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ABSTRACT Sparse representation has been widely used over the past decade in computer vision and signal
processing to model a wide range of natural phenomena. For computational convenience and robustness
against noises, the optimization problem for sparse representation is often relaxed using convex or nonconvex
surrogates instead of using the l0-norm, the ideal sparsity penalty function. In this paper, we pose the
following question for nonconvex sparsity-promoting surrogates: What is a good sparsity surrogate for
general nonconvex systems? As an answer to this question, we suggest that the difficulty of handling the
l0-norm does not only come from the nonconvexity but also from its gradient being zero or not well-defined.
Accordingly, we propose desirable criteria to be a good nonconvex surrogate and suggest a corresponding
family of surrogates. The proposed family of surrogates allows a simple regularizer, which enables efficient
computation. The proposed surrogate embraces the benefits of both l0- and l1-norms, and most importantly,
its gradient vanishes slowly, which allows stable optimization. We apply the proposed surrogate to well-
known sparse representation problems and benchmark datasets to demonstrate its robustness and efficiency.

INDEX TERMS Sparse representation, nonconvex sparsity measure, slowly vanishing gradient.

I. INTRODUCTION
Recently, sparse representation of signals has been one of
the most successful models in many fields including signal
processing, machine learning, and computer vision. Sparse
representation has shown to be a powerful tool for high-
dimensional data such as images [1], [2], where the goal is
to represent or compress cumbersome data using a few rep-
resentative samples. A simple sparse representation problem
(for a noiseless scenario) can be described as follows:

min
α
‖α‖0, s.t. x = Dα, (1)

where ‖α‖0 = #{i : αi 6= 0, ∀i} is the l0-norm, x ∈ Rm

is an observation data, D ∈ Rm×p is an overcomplete dic-
tionary (m � p), and α ∈ Rp is the coefficient vector to
be estimated. Typical applications of sparse representation
include face recognition [3], image restoration [4], and super-
resolution [5], to name a few.
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Behind the successful outcomes, many efforts have been
made for learning sparse representation efficiently [1], [3],
[6]–[16], since solving a sparse representation problem using
the l0-norm has two main drawbacks: (1) the computational
intractability of a combinatorial search and (2) its noise sen-
sitivity due to the nature of the l0 ball. One of the most pop-
ular algorithms to estimate sparse signals is the orthogonal
matching pursuit (OMP) [6], which finds the best matching
projection based on an overcomplete dictionary. However,
the greedy pursuit method can find a sub-optimal solution and
even can fail to find a reasonable solution. Even worse, there
can be a computational issue when the size of the dictionary
is large.

There is little doubt that the recent popularity of the sparse
representation is attributed to the attempt that the l0-norm
is relaxed to its convex counterpart, i.e., the l1-norm [17].
In many cases, the use of the l1-norm turns the problem into
convex optimization, which can be efficiently solved with
theoretical guarantees. Especially, some analyses have shown
that the l1-norm-based problems can exactly recover the best
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sparse solution under certain conditions [2], [18], making a
strong justification for the use of the l1-norm. Accordingly,
the l1-norm has been extensively utilized in many problems
under different forms, and many efficient methods, includ-
ing the basis pursuit denoising (BPDN) methods, such as
FISTA [19], have been proposed to solve l1-norm minimiza-
tion problems.

Obviously, the l1-norm relaxation is beneficial when the
relaxed problem or system indeed becomes convex. However,
some problems are inherently nonconvex and, for those prob-
lems, replacing the sparsity surrogate to a convex one does
not necessarily make the overall problem convex. Some well-
known examples of such problems are: matrix factoriza-
tion [20] and rank-constrained subspace learning [21]–[23].
For these problems, using the l1-norm will not bear as much
significance as the previous examples. In fact, for general
problems aside from some special (convex) cases mentioned
above, the constant slope of the l1-norm, which is also known
as a biased penalty function1 [8], can over-penalize the values
of nonzero elements unlike the l0-norm andmake the solution
deviate from the desired solution [8], [9], [12], [13]. This
constant slope is the one that makes the l1-norm a convex
surrogate, which is not really necessary for the nonconvex
settings discussed here. Note that there is a tighter convex
approximation to the l0-norm [24], but it also has a constant
gradient along each direction.

Motivated by the fact that the l1-norm may not be the
best choice for nonconvex problems, we ask the following
question: What is a good nonconvex sparsity surrogate if it
is not possible to transform the problem to a convex one?
It is quick to notice that the l0-norm is still difficult to han-
dle in nonconvex problems. It is worth mentioning that the
nonconvex nature is not the only difficulty of the l0-norm,
but its gradient either being zero (for the most parts) or not
being well-defined is the true culprit, which necessitates
a combinatorial optimization approach. If we can find an
approximation of the l0-norm that has a sufficiently large
region with nontrivial gradients, it would be much easier to
apply conventional optimization techniques.

As prior works, there have been attempts to use noncon-
vex smooth (or possibly nonsmooth) approximations of the
l0-norm [7]–[10], [12], [25], [26]. We will discuss the the-
oretical relevance and difference of the proposed surrogate
compared to other nonconvex alternatives in Section III-B.

A. PAPER CONTRIBUTIONS
In this paper, we analyze possible approximations of the
l0-norm. We first propose desirable criteria to be a good
nonconvex surrogate and present a representative family of
curves, termed slowly vanishing gradient (SVG) surrogates,
that is a solution of a differential equation. The proposed
surrogate avoids existing issues of rapidly vanishing gradi-
ent of other well-known surrogates which can hinder the

1 Throughout this paper, we use the term penalty functions and surrogates
interchangeably.

optimization progress. We also show that there is a trade-off
between the values and the vanishing speed of their gradi-
ents. Locally, the surrogate follows the l1-norm to reduce the
chance of numerous local optima without losing the ability of
promoting sparsity. Globally, it follows the l0-norm to reduce
penalty on large-values, but it still possesses slowly vanishing
gradients to help drawing the solution of an optimization
algorithm to sparse points. Moreover, it has an efficient
proximity operator for the surrogate. The proposed surrogate
function is applied to various applications such as low-rank
approximation (LRA), sparse coding with dictionary learning
(SC), and sparse subspace clustering (SSC) problems, to
demonstrate its adequacy and experimental results confirm
that our proposal performs favorably against those of other
well-known sparsity surrogates.

B. NOTATIONS
An observation matrix is denoted by X ∈ Rm×n, where each
column corresponds to a data sample inRm. We denote matri-
ces, vectors, and scalars by bold letters in upper case, bold
letters in lower case, and letters in lower case, respectively,
unless stated otherwise. Spaces and subspaces are denoted by
bold italic letters in upper case. Throughout this paper, we use
‖A‖q to denote matrix norms of a matrix A, with q = 1 for the
matrix l1-norm,

∑
ij |aij|, and q = F for the Frobenius-norm,√∑

ij |aij|
2. We denote the projection operator by P(·) and

the support set of a matrix A by�A. rank(A) denotes the rank
of A and | · | denotes the absolute value operation of a scalar.
Diagonal elements in a matrix A is denoted by diag(A).

II. ANALYSIS ON THE l0-NORM APPROXIMATION
A. DESIRABLE CRITERIA FOR A NONCONVEX SURROGATE
In this section, we will mainly discuss a sparse representation
problemwhose cost function consists of a data term and a reg-
ularizer. As explained earlier, if the problem itself (data term)
has a nonconvex structure, then the convexity of the sparsity
surrogate (regularizer) is not absolutely necessary. In this
case, the constant slope of the l1-norm will not necessarily
make the problem convex but over-penalize nonzero values in
the input, which makes the solution deviate from the desired
solution, especially when the problem assumes the presence
of noises. Hence, we might be interested in finding a good
nonconvex surrogate for such general nonconvex problems.
Prior works support the superiority of nonconvex sparsity-
promoting surrogates [9], [12], [26]–[31].

If the nonconvexity of the l0-norm is not a problem, then
the only difficulty in handling it is that its value only changes
around zero (or we can imagine that its shape appears as if it
gives an extremely local gradient at the origin). This is highly
undesirable from the perspective of conventional optimiza-
tion. Since the derivative of the l0-norm is zero for nonzero
inputs and undefined at zero, there can be undesirable effects
for finding sparse solutions and discovering a good local
optimal solution.
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In order to find a surrogate which has least undesirable
effects and can also be handled efficiently, we might con-
sider smooth approximations of the l0-norm [9], [10], [13].
However, there can be infinitely many such approximations
andwe need some criteria for finding a good surrogate. Below
are basic assumptions to be a good candidate:
Assumption 1: We pose the following criteria on the sur-

rogate2 φ(x) (defined on −∞ < x < ∞) we are looking
for:

1) Symmetry: The sign of an input does not matter but the
magnitude, hence, we assume φ(x) = φ(−x).

2) Continuity at x = 0: In order to avoid a jump at x = 0,
we assume φ′(0+) = φ′(0−) = φ(0).

3) Asymptotic convergence: Assume φ(0) = 0. Then, φ(x)
satisfies limx→∞ φ(x) = 1. This prevents φ(x) from
penalizing large nonzero inputs equally as small ones,
and makes it closer to the l0-norm.

4) Monotonicity: In order for φ to be a valid surrogate,
we assume φ′(x) > 0 for x > 0 where φ′(x) is
the derivative of φ(x) at x, i.e., φ is a monotonically
increasing function on x > 0.

5) Smoothness (Monotonicity of gradient): Assume φ is
twice continuously differentiable when x 6= 0. There
can be some choices of φ that φ′(x) goes up and down,
but this behavior is unnecessary and will overcompli-
cate φ(x). Hence, we assume φ′′(x) < 0 for x > 0,
i.e., the gradient decreases monotonically for x > 0.

6) Finite nonzero derivative around x = 0: Let us define
φ′(0+) = limx→0+ φ

′(x). Then, φ′(0+) should be a
finite nonzero value to promote sparsity, i.e., 0 <

φ′(0+) = b <∞. In many examples, b will be chosen
as b = 1 for ease of explanation.

Remark 1: We give more details for the last criterion. Note
that a local optimum of a cost function, consisting of a
data term and a continuous and symmetric regularizer term,
exists at a sparse point when the sum of both (generalized)
subgradients [32] of the two terms becomes 0. First, φ′(0+)
should be nonzero to promote sparsity. If φ′(0) = 0, due
to the symmetry assumption, then the derivatives of a cost
function depend only on the data term. However, if φ′(0+) is
nondifferential, the chance of an optimal point can increase
since a subgradient of the regularizer may make one of
the subgradients of the entire cost function zero. In short,
a nondifferentiable regularizer increases the chance of zero
subgradient of a cost function at sparse points more than
a differentiable regularizer. Second, φ′(0+) should be finite
to avoid a sub-differential containing infinite large number
of subgradients (−∞ ≤ φ′(0+) ≤ ∞), since this sub-
differential always makes the sub-differential of the entire
cost function contain zero, thus it can create too many local
optima at sparse points. In other words, we would like to

2 For ease of explanation, we sometimes deal with a scalar function
throughout the paper due to the separability of the surrogate, even though
this paper is about the sparsity-promoting penalty. An extension to a vector
case is straightforward.

avoid a sparse point becoming a local optimum if the data
term at the point has a steep slope.

Aside from the above criteria, we have another criterion
on the choice of φ. As discussed before, the gradient either
being 0 or not being well-defined is what makes the optimiza-
tion difficult for the l0-norm. Thus, we aim to find a surrogate
that has an opposite characteristic: φ(x) whose gradient is as
large as possible across the entire interval. Because of the
fifth criterion, this is equivalent to finding φ(x) that has slowly
vanishing gradients. If φ′(x) decreases slowly, then the effect
of the sparsity surrogate can spread across a large region to
help drawing the solution to sparse points. This can be viewed
as mimicking the constant slope of the l1-norm under the
above criteria. Hence, we might try to find φ(x) with the
most slowly decreasing gradient. However, due to the third
criterion, the ‘‘total amount’’ of gradient is finite, i.e.,∫

∞

0+
φ′(x)dx = 1. (2)

This means that we have to divide this finite value for
0 < x <∞.

B. A REPRESENTATIVE FAMILY OF SURROGATES
To analyze the situation discussed above more closely, we
present two extreme examples among the possible family of
surrogates that satisfy the above criteria. Because of the first
criterion, we can assume φ(x) = y(|x|) for some function y
on R+.

First, let us see an example that is a smooth relaxation of
the l0-norm, but its gradient vanishes exponentially fast in a
relatively local region. An easy example is

y = 1− e−x , (3)

which satisfies y(0) = 0, y(∞) = 1, y′(0+) = 1, and all
the above criteria. Its derivative is y′(x) = e−x , which means
that the gradient vanishes exponentially. Hence, this surrogate
will quickly become negligible except the local region near
x = 0.
As an opposite example, let us consider a case, in which

the gradient vanishes very slowly;

y = 1−
1

(1+ x
a )
a , (4)

with very small a > 0. Its derivative is

y′(x) =
1

(1+ x
a )

1+a , (5)

and this also satisfies y(0) = 0, y(∞) = 1, y′(0+) = 1,
and all of the above criteria. Here, since a is very small,
y′(x) is close to a reciprocal function 1

1+ x
a
. Integrating 1

1+ x
a

for 0 ≤ x < ∞ does not converge, hence, this can be
seen as an extreme example with very slowly vanishing gra-
dients. However, 1

(1+ x
a )

1+a is very close to 0 for most of x,
which is a natural consequence of spreading a finite value
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FIGURE 1. Graphical illustration of a family of representative curves (a) y and (b) their derivatives y ′ for different choices of a.

(
∫
∞

0 y′(x)dx = 1) to a broad interval. Indeed, we can verify
that

lim
a→0

1
(1+ x

a )
1+a = 0 if x 6= 0 (6)

and the function itself approaches to zero, i.e.,

lim
a→0

1−
1

(1+ x
a )
a = 0. (7)

Note that the previous example can be viewed as an opposite
extreme in this sense as lima→∞

1
(1+ x

a )
1+a = e−x . Therefore,

there is a tradeoff between the spread (vanishing speed) of
gradients and their actual values. Some example curves of y
and y′ for various values of a are illustrated in Figure 1.
In addition to the extreme examples, there are infinitely

many functions that satisfy our criteria. However, the details
of curve shapes do not matter much because local differences
between two curves does not bear a significant meaning for
general problems. Hence, it suffices to choose a represen-
tative family of curves that has a nice interpretation and
includes various rates of gradient vanishment, in order to
narrow down our choices. In fact, the previous examples are
good candidates, since they are solutions to the following
differential equation that has an elegant meaning:

(1− y)1+
1
a = εy′, y(0) = 0, (8)

where a > 0 and ε > 0 are parameters. It is worth noting that
(1− y) on the left side is the difference between the l0-norm
and y, thus, the decreasing speed of (1− y) is identical to the
rate of asymptotic convergence (criterion 3). Therefore, this
equation describes the rate of gradient vanishment in terms of
the rate of asymptotic convergence. This can be transformed
into a Bernoulli equation, and the solution is given as

y(x) = 1−
1

(1+ x
aε )

a , (9)

which satisfies y′(0+) = 1
ε
, y(0) = 0, and y(∞) = 1 for

a > 0.We call the corresponding penalty functions satisfying
(9) as a family of slowly vanishing gradient (SVG) surrogates.
As a special case of the family of SVG surrogates when ε = 1
and a→∞, the solution leads to (3).

III. PROPOSED NONCONVEX SPARSITY SURROGATE
A. CHOOSING A SIMPLE ONE AMONG THE SVG FAMILY
As explained in the previous section, there is a tradeoff
between the vanishing speed and the actual value of the
gradient. Thus, we can, at best, choose a good compromise
between them. Since there is no clear winner between the
curves in our SVG family, it is better to choose the simplest
one among the reasonable choices. Accordingly, we con-
strained a to be an integer, and find one that gives the slowest
decreasing rate of gradient, which is a = 1. As a result,
we have y(x) = 1 − ε

x+ε =
x

x+ε . Based on this function,
our proposed sparsity surrogate3 is given as follows:

‖α‖εSVG =
∑
i

|αi|

|αi| + ε
, (10)

where ε > 0 is a weighting parameter that determines the
slope at αi = 0+. The following proposition shows the
pointwise convergence of the proposed surrogate to the con-
ventional norms.
Proposition 1: SVG approximates the l0- and l1-norms:

1) ‖α‖εSVG ≤ ‖α‖0 ∀ε and ‖α‖
ε
SVG→ ‖α‖0 if ε → 0.

2) ε‖α‖εSVG ≤ ‖α‖1 ∀ε and ε‖α‖
ε
SVG→ ‖α‖1 if ε →∞.

Note that the above properties still hold for the pro-
posed SVG family based on (9). The proof is included in
Appendix A. Some example curves of SVG are illustrated
in Figure 2 to visualize these properties.

Another nice property of SVG is that it possesses a simple
proximity operator. Recently, there have been remarkable
theoretical progresses on convergence analysis for the sparse
optimization techniques, and nonconvex versions for the
accelerated proximal gradient method (nAPG) [33] and the
alternating directional method of multipliers (nADMM) [34]
have been proposed to solve sparse optimization problems
efficiently in nonconvex settings. Hence, even though SVG
is nonconvex, having a simple proximity operator is still a
good advantage to incorporate the abovemethods for efficient
nonconvex programming.

3 We just denote the surrogate as SVG in that it is one of our SVG family.

132492 VOLUME 8, 2020



E. Kim et al.: Nonconvex Sparse Representation With Slowly Vanishing Gradient Regularizers

FIGURE 2. Graphical illustration of SVG of a vector α with respect to various values of ε (a) compared to the l0-norm, and (b) to the
l1-norm. (·) denotes the value of ε.

The proximity operator for SVG is defined as follows:

proxεSVG,λ(x) = min
u
λ‖u‖εSVG +

1
2
‖x− u‖2. (11)

Note that this equation is separable, and we can solve it for
each element of u. Since SVG is a symmetric function for
each element, an element of the solution vector û will either
be of the same sign with the corresponding element of x or be
zero. Let us assume that the sign of xi, the ith element of x,
is positive without loss of generality. Then, one of the positive
solutions of the following cubic equation

(ui + ε)2
(
λui
ui + ε

+
1
2
(xi − ui)2

)′
= λε + (ui − xi)(ui + ε)2 , g(ui) = 0 (12)

or zerowill be the optimal point of ui. Note that the coefficient
of the third-order term of g(ui) is positive, as well as the
value of g(−ε) = λε > 0. This indicates that g(ui) has
at least one root for ui < 0, i.e., there can be at most
two roots for ui ≥ 0. If there is no root or a double root
for ui ≥ 0, g(ui) is nonnegative for ui ≥ 0, i.e., the cost
function is monotonically increasing for positive ui, and the
optimal point will be 0. If there are two distinct roots, then
the solution with a larger value is a local minimum, so either
this solution or zero will be the optimal point. In conclusion,
the optimal ûi is either the largest positive root of (12) or zero,
and we can compare the costs of these two points to find the
final solution. This analysis will relieve the computational
complexity when solving the third-order equation.

B. RELATIONSHIP WITH OTHER SPARSITY SURROGATES
There are many nonconvex sparsity surrogates, such as
smoothly clipped absolute deviation (SCAD) [8], mini-
max concave penalty (MCP) [12], and Capped-l1 (CapL1)
penalty [26], which have been proposed to approximate the
l0-norm. A comprehensive study on the nonconvex sparsity
surrogate can be found in [27], [35]. In [8], authors advo-
cate a nonconvex surrogate that has three desired properties:
unbiasedness, sparsity, and continuity. More general proper-
ties to be a good nonconvex surrogate are described in [35]
(see Assumption 1). Note that the proposed family of sur-
rogates satisfies the properties and further extends them

by introducing an important new criterion; slowly vanish-
ing gradients. In addition, our surrogate can provide the-
oretical guarantees as shown in Section III-C. The above
mentioned surrogates do not satisfy the criterion of slowly
vanishing gradients, since they have large flat regions (gradi-
ent zero or quickly converging gradient). This may increase
the chance of local optima if some local optima of a loss
function (data term) are located at the plateau of the surrogate
functions (regularizers). Our aim is to mitigate this effect.

Unlike the above surrogates, there is another line of
surrogates [7], [9], [10] as an alternative to the l0-norm,
which gives a constantly inclinatory curve analogous to
the proposed surrogate. A typical example is the lq-norm
(0 < q < 1) [7]. However, there is no analysis about the
lq-norm analogous to ours. Even worse, the lq-norm is known
to be difficult to solve due to the q-th power. Whereas, ours
enjoys a simple proximity operator and handles the raised
issues efficiently. Analogous to the lq-norm penalty, the log-
sum penalty (LSP) [9] gives a non-flat curve, but it does not
give the satisfying performance compared to the proposed
penalty as shown in Section IV-A. There has been another
attempt to use a smooth approximation of the l0-norm (SL0)
based on an exponential function in [10], but no analysis was
provided for justifying such a choice. Furthermore, our anal-
ysis shows that the approximation based on an exponential
function has fast vanishing gradients, which is more prone
to local optima, and thus this approximation does not give
satisfactory performance as shown in Section IV-D.

While preparing this manuscript, we became aware of
that our proposal, as a special case (a = 1) of the SVG
family, leads to the same surrogate proposed by Geman and
Yang [25] over two decades ago. However, it is important
to note that there are clear differences between their and
our studies. First, the specific choice for approximating the
l0-norm is not justified in [25] because its focus is an image
reconstruction problem. Second, we provide detailed analy-
ses and design motivation for the SVG surrogate. Further-
more, the optimization approach in [25] is outdated, while we
provide efficient algorithms based on a proximity operator
for the proposed surrogate. Lastly, we show comprehensive
experimental results compared to existing nonconvex surro-
gates using many well-known examples in the literature.
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Overall, our motivation and analysis give a new insight
from the optimization perspective for nonconvex sparsity
surrogates and the proposed one provides superior perfor-
mance compared to the existing surrogates of the l0-norm as
described in Section IV.

C. CONNECTION TO EXISTING THEORY
In this section, we provide an analysis about connection to
existing theory. To this end, we first describe the following
well-studied assumption:
Assumption 2 ( [35]): We consider a scalar variable x for

simplicity and define a regularizer as φλ : R→ R.
1) The function φλ satisfies φλ(0) = 0 and is symmetric

around zero (i.e., φλ(x) = φλ(−x) for all x ∈ R).
2) On the nonnegative real line, φλ is nondecreasing.
3) For x > 0, the function x 7→ φλ(x)

x is nonincreasing.
4) A surrogate function φλ is differentiable for all x 6= 0

and subdifferentiable at x = 0, with limx→0+

φ′λ(x) = λL.
5) There exist µ > 0 such that ρλ,µ(x) , φλ(x)+

µ
2 x

2 is
convex.

Now, we show that our representative family of surrogates
satisfying the criteria in Assumption 1 meets Assumption 2.
Proposition 2: The representative family of surrogates φλ

designed by our criteria with the parameters ε and a satisfies
the conditions of Assumption 2 with L = 1

ε
and µ = (a+1)λ

aε2
.

Corollary 1: The proposed SVG surrogate given in (10)
satisfies the conditions of Assumption 2 with L = 1

ε
and

µ = 2λ
ε2
.

The proof of Proposition 2 is included in Appendix B.

D. LEARNING SPARSE REPRESENTATION WITH SVG
The proposed surrogate can be applied to various sparse
representation problems that the l0-norm and l1-norm are
applied. In this section, we focus on three important problems
including low-rank approximation (LRA) [20], sparse coding
(SC) [1], and sparse subspace clustering (SSC) [36].

1) SVG FOR MODELING SPARSE ERRORS IN LRA
Sparse representation has been widely used in many appli-
cations to filter out outliers in data. One of the most popular
applications is the low-rank approximation (LRA) of a matrix
under the existence of outliers, and the l1-norm is usually
used to model the sparse outliers [2], [14], [37]. We consider
an LRA problem that the rank is explicitly specified, such
as structure reconstruction [38] and photometric stereo [18],
to name a few. In this case, it becomes a nonconvex problem.
For the problem, we apply SVG for modeling sparse errors
denoted by E, whose problem formulation (LRA-SVG) is
constructed as

min
E,M
‖P�X (E)‖

ε
SVG, s.t. E=X−M, rank(M)≤r . (13)

This problem can be efficiently solved using the nADMM
framework [34] as discussed before. The derivation of
LRA-SVG is included in Appendix C.

2) SVG FOR SPARSE CODING
The proposed surrogate can be applied to another well-known
nonconvex sparse representation problem, sparse coding (SC)
with dictionary learning [1], [39], which is basically a matrix
factorization problem. Here, SVG is used to enforce the spar-
sity of the encodings in this case. The problem formulation
of SC for observation vectors x1, x2, . . . , xn, where n is the
number of samples, based on SVG (SC-SVG) can be given as
follows:

min
D,α1,...,αn

1
2

n∑
i

‖xi − Dαi‖22 + λ‖αi‖
ε
SVG, (14)

where D and αi are an overcomplete dictionary and the
ith sparse coefficient vector corresponding to xi, respectively.
This problem is solved in an alternating fashion based on the
proximal gradient method.

3) SVG FOR SSC
Subspace clustering is a problem to find the cluster mem-
berships of data points based on an assumption that a point
can be represented by a linear combination of other points
in the same cluster. Note that this problem can be efficiently
solved based on convex optimization, nevertheless we apply
SVG to this problem, in order to verify the capability of the
proposed surrogate in general problems. We apply SVG to
the well-known sparse subspace clustering (SSC) [36], where
the corresponding formulation (SSC-SVG) under noisy sce-
nario is given as follows:

min
Z

1
2
‖X − XZ‖2F + λ‖Z‖

ε
SVG, s.t. diag(Z) = 0, (15)

where Z is an affinity matrix to reveal cluster membership.
This problem can be efficiently solved by nAPG under the
nonmonotone update framework [33]. Especially, we incor-
porate the nonmonotone update framework [33] to accelerate
the convergence of the algorithm.

Note that initial values of optimization variables for the
proposed algorithm are set to zero, based on empirical obser-
vations that the algorithm is not sensitive to initial values.

IV. EXPERIMENTAL RESULTS
In this section, we report numerical results of the sparse rep-
resentation algorithms based on SVG: LRA-SVG, SC-SVG,
and SSC-SVG. We compare these algorithms with other
state-of-the-art algorithms4: RPCA [18], ALADM [37],
and LRA-L1 (an l1-norm version of LRA-SVG) for low-
rank approximation problems, KSVD [1] and SC [39]
for sparse coding problems, and LRR [40], SSC-BP [36],
SSC-OMP [41], and SSC-SL0 (SSC based on smoothed
l0-norm [10]) for subspace clustering tasks, face clustering
and motion segmentation. We also compare with other well-
known nonconvex sparsity surrogates, SCAD [8], MCP [12],
CapL1 [26], and LSP [9], in order to demonstrate the supe-
riority of the proposed nonconvex surrogate for problems

4 In order to compare the proposed method with various algorithms, we
report results also for convex algorithms based on the l1-norm.
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FIGURE 3. Average performances on synthetic examples. (a) Reconstruction errors w.r.t. the sparsity.
(b) Coefficient errors w.r.t. different sparsity numbers for nonnegative sparse coding.

described above. For the compared algorithms, we used
the codes provided by the authors, unless stated otherwise,
and each algorithm’s parameters are tuned to yield the best
performance for each dataset. For low-rank approximation
and sparse coding problems, we compute the reconstruction
error as

‖W � (MGT
−M)‖1

‖W‖1
, (16)

where MGT and M are the ground-truth and reconstructed
matrices or vectors, respectively, W is a weight matrix con-
cerning missing entries, and � is the Hadamard product
operator. For subspace clustering, we compute the accuracy
by the Hungarian method [42],

1
n

n∑
i=1

δ(pi,map(qi)), (17)

where pi and qi are the i-th ground-truth and obtained cluster
labels, respectively, δ(a, b) is the Kronecker delta function,
and map(·) is a mapping function to permute the obtained
labels to match with the ground-truth labels, which is com-
puted by the Kuhn-Munkres algorithm [42]. We set the
parameter ε of SVG to 3 for all experiments except themotion
segmentation problem where ε is set to 0.07. We also provide
settings for λ in the following experiments. All experiments
were performed using MATLAB environment on a desktop
computer with 24GB RAM and a 3.4GHz quad-core CPU.

A. EVALUATION FOR NONCONVEX
SPARSITY SURROGATES
Wefirst evaluate SVG on synthetic examples to compare with
other nonconvex sparsity surrogates. We used the codes of
other compared penalties provided by the work in [13], which
solves the nonconvex optimization problems efficiently with
a convergence guarantee. Following the practice in [13], we
construct a sparse coding problem to find a sparse vector
α: minα 1

2‖x − Dα‖22 + φ(α), where x ∈ Rm is a target
vector, D ∈ Rm×p is a data/dictionary matrix, and φ(α) is

a penalty function. For all experiments in this subsection,
we setm = p = 500. We made a scenario by varying sparsity
(0∼ 90%) of a ground-truth vector αGT , where lower sparsity
means denser representation, and made an observation xGT

from the multiplication of D and αGT , which are obtained by
the standard normal distribution. Based on xGT , we made x
by adding Gaussian noises fromN (0, 10−2). For each setting
in the scenario, we performed k independent runs, where k is
set to 30. We set λ to 0.3. The average reconstruction error
is computed as 1

k

∑k
i=1 ‖x

GT
i − Diαi‖2, where xGTi is the

ground-truth vector for the i-th scenario.
Average results of the compared surrogates are shown

in Figure 3. As shown in Figure 3(a), the proposed surrogate
performs better than the other nonconvex surrogates on aver-
age. LSP, which represents a similar non-flat curve, gives the
similar performance to ours when the sparsity ratio is larger
than 40%. SCAD and MCP show the similar but worst per-
formances in this problem. The average computation times
(sec) of the surrogates for the reconstruction problem are
as follows: 0.15 for CapL1, 0.28 for SCAD, 0.26 for MCP,
0.23 for LSP, and 0.3 for SVG, respectively. In the problem,
most of the methods take similar execution times.

We also applied the surrogates to nonnegative sparse cod-
ing problems under the same setting as the previous example,
except that all coefficients are nonnegative. Figure 3(b) shows
the l2 errors between the true coefficient vector and obtained
vectors under different numbers of true coefficients in αi.
Overall, the results show the similar tendency to the previous
experiment, in which the proposed surrogate finds all sparse
coefficients with lowest errors.

B. LOW-RANK APPROXIMATION OF MATRICES
We report the results for low-rank approximation problems
using both synthetic and real-world problems. To gener-
ate synthetic examples, we made a matrix whose size is
500 × 500 and set the rank of the matrix to 10. In the
matrix, we added Gaussian noises with N (0, 10−5) and out-
liers with magnitude of 10 for randomly chosen elements.
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FIGURE 4. Average performances on low-rank approximation problems in the presence of outliers and missing data.

The outlier ratio is varied from 0% to 50% to verify the
robustness of the proposed method. Here, we compare with
MCP, CapL1, and LSP under the same LRA framework
to ours. The experimental results for 50 independent trials
are described in Figure 4(a). From the figure, we observe
that the proposed method withstands higher outlier ratios,
whereas other methods fail to find a good solution when the
outlier ratio becomes roughly over 30%. The three nonconvex
penalty based algorithms perform better than the methods
based on the convex l1-norm, on average, but they could not
endure as many outliers as ours. Interestingly, the algorithms
based on nonconvex penalties bear a lot of outliers relatively
compared to the convex penalty based algorithms particularly
when the outlier ratio is over 50%. The average computation
times (sec) of the algorithms are 0.62 for ALADM, 11.74 for
RPCA, 1.76 for LRA-L1, 50.24 for LRA-LSP, 13.77 for
LRA-MCP, 13.8 for LRA-CapL1, and 3.16 for LRA-SVG,
respectively.

We performed real-world experiments on two problems;
nonrigid motion estimation [43] and photometric stereo [38].
For nonrigid motion estimation, we used the Shark sequence
(rank 6) [43]. To consider missing environments, we replaced
10% randomly selected entries in the sequence as miss-
ing. For photometric stereo, we used Static Face dataset
(rank 4) [38] which has 42% missing entries. For these
problems, we did not evaluate RPCA because they are rank-
constrained problems. Figure 4(b) and 4(c) show the average
reconstruction errors of the algorithms for 50 independent
runs under various outlier ratios (0 ∼ 50%). From the figure,
we confirm that the proposed method outperforms the other
methods for both problems. Especially, the proposed method
is highly robust against corruptions for the Static Face dataset.
Most of the nonconvex penalty based algorithms show lower
reconstruction error than the l1-norm based algorithms.While
LRA-LSP gives competitive results to LRA-SVG for the
Shark sequence, it performs poorer than ours for Static Face.
The l1-norm approaches, LRA-L1 and ALADM, perform
worse than other nonconvex surrogate based algorithms on
average for both datasets. The reconstruction results of the
three selected algorithms, the proposed method, LRA-LSP,
and LRA-L1, for three randomly selected frames of the

FIGURE 5. Reconstruction results from the shark sequence by three
methods. ‘©’ means the ground truth and ‘+’ means the reconstruction
point.

FIGURE 6. Test images for the sparse coding problem. From left to right:
Barbara, Lena, Boat, and Pappers.

Shark sequence in the presence of 30% outliers are shown
in Figure 5.

C. SPARSE CODING
We conducted experiments for a sparse coding prob-
lem (14) based on well-known example images in the liter-
ature: Barbara, Lena, Boat, and Peppers, which are shown
in Figure 6. Following the practice of [1], we extracted
n 64-dimensional word vectors based on 8× 8 local patches
for each image, where n is the number of training data which
was set to n = 15, 000. Based on these word vectors, we
learned both dictionary and sparse code for each sample. For
all tested images, the size of dictionary D was set to 250, i.e.,
D ∈ R64×250. In each dataset, we added Gaussian noises
from N (0, 0.3). The parameter λ for SVG is set to 8 for
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FIGURE 7. Motion segmentation results (snapshots) of five randomly chosen video sequences from the Hopkins 155 dataset by four
methods: the proposed method, SSC-BP [36], SSC-OMP [41], and LRR [40]. Tracked points are marked by a symbol ’+’. Different colors in
the mark correspond to independent motion clusters. (·) denotes the segmentation accuracy. Best viewed in color (x2).

TABLE 1. Average reconstruction errors (×102) for sparse coding.

the images. The average reconstruction errors of the tested
algorithms are shown in Table 1. In the table, our algorithm
gives excellent results for all cases. KSVD, which uses OMP,
performs slightly better than SC based on the l1-norm, but

it is unsatisfactory compared to ours. This experiment also
demonstrates the excellence of the proposed surrogate.

D. SUBSPACE CLUSTERING
We applied the proposed method, termed SSC-FAN, to two
benchmark problems, face clustering [44] and motion seg-
mentation [45], for subspace clustering.

1) FACE CLUSTERING
We evaluated the proposed surrogate on the Extended
Yale B database [44] for face clustering. The dataset consists
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TABLE 2. Performance comparison on clustering accuracy (%) on the
Extended Yale B dataset for face clustering.

TABLE 3. Performance comparison with respect to clustering accuracy on
the Hopkins 155 dataset for motion segmentation.

of 38 subjects, each of which has 64 frontal face images
under illumination changes. We collected the first c subjects,
where c ∈ {2, 5, 8, 10}, and performed subspace clustering
on the images of these subjects. For each problem, we used
PCA to project images in 9c-dimensional subspaces to make
an overcomplete dictionary. We set the parameter λ to 90.
Table 2 shows the clustering accuracy for different numbers
of subjects. The proposed method, SSC-SVG, shows better
clustering performance than the existing algorithms based on
the convex or nonconvex regularizers. SSC-OMP performs
better than SSC-BP, SSC-SL0, and LRR on average, but it
gives lower accuracy than ours for most scenarios. Especially,
its performance collapses considerably when c > 5.
SSC-SL0 shows the worst performance among the tested
algorithms.

2) MOTION SEGMENTATION
The goal of motion segmentation task is to segment tra-
jectories of rigidly moving objects based on tracked points
along the frames. Since collected trajectories from a rigid
motion lie in a low-dimensional subspace, we can solve the
motion segmentation as a subspace clustering problem [36].
Hence, we applied SSC-SVG to the well-known benchmark
dataset, Hopkins 155 [45], which consists of 155 video
sequences with two or three motion clusters. The average
size of dimensionality and samples for each sequence are
roughly 60 and 296, respectively. In this problem, we set λ =
7×10−3. Four quantitative measures were used for clustering
performance: mean, standard deviation (Std.), minimum, and
median, following the work in [36]. The average performance
of the algorithms are shown in Table 3. As shown in the
table, our proposal outperforms existing algorithms approx-
imating the l0-norm and the dense representation method,
LRR. SSC-BP and LRR give the similar performance, but

they are unsatisfactory compared to ours, Two algorithms
approximating the l0-norm, SSC-OMP and SSC-SL0, show
the disappointing results in this problem. Some graphical
results on the dataset for four selected methods are illustrated
in Figure 7.

V. CONCLUSIONS
We have analyzed desirable criteria to be a good noncon-
vex sparsity surrogate and presented a corresponding fam-
ily of surrogates that are a solution of a differential equa-
tion, named slowly vanishing gradients (SVG). Among the
SVG surrogates, we selected a practical one as a proposed
surrogate, which complements both l0- and l1-norms. The
penalty possesses a simple proximity operator which allows
efficient nonconvex optimizations. The penalty is a good
alternative to the l0-norm due to its slowly vanishing gradient
property. The proposed surrogate has been tested on various
applications in the literature to demonstrate its effectiveness
and empirical results have confirmed the superiority of the
proposal.

APPENDIX A
PROOF OF PROPOSITION 1
Since the proposed surrogate, SVG, is one of our represen-
tative family, we prove the properties in Proposition 1 for
our family. We redefine the family of curves, called SVGF,
as follows:

‖x‖a,εSVGF , y(x) = 1−
1

(1+ |x|
aε )

a
, (18)

where a and ε are parameters of the family as defined in (9).
If a = 1, the function in (18) becomes the proposed surrogate.
Proposition 3: SVGF satisfies the following properties:

1) ‖x‖a,εSVGF ≤ ‖x‖0 ∀a, ε and ‖x‖
a,ε
SVGF→ ‖x‖0 if ε → 0.

2) ε‖x‖a,εSVGF ≤ ‖x‖1 ∀a, ε and ε‖x‖a,εSVGF → ‖x‖1
if ε →∞.

Proof: Assume a and ε in ‖x‖a,εSVGF are positive. We
simply show the proposition for a scalar case, but its extension
to a vector case is straightforward. It is easily checked that
y(x) = 0 if x = 0 and y(x) ≤ 1 if x 6= 0, thus we verify
that SVGF is always lower than or equal to the l0-norm for
all x regardless of ε. If ε goes to zero, 1

(1+ |x|aε )
a
→ 0 when

x 6= 0. Thus, y(x) → 1 and the asymptotic convergence to
the l0-norm holds.
Note that both y(x) and the l1-norm are symmetric around

zero and nonnegative (with y(0) = 0). Then, εy(x) is lower
than or equal to the l1-norm, since εy′(x) = 1

(1+ x
aε )

a+1 ≤ 1 for
all nonnegative x. This also holds for x < 0. Finally, in order
to show that εy(x) asymptotically converges to |x| if ε →∞,
we use the following relation:

lim
ε→∞

εy = lim
β→0

1
β
(1−

1

(1+ β|x|
a )a

) , lim
β→0

f (β)
g(β)

, (19)
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where

f (β) = 1−
1

(1+ β|x|
a )a

and g(β) = β ,
1
ε
. (20)

Since limβ→0 f (β) = limβ→0 g(β) = 0, g′(β) = 1 6= 0,
and limβ→0

f ′(β)
g′(β) exists, we have the following results by the

L’Hospital’s rule:

lim
β→0

f (β)
g(β)
= lim
β→0

f ′(β)
g′(β)

= lim
β→0

a |x|a (1+
β|x|
a )−a−1

1
= |x|,

(21)

which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2
The first two assumptions in Assumption 2 correspond to
some of our criteria: Symmetry and Monotonicity, respec-
tively. First, it is straightforward to show the symmetry of
SVG. By taking a derivative of φλ for x > 0,

φ′λ =
λ

ε(1+ x
aε )

a+1 > 0, (22)

we can check the nondecreasing nature on the nonnegative
real-line. For the third assumption, i.e., (φλ(x)x )′ ≤ 0, we can
verify it based on the following relation for x > 0:

(
φλ(x)
x

)′ ≤ 0 ⇔ xφ′λ(x)− φλ(x) ≤ 0. (23)

If hλ(x) , xφ′λ(x)− φλ(x) is a decreasing function, the third
assumption is satisfied. If hλ(0) ≤ 0 and h′λ(x) ≤ 0, then
hλ(x) ≤ 0 for x > 0. Since we have

hλ(0) = 0 · φ′λ(0)− φλ(0) = 0,

h′λ(x) = φ
′
λ(x)+ xφ

′′
λ(x)− φ

′
λ(x) = xφ′′λ(x) < 0,

from our Smoothness criterion, hλ(x) ≤ 0 is satisfied for
x > 0, and thus (φλ(x)x )′ ≤ 0. For the fourth assumption,
we can easily check limx→0+ φ

′
λ(x) =

λ
ε
using the following

equation:

φλ=1(x) = 1−
1

(1+ x
aε )

a , (24)

for a > 0, thus we obtain L = 1
ε
. For the last condition,

we take the second derivative of ρλ(x):

ρ′′λ (x) =



−
(a+ 1)λ
aε2

·
1

(1+ x
aε )

a+2+µ, if x > 0,

−
(a+ 1)λ
aε2

+ µ, if x = 0,

−
(a+ 1)λ
aε2

·
1

(1+ −xaε )
a+2
+µ, if x < 0.

(25)

Since φ′′λ(x) is lower bounded by−
(a+1)λ
aε2

, it is true that there
exists

µ =
(a+ 1)λ
aε2

> 0 (26)

satisfying the convexity of ρλ,µ(x). From Proposition 2,
we directly obtain the result on the proposed surrogate as a
special case, i.e., a = 1.

APPENDIX C
DERIVATIONS OF THE LRA PROBLEMS
For the LRA problem, we apply SVG for modeling sparse
errors, whose problem formulation, termed LRA-SVG,
is constructed as follows:

min
E,M
‖P�X (E)‖

ε
SVG, s.t. E = X −M, rank(M) ≤ r . (27)

The augmented Lagrangian of (27) is constructed as

L(E,M,5) = ‖P�X (E)‖
ε
SVG + 〈5,E− X +M〉

+
γ

2
‖E− X +M‖2F , (28)

such that rank(M) ≤ r . Based on (28), we obtain an algorithm
using the following steps:

E+ ← min
E
‖P�X (E)‖

ε
SVG +

γ

2
‖D+

5

γ
‖
2
F , (29)

M̆ ← min
M

γ

2
‖D+

5

γ
‖
2
F , (30)

M+ ← UrS 1
γ
[6r ]VT

r , (31)

5+ ← 5+ γD, (32)

where D , E− X +M ,5 denotes the Lagrange multiplier,
and γ is a positive weighting parameter. For (31), we collect
r largest singular values and their corresponding singular
vectors computed by the singular value decomposition (SVD)
on M̆ obtained from (30), i.e., [U,6,V ] = svd(M̆). To solve
for E, we consider the following optimization problem for
each element eij indexed by �X :

min
eij

|eij|
|eij| + ε

+
γ

2
(eij − xij + mij +

πij

γ
)2 (33)

where xij, mij, and πij are the (i, j)th elements of X , M , and
5, respectively. The solution of (33) can be found by an effi-
cient computation for each element separately as explained
in Section III-A. For another element ekl indexed by �X ,
where �X is a complementary support set of X , we obtain
ekl ← xkl − mkl −

πkl
γ
.

For the tested algorithms based on the same ADMM
framework, such as LRA-L1, LRA-CapL1, and LRA-MCP,
we simply switch the penalty function ‖ · ‖εSVG in (27),
(28), and (29) to a nonconvex penalty function and solve
its corresponding optimization problem. As an example,
LRA-L1 considers the following optimization problem in the
ADMM framework when solving for the variable E:

E+← min
E
‖P�X (E)‖1 +

γ

2
‖D+

5

γ
‖
2
F , (34)

and its solution is computed as follows:

E+← P�X (S 1
γ
(Y ))+ P�X

(Y ), (35)
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where Y , X −M − 5
γ
and Sγ (t) = sign(t) max(|t| − γ, 0)

is the shrinkage operator [46] for a scalar variable t . Other
problems based on the nonconvex penalty functions described
in the experimental section to solve for E can be solved
efficiently by the work in [13].
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