium number density of the SM

particles and 〈σv〉χ,SM is the scattering cross section between dark matter and the SM

particles in thermal bath. Then, we require a nonzero coupling between dark matter and

the SM particles. To that purpose, Higgs portal or Z ′ portal interactions in our model would

be appropriate. It turns out that Higgs portal could not be used for kinetic equilibrium

of sub-GeV light dark matter, because of small Yukawa couplings. We note that there are

other possibilities that can be also consistent with observations, if dark matter is in kinetic

equilibrium with dark radiation, namely, dark photon in our case. If dark matter were

decoupled from both the SM and dark radiation, the dark sector could undergo an epoch

of heating [15] so it would be unacceptable for structure formation.

In the later discussion on the SM-annihilating dark matter, a minimum value of the

gauge kinetic mixing is needed for the correct relic density. Then, one has to take into

account the bounds from direct detection as well as Z ′ searches at colliders.

For Z ′ portal interaction, the kinetic scattering cross section for χf → χf with f being

the SM leptons is, in the early Universe, when leptons carries about the DM momentum,

given [19] by

(σv)χf→χf =
ε2e2g2

dm
2
χ

8πm4
Z′

v2. (3.6)

Due to cross symmetry, a nonzero kinetic scattering cross section leads to the annihilation

of dark matter into ff̄ . For sub-GeV dark matter annihilating into leptons, the X-ray and

gamma-ray searches can impose strong bounds on the corresponding annihilation cross

section [34–39]. But, in our case, as will be shown in the next section, the annihilation

cross section is velocity-suppressed, so there is no limit from indirect detection [19].

Similarly, for me,mχ,mZ′ � p ' mχvDM at present, the DM-electron elastic scattering

cross section with Z ′-portal interaction, that is relevant for direct detection, is given [19] by

σχe =
ε2e2g2

dµ
2

πm4
Z′

(3.7)

where µ ≡ memχ/(me +mχ) is the reduced mass of the DM-electron system. In the later

section, we will show the parameter space that could be accessible by direct detection

with semi-conductor or superconductor detectors [29–31]. The region for mχ vs ε, that is

consistent with the SIMP dark matter, has been also shown to be constrained by direct

detection and Z ′ searches [19].
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4 Thermal freeze-out from allowed channels

We discuss the thermal production of light dark matter from the 2 → 2 annihilations into

a pair of SM particles and the 3→ 2 annihilations due to DM self-interactions.

4.1 SM-annihilating dark matter

For mh1 ,mZ′ � mχ, the 2 → 2 annihilation channels are kinematically forbidden. Fur-

thermore, for small self-couplings of dark matter, the 3 → 2 annihilation processes are also

suppressed, namely, n2
DM〈σv2〉3→2 < nDM〈σv〉2→2 or n2

DM〈σv2〉3→2 < H. In this case, dark

matter annihilates dominantly into a pair of the SM particles.

As a result, the Boltzmann equation (3.5) is approximated to

dnDM

dt
+ 3HnDM ≈ −〈σv〉2→2(n2

DM − (neq
DM)2) (4.1)

where 〈σv〉2→2 ≡ 1
2〈σv〉χχ∗→f̄f , which is given [19], before thermal average, by

(σv)χχ∗→ff̄ =
ε2e2g2

d

(
m2
χ + 1

2m
2
f

)
6π[(4m2

χ −m2
Z′)

2 +m2
Z′Γ

2
Z′ ]

√
1−

m2
f

m2
χ

v2

+
1

4π

(
mf

vew

)2(
1−

m2
f

m2
χ

)3/2
∣∣∣∣∣ yh1χ∗χ
4m2

χ −m2
h1

+
yh2χ∗χ

4m2
χ −m2

h2

∣∣∣∣∣
2

(4.2)

with vew = 246 GeV, and

yh1χ∗χ ≡ sin θ(λφχvd cos θ − λχHvew sin θ), (4.3)

yh2χ∗χ ≡ cos θ(λφχvd sin θ + λχHvew cos θ). (4.4)

We note that the Z ′-portal contribution in the first line of (4.2) is p-wave suppressed while

the Higgs-portal contribution in the second line of (4.2) is suppressed by lepton Yukawa

couplings. Thus, the model is not constrained by gamma-ray searches from the galactic

center [34–39] or CMB constraints at recombination [1]. The SM-annihilating process with

Z ′-portal interaction is still relevant for producing a right relic density from freeze-out.

Consequently, for 1
2(σv)χχ∗→ff̄ = a+ bv2, we get the relic density as

ΩDMh
2 =

8.53× 10−11GeV−2

g
1/2
∗
∫∞
xf
dxx−2〈σv〉2→2

= 5.20× 10−10GeV−2
( g∗

10.75

)−1/2(xf
20

)(
a+

3b

xf

)−1

. (4.5)

This is the standard formula for the relic density in the case of SM annihilation, except

that DM mass is taken to be sub-GeV.

In figure 1, we have shown the parameter space for mZ′ vs ε in (red) solid lines for

dark matter mχ = 150(300) MeV on left (right) and dark gauge coupling gd = 1, 5, 10,

being consistent with the relic density. Electron g − 2 limit and muon g − 2 favored

– 8 –
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Figure 1. Parameter space of mZ′ vs ε, satisfying the relic density in red lines. Monophoton

bounds from BaBar(improved) and Belle2(expected for converted or standard) are shown in blue

region and pink, light-blue and black dashed lines. Bound from (g − 2)e and favored region for

(g−2)µ are depicted in yellow and orange, respectively, while electroweak precision bound is shown

in green. DM-electron scattering cross section with σχe = 10−40 cm2 is shown in dotted lines too.

We took DM mass to 150(300) MeV on left (right) plots.

region are shown in yellow and orange colors while the bound from EWPT is given in

green. Monophoton + MET bounds from BaBar(improved) and Belle2(expected) [47–

50] are shown in blue region and pink, light-blue and black dashed lines. The contour

with elastic scattering cross section between dark matter and electron being given by

σχe = 10−40 cm2 are also shown in dotted lines. We find that the region that is consistent

with the relic density can be probed by semi-conductor or superconductor detectors [29–31].

Since light dark matter annihilates into light fermions such as muons and electrons,

Higgs portal interactions are Yukawa-suppressed, so they give negligible contributions to

the DM annihilation. Nonetheless, non-negligible mixing quartic couplings λχH and λφH , or

Higgs mixing angle, would lead to additional Higgs decay modes with decay rates given by,

Γ(h2 → χχ∗) =
y2
h2χ∗χ

16πmh2

√
1−

4m2
χ

m2
h2

, (4.6)

Γ(h2 → h1h1) '
λ2
φHv

2
ew

32πmh2

√
1−

4m2
h1

m2
h2

. (4.7)

Then, additional Higgs couplings are bounded by Higgs data of signal strengths and/or

searches for Higgs invisible decays at the LHC. The combined VBF, ZH and gluon fusion

productions of Higgs boson at CMS lead to the bound, BR(h2 → χχ∗) < 0.24 at 95%

CL [51], while the bounds from the VBF [52] and ZH [53] Higgs productions at ATLAS

are BR(h2 → χχ∗) < 0.29 and BR(h2 → χχ∗) < 0.75, respectively. As a result, the bound

on the Higgs invisible decay leads to |yh2χ∗χ|/v . 0.010. On the other hand, the Higgs

signal strength is bounded to µ > 0.81 at 95% CL from ATLAS/CMS data combined [54].
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Figure 2. Parameter space of R(DM cubic coupling) vs mχ, satisfying the relic density. The

regions excluded by unitarity, perturbativity and vacuum stability are shown in blue, red and

green, respectively. Dotted, dashed and dot-dashed lines correspond to self-scattering cross sections,

σself/mχ = 0.1, 1, 10 cm2/g. We have chosen gd = 0.1, λφχ = 0.4, ∆Z′ = 4 and ∆h1
= 0.5.

Thus, the Higgs mixing angle is bounded as sin θ < 0.44, which satisfied in our case, because

sin θ ' λφHvewvd/m
2
h2

. 0.016 for mh2 = 125 GeV� mh1 , vd ∼ 1 GeV and λφH . 1.

4.2 SIMP dark matter

For mh1 ,mZ′ � mχ and small couplings between messenger fields and the SM particles, all

the 2→ 2 annihilation channels are kinematically forbidden or small. Then, the 3 → 2 anni-

hilation process for dark matter becomes dominant, namely, n2
DM〈σv2〉3→2 > nDM〈σv〉2→2

or H > nDM〈σv〉2→2.

The condition for kinetic equilibrium is fulfilled as far as the gauge kinetic mixing is

large enough. From (σv)χf→χf ≡ δ2

m2
χ

in eq. (3.6), it is sufficient to take |δ| ' 10−9 for

kinetic equilibrium [19]. On the other hand, the SM-annihilating process is subdominant

for nDM〈σv〉2→2 < n2
DM〈σv2〉3→2 or nDM〈σv〉2→2 < H, resulting in another condition,

|δ| . 10−6 [19].

Consequently, ignoring the 2→ 2 annihilation processes, the Boltzmann equation (3.5)

is approximated to

dnDM

dt
+ 3HnDM ≈ −〈σv2〉3→2(n3

DM − n2
DMn

eq
DM). (4.8)

The squared amplitude for χχχ∗ → χ∗χ∗ scattering is, in the non-relativistic limit,

given [19] by

|Mχχχ∗→χ∗χ∗ |2 =
R2

16m2
χ

(
74λχ − 117R2 −

200g2
dm

2
χ

m2
χ +m2

Z′
(4.9)

+
24λφχm

2
χ(3m2

χ − 2m2
h1

)− λ2
φχ(43m2

χ − 37m2
h1

)m2
Z′/(9g

2
d)

(4m2
χ −m2

h1
)(m2

χ +m2
h1

)

)2

.

– 10 –



J
H
E
P
1
2
(
2
0
1
6
)
0
9
9

Unitarity

Stability1cm2/g

0.1cm2/g

10cm2/g

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ΔZ'

Δh1

gd=0.1, mχ=80MeV, R=1.0, λϕχ=0.4

Unitarity

Unitarity

Stability

1cm2/g

0.1cm2/g

2cm2/g

2cm2/g

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ΔZ'

gd

Δh1=0.5, mχ=80MeV, R=1.0, λϕχ=0.4

Figure 3. Parameter space of ∆Z′ vs ∆h1 (on left) or ∆Z′ vs gd (on right), satisfying the relic

density. The colored regions and dotted, dashed and dot-dashed lines are as in figure 2, except that

the dot-dashed line on right corresponds to σself/mχ = 2 cm2/g. We have chosen mχ = 80 MeV,

λφχ = 0.4 and R = 1.0 for all plots and in addition gd = 0.1 on left and ∆h1
= 0.5 on right.

Likewise, the squared amplitude for χχχ→ χχ∗ scattering is, in the non-relativistic limit,

given [19] by

|Mχχχ→χχ∗ |2 =
3R2

m2
χ

(
2λχ + 9R2 +

25g2
dm

2
χ

m2
χ +m2

Z′
(4.10)

+
2λφχm

2
χ(13m2

χ − 2m2
h1

)− λ2
φχ(19m2

χ −m2
h1

)m2
Z′/(9g

2
d)

(9m2
χ −m2

h1
)(m2

χ +m2
h1

)

)2

.

Then, the effective 3-to-2 annihilation cross section appearing in the above Boltzmann

equation is obtained as

〈σv2〉3→2 =
1

4

(
〈σv2〉χχχ∗→χ∗χ∗ + 〈σv2〉χχχ→χχ∗

)
=

√
5

768πm3
χ

(
|Mχχχ∗→χ∗χ∗ |2 + |Mχχχ→χχ∗ |2

)
≡ α3

eff

m5
χ

. (4.11)

As a result, solving the Boltzmann equation leads to the DM relic density, given by

ΩDMh
2 =

1.05× 10−10 GeV−2

g
3/4
∗

(
m2
χ

MP

∫∞
xf
dx x−5〈σv2〉3→2

)1/2

= 1.41× 10−8 GeV−2
( g∗

10.75

)−3/4(xf
20

)2
(

αeff

M
1/3
P mχ

)−3/2

. (4.12)

Therefore, the correct relic density fixes the ratio, mχ/αeff , which directly predicts the

self-scattering cross section, σself ∼ α2
eff/m

2
χ.

In figure 2, we have solved the relic density condition for λχ and identified the pa-

rameter space of mχ vs R (DM cubic coupling), that is excluded by unitarity (in blue),
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perturbativity (in red) and vacuum stability (in green). Contours with self-scattering cross

section with σself/mχ = 0.1, 1, 10 cm2/g are shown in black dotted, dashed and dot-dashed

lines, respectively. We have set gd = 0.1, λφχ = 0.4, ∆Z′ = 4 and ∆h1 = 0.5 where

∆i ≡ (mi − mχ)/mχ. We find that the newly included vacuum stability bound is less

severe than unitarity bound. The dark matter masses are bounded to be smaller than

150 MeV, due to perturbativity and unitarity.

On the other hand, in figure 3, we also drew the parameter space of ∆Z′ vs ∆h1 on

left and ∆Z′ vs gd on right, that are excluded by unitarity (in blue) and vacuum stability

(in green). The black dotted, dashed and dot-dashed lines correspond to contours with

self-scattering cross section as in figure 2, except that the dot-dashed line on right is for

σself/mχ = 2 cm2/g. As a consequence, in the allowed parameter space, dark Higgs mass is

close to dark matter mass while dark photon mass can be much heavier than dark matter

mass. Thus, for relatively light dark Higgs, the forbidden channels, χχ∗ → h1h1 and

χχ→ h1χ
∗, can be also important in determining the relic density, as will be shown in the

later sections. From the right plot in figure 2, the self-scattering cross section can be large,

being insensitive to the choice of dark gauge coupling, as far as dark photon mass is large

as well.

5 Thermal freeze-out from forbidden channels

When dark photon and/or dark Higgs boson masses are close to dark matter mass, they

can contribute to the relic density through the forbidden channels, provided that the cor-

responding 2 → 2 cross sections are large enough. Therefore, we still allow for a large

self-scattering of dark matter. We study the parameter space that is consistent with the

relic density, first in the case with light dark photon, then the case with light dark Higgs

and finally the case where both dark photon and dark Higgs are light. Here, we assume

that dark photon and/or dark Higgs boson are in kinetic equilibrium during the freeze-

out process.

5.1 The case with mχ < mZ′ � mh1

In the case where mχ < mZ′ and dark Higgs is much heavier than the other particles, the

forbidden channels involving Z ′ as shown in figure 4 contribute to the Boltzmann equation.

Then, the Boltzmann equation (3.5) is approximated to

dnDM

dt
+ 3HnDM ≈ −

1

2
〈σv〉χχ∗→Z′Z′n2

DM + 2〈σv〉Z′Z′→χχ∗(neq
Z′)

2

−1

2
〈σv〉χχ→Z′χ∗n2

DM + 〈σv〉Z′χ∗→χχneq
Z′nDM. (5.1)

The detailed balance conditions at high temperature are

〈σv〉χχ∗→Z′Z′ =
4(neq

Z′)
2

(neq
DM)2

〈σv〉Z′Z′→χχ∗ = 9(1 + ∆Z′)
3e−2∆Z′x 〈σv〉Z′Z′→χχ∗ (5.2)

and

〈σv〉χχ→Z′χ∗ =
2neq

Z′

neq
DM

〈σv〉Z′χ∗→χχ = 3(1 + ∆Z′)
3/2e−∆Z′x 〈σv〉Z′χ∗→χχ (5.3)

with ∆Z′ ≡ (mZ′ −mχ)/mχ.
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Figure 4. Feynmann diagrams for forbidden channels with Z ′.
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Figure 5. Dark matter relic density as a function of ∆Z′ for only forbidden channels with Z ′ on

left and both SIMP and forbidden channels with Z ′ on right. We have taken (R,mχ) = (0.1,mχ =

1 GeV), (0.1,mχ = 10 MeV), (1.0,mχ = 1 GeV) and (1.0,mχ = 10 MeV), from top to bottom.

Black dashed lines correspond to the central value of relic density, Ωχh
2 = 0.1198, from Planck. In

both plots, we chose gd = 0.1, λφχ = 0.4 and ∆h1 = 10.

Then, we can rewrite the Boltzmann equation by using the detailed balance condi-

tions, (5.2) and (5.3), as follows,

dYDM

dx
= −λx−2〈σv〉Z′Z′→χχ∗

(
9

2
(1 + ∆Z′)

3e−2∆Z′x Y 2
DM − 2(Y eq

Z′ )
2

)
−λx−2〈σv〉Z′χ∗→χχ

(
3

2
(1 + ∆Z′)

3/2e−∆Z′x Y 2
DM − Y eq

Z′ YDM

)
(5.4)

where λ ≡ s(mχ)/H(mχ) with s(mχ) = 2π2

45 g∗sm
3
χ and 1/H(mχ) = 3.02g

−1/2
∗

MP
m2
χ

. As a
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Figure 6. Parameter space of R vs mχ for forbidden channels with Z ′. The red lines satisfy the

relic density and the blue region is excluded by unitarity. Dotted, dashed and dot-dashed lines

correspond to self-scattering cross sections, σself/mχ = 0.001, 0.01, 0.1 cm2/g. We took ∆Z′ = 0.4

or 0.5 and the value of λχ saturates the vacuum stability bound, and gd = 0.1, λφχ = 0.4 and

∆h1
= 10.

result, the approximate solution to the Boltzmann equation (5.4) is given by

(YDM(∞))−1 = λ

∫ ∞
xf

dxx−2
(9

2
(1 + ∆Z′)

3e−2∆Z′x〈σv〉Z′Z′→χχ∗

+
3

2
(1 + ∆Z′)

3/2e−∆Z′x〈σv〉Z′χ∗→χχ
)

(5.5)

Setting (σv)Z′Z′→χχ∗ = a and (σv)Z′χ∗→χχ = bv2, which leads to 〈σv〉Z′Z′→χχ∗ = a

and 〈σv〉Z′χ∗→χχ = 6b/x, where the detailed expressions for a and b are given in eqs. (A.1)

and (A.2), we get the DM abundance as

YDM(∞) ≈ xf
λ
e∆Z′xf g(∆Z′ , xf ) (5.6)

with

g(∆Z′ , xf ) =

[
9b

2xf
(1 + ∆Z′)

3/2
(

1− (∆Z′xf )2 e∆Z′xf

∫ ∞
∆Z′xf

dt t−2e−t
)

(5.7)

+
9a

2
(1 + ∆Z′)

3e−∆Z′xf
(

1− 2(∆Z′xf ) e2∆Z′xf

∫ ∞
2∆Z′xf

dt t−1e−t
)]−1

.

Consequently, the relic density is determined to be

ΩDMh
2 = 5.20× 10−10GeV−2

( g∗
10.75

)−1/2(xf
20

)
e∆Z′xf g(∆Z′ , xf ). (5.8)

Then, the 2 → 2 annihilation cross sections can be large, due to the inverse of the

Boltzmann suppression factor, e∆Z′xf , appearing in the relic density. Therefore, the self-

scattering cross section of dark matter can be large enough. But, for a small ∆Z′ , dark
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Figure 7. Feynmann diagrams for forbidden channels with h1.

matter self-interaction can be smaller than in the SIMP case, being compatible with the

relic density.

In figure 5, we depicted the relic density as a function of ∆Z′ , only with forbidden

channels involving Z ′ on left and with both SIMP and forbidden channels on right, varying

the self-interaction and mass of dark matter, (R,mχ), between R = 0.1 − 1 and mχ =

10 MeV− 1 GeV. For both plots, we took gd = 0.1, λφχ = 0.4 and ∆h1 = 10. On the right

plot of figure 5, as ∆Z′ gets larger than about 0.5 the relic density approaches a certain

fixed value, that is determined by the SIMP processes dominantly. However, for ∆Z′ . 0.5,

the relic density become sensitive to the value of ∆Z′ , as well as to R and mχ.

In figure 6, we also show the parameter space of mχ vs R, satisfying the relic density

in red lines, for ∆Z′ = 0.4 and 0.5, from bottom to top. We took dark matter masses to

be larger than 150 MeV to cover beyond the maximal value allowed by unitarity in the

SIMP case. Furthermore, we chose the value of λχ such that the vacuum stability bound

is saturated and set gd = 0.1, λφχ = 0.4 and ∆h1 = 10. The blue region is excluded by uni-

tarity and the contours with self-scattering cross section, σself/mχ = 0.001, 0.01, 0.1 cm2/g,

are shown in dotted, dashed and dot-dashed lines, respectively. For relatively heavy DM

masses, the self-scattering cross section is smaller than in the SIMP case, being consistent

with the relic density and unitarity. Therefore, the forbidden channels are crucial to keep

the model perturbative for the wide range of masses for light dark matter.

5.2 The case with mχ < mh1 � mZ′

In the case where mχ < mh1 and dark photon is much heavier than the other particles, the

forbidden channels involving h1 as shown in figure 7 contribute to determining the relic

density. In this case, the Boltzmann equation (3.5) is approximated to

dnDM

dt
+ 3HnDM ≈ −

1

2
〈σv〉χχ∗→h1h1n2

DM + 2〈σv〉h1h1→χχ∗(neq
h1

)2

−1

2
〈σv〉χχ→h1χ∗n2

DM + 〈σv〉h1χ∗→χχneq
h1
nDM. (5.9)

Similarly to the case with light Z ′, the detailed balance conditions at high temperature are

〈σv〉χχ∗→h1h1 =
4(neq

h1
)2

(neq
DM)2

〈σv〉h1h1→χχ∗

= (1 + ∆h1)3e−2∆h1
x 〈σv〉h1h1→χχ∗ (5.10)
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Figure 8. Dark matter relic density as a function of ∆h1 for only forbidden channels with h1 on

left and both SIMP and forbidden channels with h1 on right. We have taken (R,mχ) = (0.1,mχ =

1 GeV), (0.1,mχ = 10 MeV), (1.0,mχ = 1 GeV) and (1.0,mχ = 10 MeV), from top to bottom.

Black dashed lines correspond to the central value of relic density, Ωχh
2 = 0.1198, from Planck. In

both plots, we chose gd = 0.5, λφχ = 0.4 and ∆Z′ = 10.

and

〈σv〉χχ→h1χ∗ =
2neq

h1

neq
DM

〈σv〉h1χ∗→χχ

= (1 + ∆h1)3/2e−∆h1
x 〈σv〉h1χ∗→χχ (5.11)

with ∆h1 ≡ (mh1 −mχ)/mχ.

Therefore, we can rewrite the Boltzmann equation by using the detailed balance con-

ditions, (5.10) and (5.11), as follows,

dYDM

dx
= −λx−2〈σv〉h1h1→χχ∗

(
1

2
(1 + ∆h1)3e−2∆h1

x Y 2
DM − 2(Y eq

h1
)2

)
−λx−2〈σv〉h1χ∗→χχ

(
1

2
(1 + ∆h1)3/2e−∆h1

x Y 2
DM − Y eq

h1
YDM

)
. (5.12)

As in the case with Z ′ channels, the approximate solution to the above Boltzmann equation

is then given by

(YDM(∞))−1 = λ

∫ ∞
xf

dxx−2

(
1

2
(1 + ∆h1)3e−2∆h1

x〈σv〉h1h1→χχ∗

+
1

2
(1 + ∆h1)3/2e−∆h1

x〈σv〉h1χ∗→χχ
)
. (5.13)

Expressing (σv)h1χ∗→χχ = c1 and (σv)h1h1→χχ∗ = c2, where c1 and c2 are given in

eqs. (A.3) and (A.4), we get the DM abundance as

YDM(∞) ≈ xf
λ
e∆h1

xf h(∆h1 , xf ) (5.14)
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Figure 9. Parameter space of R vs mχ for forbidden channels with h1. The red lines satisfy the

relic density and the blue region is excluded by unitarity. Dotted, dashed and dot-dashed lines

correspond to self-scattering cross sections, σself/mχ = 0.001, 0.01, 0.1 cm2/g. We took ∆h1 = 0.75

or 0.85 and the value of λχ saturates the vacuum stability bound, and gd = 0.5, λφχ = 0.4 and

∆Z′ = 10.

with

h(∆h1 , xf ) =

[
1

2
c1(1 + ∆h1)3/2

(
1−∆h1xf e

∆h1
xf

∫ ∞
∆h1

xf

dt t−1 e−t
)

(5.15)

+
1

2
c2(1 + ∆h1)3e−∆h1

xf

(
1− 2∆h1xf e

2∆h1
xf

∫ ∞
2∆h1

xf

dt t−1 e−t
)]−1

.

Consequently, the relic density is determined to be

ΩDMh
2 = 5.20× 10−10GeV−2

( g∗
10.75

)−1/2(xf
20

)
e∆h1

xf h(∆h1 , xf ). (5.16)

In figure 8, we depicted the relic density as a function of ∆h1 , only with forbidden

channels involving h1 on left and with both SIMP and forbidden channels on right, varying

(R,mχ) such that R = 0.1−1 and mχ = 10 MeV−1 GeV. For both plots, we took gd = 0.5,

λφχ = 0.4 and ∆Z′ = 10. Inclusion of the SIMP processes on the right plot clearly shows

a resonance behavior at ∆h1 ∼ 1 or mh1 ∼ 2mχ, drastically changing the relic density

to much smaller values. But, the same resonance also appears in the self-scattering of

dark matter as can be seen in eq. (3.2), so it would be in a tension with the bound from

Bullet cluster. Below the resonance region on the right plot, between ∆h1 ∼ 0.5− 1, there

appears a similar plateau with a fixed relic density, that is dominantly determined by the

SIMP processes.

In figure 9, we also show the parameter space of mχ vs R, satisfying the relic density

in red lines, for ∆h1 = 0.75 and 0.85, from bottom to top. We chose the value of λχ such

that the vacuum stability bound is saturated and set gd = 0.5, λφχ = 0.4 and ∆Z′ = 10.

– 17 –
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Figure 10. Dark matter relic density as a function of ∆h1 = ∆Z′ for only forbidden channels with

Z ′ and h1 on left and both SIMP and forbidden channels with Z ′ and h1 on right. We have taken

(R,mχ) = (0.1,mχ = 1 GeV), (0.1,mχ = 10 MeV), (1.0,mχ = 1 GeV) and (1.0,mχ = 10 MeV),

from top to bottom. Black dashed lines correspond to the central value of relic density, Ωχh
2 =

0.1198, from Planck. In both plots, we chose gd = 0.3, λφχ = 0.4.

The blue region is excluded by unitarity and the contours with self-scattering cross section

are shown similarly to those in figure 6.

5.3 The case with mχ < mZ′ ∼ mh1

When Z ′ and dark Higgs are comparably light, they both can contribute comparably to

the forbidden channels at the same time. In this case, from eqs. (5.4) and (5.12), we obtain

the approximate Boltzmann equation (3.5) as

dYDM

dx
≈ −λx−2〈σv〉forbY

2
DM (5.17)

with

〈σv〉forb =
9

2
(1 + ∆Z′)

3e−2∆Z′x〈σv〉Z′Z′→χχ∗

+
3

2
(1 + ∆Z′)

3/2e−∆Z′x〈σv〉Z′χ∗→χχ

+
1

2
(1 + ∆h1)3e−2∆h1

x〈σv〉h1h1→χχ∗

+
1

2
(1 + ∆h1)3/2e−∆h1

x〈σv〉h1χ∗→χχ. (5.18)

Therefore, the DM relic abundance becomes

YDM(∞) ≈ xf
λ

e(∆Z′+∆h1
)xf/2g h

e(∆Z′−∆h1
)xf/2g + e−(∆Z′−∆h1

)xf/2h
. (5.19)

In this case, the relic density is given by

ΩDMh
2 = 5.20× 10−10GeV−2

( g∗
10.75

)−1/2(xf
20

) e(∆Z′+∆h1
)xf/2g h

e(∆Z′−∆h1
)xf/2g + e−(∆Z′−∆h1

)xf/2h
.

(5.20)
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Figure 11. Parameter space of R vs mχ for forbidden channels with Z ′ and h1. The red lines

satisfy the relic density and the blue region is excluded by unitarity. Dotted, dashed and dot-

dashed lines correspond to self-scattering cross sections, σself/mχ = 0.001, 0.01, 0.1 cm2/g. We took

∆Z′ = ∆h1
= 0.8 or 0.9 and the value of λχ saturates the vacuum stability bound, and gd = 0.3,

λφχ = 0.4.

In figure 10, we depicted the relic density as a function of ∆Z′ = ∆h1 , when dark

photon and dark Higgs are degenerate in mass, for varying (R,mχ) between R = 0.1 − 1

and mχ = 10 MeV − 1 GeV. For both plots, we took gd = 0.3 and λφχ = 0.4. As in the

case with light Z ′ or h1 in the previous subsections, there is a similar dependence on ∆Z′

as well as (R,mχ).

In figure 11, we showed the parameter space for mχ vs R, that explains the observed

relic density in red lines, for ∆Z′ = ∆h1 = 0.8 and 0.9, from bottom to top. We chose

the value of λχ such that the vacuum stability bound is saturated and set gd = 0.3 and

λφχ = 0.4. The blue region is excluded by unitarity and the contours with self-scattering

cross section are shown similarly to those in figure 6.

6 Conclusions

We have considered the thermal production of self-interacting dark matter in models with

Z3 gauged symmetry. We showed that standard 2 → 2 annihilation and hidden sector

annihilations (3 → 2 annihilation and forbidden channels) can contribute equally in de-

termining the relic density. In particular, dark photon and dark Higgs in the model must

be kept light for unitarity, so they both can contribute to the processes of dark matter

annihilation. In particular, we found that forbidden channels with semi-annihilation such

as χχ → χ∗Z ′ or χχ → χ∗h1 assist a thermal production of light dark matter with larger

masses than in the SIMP case, but keeping a sizable self-scattering of dark matter. De-

pending on the value of the self-scattering cross section favored by small-scale problems, we

can identify the relevant thermal production mechanisms for self-interacting dark matter,

in the same model.
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A 2→ 2 annihilation for forbidden channels

We summarize the formulas for annihilation cross sections that are relevant for forbidden

channels. The semi-annihilation involves dark photon or dark Higgs and it contributes only

when the DM cubic coupling, κ, does not vanish.

First, the cross sections for inverse processes of dark matter annihilation associated

with Z ′ are

• Z ′Z ′ → χχ∗:

(σv)Z′Z′ =
g4
d

72πm6
Z′(m

2
h1
− 4m2

Z′)
2

(
(m2

h1 − 4m2
Z′)

2(16m4
χ − 24m2

χm
2
Z′ + 11m4

Z′)

+18λφχm
2
Z′(m

2
h1 − 4m2

Z′)(−4m2
χ +m2

Z′)v
2
d + 243λ2

φχm
4
Z′v

4
d

)√
1−

m2
χ

m2
Z′

(A.1)

• Z ′χ∗ → χχ:

(σv)Z′χ∗ =
g2
dκ

2v2
d

144πm3
χm

2
Z′

(3mχ +mZ′)
2

(mχ +mZ′)3(2mχ +mZ′)2

×
(

11m4
χ + 4m3

χmZ′ − 4m2
χm

2
Z′ +m4

Z′

)√(
1− mχ

mZ′

)(
1 +

3mχ

mZ′

)
v2

(A.2)

Secondly, the cross sections for inverse processes of dark matter annihilation associated

with h1 are

• h1h1 → χχ∗:

(σv)h1h1 =
λ2
φχ

32πm2
h1

(
1 +

2v2
d

m2
h1

(λφ − λφχ)

)2
√

1−
m2
χ

m2
h1

(A.3)

• h1χ
∗ → χχ:

(σv)h1χ∗ =
κ2

64πm3
χm

2
h1

(
mχmh1(2mχ +mh1)− λφχ(3mχ + 2mh1)v2

d

)2

(mχ +mh1)(2mχ +mh1)2

×
√(

1− mχ

mh1

)(
1 +

3mχ

mh1

)
. (A.4)
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