
Received September 10, 2019, accepted September 29, 2019, date of publication November 5, 2019,
date of current version November 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951695

Search Condition-Hiding Query Evaluation
on Encrypted Databases
MYUNGSUN KIM 1, HYUNG TAE LEE 2, SAN LING 3, SHU QIN REN4,
BENJAMIN HONG MENG TAN 5, AND HUAXIONG WANG3
1Department of Information Security, College of ICT Convergence, University of Suwon, Hwaseong 18323, South Korea
2Division of Computer Science and Engineering, College of Engineering, Jeonbuk National University, Jeonju 54896, South Korea
3Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
4Continental Automotive Singapore Pte Ltd, Singapore 339780
5Institute for Infocomm Research, A*STAR, Singapore 138632

Corresponding author: Hyung Tae Lee (hyungtaelee@chonbuk.ac.kr)

The work of M. Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF),
Ministry of Education under Grant NRF-2017R1D1A1B04035209. The work of H. T. Lee was supported by the National Research
Foundation of Korea (NRF) through the Korean Government (MSIT) under Grant NRF-2018R1C1B6008476. The work of S. Ling and H.
Wang was supported by the Singapore Ministry of Education under Grant MOE2016-T2-2-014(S). The work of B. H. M. Tan was
supported by the Institute for Infocomm Research, A*STAR, Singapore. The work of S. Q. Ren was supported by the Research Project of
Accelerated Fully Homomorphism Encryption at Data Storage Institute, A*STAR, Singapore.

ABSTRACT Private database query (PDQ) is a protocol between a client and a database server, designed for
processing queries to encrypted databases. Specifically, PDQ enables a client to submit a search query and
to learn a resulting set satisfying its search condition, without revealing sensitive information about a query
statement. The whole query can be protected from the server, but for efficiency reasons known PDQ solutions
generally consider to hide the constants only in a query statement. In this paper, we provide two fully
homomorphic encryption (FHE)-based PDQ protocols that hide type of queries as well as the constants of a
query statement. Particularly, our constructions focus on conjunctive, disjunctive, and threshold conjunctive
queries. To this end, we first build a single compact logical expression to cover both conjunctive and
disjunctive queries. On top of the logical expression, we design a PDQ protocol that enables to evaluate
conjunctive and disjunctive queries without revealing any information on a given query. The second PDQ
protocol comes from our observation that if a threshold conjunctive query has a particular threshold value,
it results in either a conjunctive query or a disjunctive query. Because the PDQ protocol writes the three
types of queries into a single polynomial expression, the resulting protocol can evaluate the three types of
query statements without revealing any information on queries. To demonstrate their efficiency, we provide
proof-of-concept implementation results of our proposed PDQ protocols. According to our rudimentary
experiments, it takes 37.57 seconds to perform a query on 316 elements consisting of 16 attributes of 64 bits
using Brakerski-Gentry-Vaikuntanathan’s leveled FHE with SIMD techniques for 149-bit security, yielding
an amortized rate of just 0.119 seconds per element.

INDEX TERMS Private queries, encrypted database, homomorphic encryption.

I. INTRODUCTION
Cloud computing involves highly durable storage platforms
supporting a wide scope of services. One popular application
is running a relational database in the cloud (e.g., AWS [1]),
but it is not necessarily limited to relational databases. Many
enterprises and organizations move their databases to the
cloud so that they can enjoy sustainable cost advantages,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

robustness, and availability. However, they face the privacy
problem that affects outsourcing, maintaining the privacy of
information; particularly for those that are sensitive. This
makes sense in personal uses of cloud database services as
well.

From the perspective of a client which has been storing data
in the cloud, two key privacy challenges arise.

1) Protection of outsourced data from theft by hackers and
workers on the cloud side.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 161283

https://orcid.org/0000-0002-0461-3053
https://orcid.org/0000-0002-0920-2026
https://orcid.org/0000-0002-1978-3557
https://orcid.org/0000-0002-8629-9052
https://orcid.org/0000-0002-6502-472X

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

2) Protection of submitted queries from being disclosed to
the server: SQL-like query languages may reveal much
information about the client’s intentions and inter-
est. In other words, learning the client’s query details
implies learning its possibly sensitive search interest.
Moreover, a long history of client queries could allow
the server to gradually learn the information in the
encrypted database.

The first issue can be resolved by using encryption. In this
work, we consider fully homomorphic encryption (FHE)
since its capability of computing on encrypted data allows
both non-aggregate (i.e., search) and aggregate query
operations over encrypted databases. We can then pay
more attention to answering the second privacy problem.
In what follows, before formalizing the second privacy prob-
lem, we consider a specific example. Though elementary,
the example illustrates the essential features and motivations
of our solution(s).

A. THE PROBLEM STATEMENT
Consider the following relational algebra:

πName(σ Major=‘CS’∧Sex=‘M’∧
Grade=‘A’∧Class=‘DB’

(STUDENT)). (Q)

This query statement consists of a value attribute Name and
four keyword attributes (e.g., Major and Grade). In addition,
each keyword attribute is connected conjunctively and is
checked against a specific constant value (e.g., ‘A’).
Given encrypted databases, the server should be able to

process the query Q over encrypted databases. In particu-
lar, such processing is called private database query (PDQ)
when it enables to produce an output without revealing any
(sensitive) information of search conditions. Although using
cryptographic tools such as ORAM enables to hide the whole
content of query statement from servers, balancing perfor-
mance against privacy must be taken into account, which is
the non-trivial point in developing PDQ protocols. For this
reason, existing PDQ solutions (e.g., [2], [3]) in the context of
FHE mainly focus on hiding the values in a search condition.
Thus such PDQ solutions consider the query Q in form of

πName(σ Major=‘**’∧Sex=‘**’∧
Grade=‘**’∧Class=‘**’

(STUDENT)).

However, as above, only encrypting the constants is not
sufficient to address the second privacy issue. Indeed, because
search conditions consist of predicates linked by the logi-
cal operators and each predicate expresses user’s personal
interest, it is quite desirable to hide a way in which a search
condition uses which logical connectives. Hereafter we refer
to the way as the structure of a search condition or the query
structure simply. It is desirable for a PDQ protocol to handle
the query Q in privacy-enhanced form of

πName(σ Major=‘**’�Sex=‘**’�
Grade=‘**’�Class=‘**’

(STUDENT)).

As you will see, thus the main contribution of this paper
is to present an efficient algorithm to protect the structure

FIGURE 1. Our PDQ system model.

as well as the constant values in a search condition from
the server, while preserving the performance compared to
existing research. We note that this work is only interested
in conjunctive, disjunctive and threshold conjunctive queries
with equality comparison, but our technique can be applied
to PDQs with greater-than comparison (see [4]).

B. SYSTEM MODEL
The system model for PDQ we consider consists of a client
and a server: The client who has his own database, stores it
at the server. When a need arises, he submits a query to the
server and receives a resulting set over the stored database
from the server. Here, the client does not want to reveal
any partial information about his queries and database to the
server and/or the adversary.

To provide a PDQ solution working on the model, we con-
sider the following scenario, shown in Fig. 1. In the initial
deployment phase, the client encrypts his database as D and
stores it at the cloud database server. When he sends a query
request to the server, he sends a proper encryption Q of
a target query statement Q. Then, the server evaluates the
encrypted query with the encrypted database homomorphi-
cally and returns an encrypted result set R.
Our work uses an FHE scheme to encrypt databases

and query conditions. The main difference from existing
works (e.g., [4], [5]) is that we try to hide not only the constant
values but also the query structure.

Throughout the paper,m denotes an encryption ofm for any
message m. As a matter of fact, we consider only a leveled
FHE scheme since it suffices for our purpose of efficiently
evaluating a query for PDQ.

C. OVERVIEW OF OUR CONTRIBUTIONS
In this work we tackle the second challenge for conjunc-
tive, disjunctive and threshold conjunctive PDQs with equal-
ity comparison. More specifically, the client would like to
request the server to evaluate one of conjunctive, disjunctive
and threshold conjunctive queries, but does not want to reveal
any information about queries, e.g., which type of query is
requested and which attributes are included in the query.
To this end, we come up with a method to represent a target
query in the same form, apart from query types.

161284 VOLUME 7, 2019

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

TABLE 1. Results of Eq. (1) by setting constants.

1) OUR KEY IDEAS
We present two PDQ protocols that hide query structures
as well as constants in query statements. One is a protocol
that evaluates conjunctive and disjunctive queries with equal-
ity comparison and the other extends the type of evaluable
queries to threshold conjunctive queries. Now, we first look
into our key observations, which are used for designing our
PDQ protocols.

1) We first observe that conjunction and disjunction with
equality comparison can be represented with the same
circuit structure by using an equality test circuit. Let
EQ be a circuit that on input ciphertexts m1 and m2,
outputs 1 if m1 = m2 and otherwise outputs 0. Then,
for b, c, d,Ai, ai ∈ F2` with a finite field F2` of
characteristic 2, we consider a circuit

c+
τ∏
i=1

[d + EQ(Ai, ai) · b] (1)

to represent conjunctive and disjunctive queries with
equality comparison between Ai and ai for each
1 ≤ i ≤ τ . Then, the results of the circuit in Eq. (1)
are determined as in Table 1 with respect to queries
and the choice of constants b, c, and d . We provide a
new design of a PDQ protocol that evaluates conjunc-
tive and disjunctive queries with equality comparison
using Eq. (1).

2) Our next observation is that conjunctive and disjunc-
tive queries are special forms of threshold conjunctive
queries. More specifically, a conjunctive query is a
threshold conjunctive querywith threshold T = τ and a
disjunctive query is a threshold conjunctive query with
threshold T = 1. Thus, once if a threshold value is
hidden to the server, we can hide where a given query
lies among conjunctive, disjunctive and threshold con-
junctive queries.
To achieve this, the client sets the constants in Eq. (1)
as follows:

b = 1+ t, c = 0 and d = 1

where t is a proper element in a multiplicative group
F∗2` .

1 Then, the evaluation result of Eq. (1) amounts to
tκ where κ is the number of elements such that Ai = ai
for 1 ≤ i ≤ τ . (Note that 1 + (1 + t) = t since the
characteristic of F2` is 2.) Then the client only has to
let the server evaluate an encrypted polynomial g such
that g(tκ) = 1 if T ≤ κ ≤ τ and 0 if 0 ≤ κ < T for a
threshold T .

1See Section III-A for the detail of the element t ∈ F∗
2`
.

At the end of the steps, the server has the intermediate
results of the query, i.e., 1 for true and 0 for false.
Therefore, he can obtain the final result by multiplying
the encrypted data (the values in the v column in Fig. 1)
and the intermediate results.
Based on the observation, we provide a new PDQ
protocol that evaluates conjunctive, disjunctive and
threshold conjunctive queries with equality compari-
son, without revealing the query structure as well as the
constants in a query statement.

2) OUR RESULTS
The contributions of this work are two-fold:

• New privacy-enhanced PDQ protocols. We devise two
PDQ protocols over encrypted databases with the
following properties. The first protocol evaluates con-
junctive and disjunctive protocols and requires a total
multiplicative depth of dlog `e + dlog τe + 2 where ` is
the extension degree of plaintext space of an exploited
FHE scheme and τ is the number of attributes of ele-
ments in the database. It also requires the total commu-
nication costs (2τ + 1) FHE ciphertexts from the client
and n FHE ciphertexts from the server where n is the
number of tuples in the database. The second protocol
can additionally evaluate threshold conjunctive queries
at the costs of dlog(1 + τ)e multiplicative depth for
computation and τ FHE ciphertexts from the client for
communication.

• Experimental study. We present implementation results
of our designs of PDQ protocols. Because our pro-
tocols are computationally intensive, we apply some
additional techniques to improve the performance of
the protocols. For example, we utilize depth-free Frobe-
nius map evaluation for performing polynomial evalu-
ation as well as computing an equality test algorithm
on encrypted data. We also employ dynamic program-
ming techniques to boost the computational efficiency
in polynomial evaluations. Further, we give a com-
parison of ours with the previous standard query over
encrypted data using FHE in [5], that achieves weaker
privacy than ours. From our experiments, it requires
37.57 seconds to perform a query on 316 elements
consisting of 16 attributes of 64 bits using Brakerski-
Gentry-Vaikuntanathan (BGV) leveled FHE with SIMD
techniques for 149-bit security, yielding an amortized
rate of just 0.119 seconds per element.

D. RELATED WORK
A popular PDQ system CryptDB [6] and its offshoot
Monomi [7] are two systems that have combined encryp-
tion schemes with different properties and a proxy server
to translate standard database queries into instructions for a
database server to work on stored encrypted data. However,
some details such as the type of query received are leaked to
the database server based on instructions from the proxy.

VOLUME 7, 2019 161285

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

Since the appearance of plausible somewhat homomorphic
encryption (SHE) and FHE, there were several proposed
PDQ solutions [4], [5], [8]–[10] based on SHE and FHE.
Boneh et al. [8] provided PDQ protocols for conjunctive
and threshold conjunctive queries. In their suggestion, they
represent each attribute as a polynomial whose roots are the
indices of recodes that satisfy the attribute. The coefficients
of those polynomials are encrypted and they are manipulated
based on the incoming query. Later, Cheon et al. [4] proposed
a PDQ protocol for searching on encrypted database using an
equality test algorithm on encrypted data. The basic idea of
their suggestion is to find a predicate to efficiently represent a
search condition and then to evaluate at each FHE ciphertext
by applying an equality test algorithm. We note that their
work restricts the plaintext space of the exploited FHE to a
set {0, 1}. Subsequently, Saha and Koshiba [9] presented an
improved PDQ protocol for conjunctive queries by proposing
a new packing method. In [10], Saha et al. also provided PDQ
protocols for conjunctive and disjunctive queries and they
considered to hide attribute information as well as constants
in query statements.

Very recently, Kim et al. [5] proposed three PDQ
protocols for conjunctive, disjunctive, and threshold con-
junctive queries with equality comparison, respectively, and
provided the efficiency analysis of their constructions based
on the required multiplicative depth to perform equality test
between encrypted data using FHE with respect to plaintext
spaces of the exploited FHE schemes. They also suggested a
communication-efficient method that reduces a communica-
tion cost on the server-side by adapting the technique to rep-
resent a set by a polynomial as in previous works on private
set operations and PDQs [8], [11], [12]. However, the works
mentioned above are not also concerned with hiding the type
of query that is evaluated.

For hiding the type of query, Goldwasser et al. [13]
proposed multi-input functional encryption (MI-FE) and
described a method that allows a user to compute
database queries without revealing them to anyone else.
Boneh et al. [14] constructed a secret-key MI-FE that is more
efficient but they are not practical yet.

A more practical approach to hiding queries is [15] which
uses Bloom filters (BF) to make searching efficient and a
proxy server that transforms a user’s encrypted query into
BF indices that are used to extract the data identifiers from
the actual database. The database server sends the identifiers
to the proxy who encrypts and returns the result to the user.
However, there is the possibility of false positives due to BF
and it leaks some patterns in the submitted queries and
results.

In [16], [17], there have been proposed improvements of
this result in a scheme called Blind Seer. They addmore prim-
itives such as Yao’s garbled circuits and oblivious transfer.
Although it can support arbitrary Boolean formulas over large
databases, the drawback remains that false positives are still
possible and it requires a non-constant number of rounds of
communicationwhen evaluating theYao’s garbled circuit that

is the search tree and in the process leaks the traversal pattern
of the tree.

E. THE OUTLINE OF THE PAPER
Our paper is structured in the following way. In Section II,
we introduce a structure of database and types of queries
that we handle in this paper, and recall the concept of FHE
and recent results on the required depth for an equality test
algorithm using FHE. Our two PDQ protocols are presented
in Sections III and IV, respectively, followed by subsections
that show an in-depth performance evaluation and analyze
the security each. In Section V, we provide our proof-of-
concept implementation and extensive experimental results
with various parameters.

II. PRELIMINARIES
In this section, we first introduce a database structure and
types of queries that we consider throughout this paper. Then,
we briefly review the concept of FHE and look over the recent
results on the multiplicative depth to perform an equality test
algorithm between FHE-encrypted data.

Notation: Throughout the paper, a
$
← A denotes that an

element a is chosen uniformly and randomly from a set A. For
an algorithm A, A→ a denotes that the algorithm A outputs
a. Let a denote an encryption of plaintext message a. The set
of integers from 1 to a is denoted by [a]. We denote by dae
(resp., bac) the smallest (resp., largest) integer that is
larger (resp., smaller) than or equal to a ∈ R.

We denote by λ the security parameter and for simplicity,
assume that all algorithms take it as input. A function ν :
N → R is negligible in λ if for all positive polynomials p(·)
and sufficiently large λ, ν(λ) ≤ 1

p(λ) . We use poly(λ) and
negl(λ) to represent unspecified polynomials and negligi-
ble functions in λ, respectively. A probabilistic polynomial-
time (PPT) algorithm is a randomized algorithm that runs in
time poly(λ).

A. DATABASE MODEL
For better understanding, we need to introduce some notation
for databases and queries along with their types and struc-
tures.

1) DATABASE STRUCTURE
Let D = (α1, . . . , αn) be a database of n tuples, and each
tuple αi is an ordered list of (τ+1) attributes (v,w1, . . . ,wτ).
We use |D| to indicate the size of the database D,
i.e., n = |D|. We then refer to each element by αi.v or αi.wj
for j ∈ [τ]. Here, the element αi.v represents a value
attribute (e.g., student ID) which is retrieved if the tuple αi
satisfies the search condition. In contrast, each attribute αi.wj
represents a keyword attribute (e.g., his grade) which is
checked against the conditions in a search (e.g., a where-
clause in SQL). Lastly, we denote by RD(Q) a result set from
executing a query Q over a database D.
For simplicity, we assume that the schema has one value

attribute (and note that it is straightforward to expand it to
multiple value attributes).

161286 VOLUME 7, 2019

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

2) QUERY, ITS TYPE AND STRUCTURE
Throughout the paper, we consider the following three types
of queries.
• Conjunctive query (CQ): A query to return vi’s such that∧

j∈J
(
αi.wj = aj

)
.

• Disjunctive query (DQ): A query to return vi’s such that∨
j∈J
(
αi.wj = aj

)
.

• Threshold conjunctive query (TCQ): A query to return
vi’s such that κ ≥ T where T is a positive integer and
κ = |{j ∈ J |αi.wj = aj}|.

For notational simplicity, any query in the above three
types can be written as the following pair of tuples,(

(�, J ,T), {aj}j∈J
)

(†)

for � ∈ {∧,∨,∧T }, an index set J ⊆ [τ] and a threshold T
where ∧,∨ and ∧T indicate CQ, DQ and TCQ, respectively.
We note that a CQ is parameterized with T = |J | but a DQ
with T = 1.

We call the first component (�, J ,T) in (†) a query struc-
ture and the second component {aj}j∈J a query constant,
sometimes constant simply.

B. FULLY HOMOMORPHIC ENCRYPTION
A fully homomorphic encryption (FHE) scheme consists of
the following four PPT algorithms, KG,Enc,Dec, and Eval:
• KG(λ)→ (pk, ek, sk): It takes a security parameter λ as
input and outputs a public key pk , an evaluation key ek ,
and a secret key sk . We assume that pk , sk , and ek each
include the information of both the plaintext spaceP and
ciphertext space C.

• Enc(pk,m) → m: Given the public key pk and a
plaintext message m ∈ P , it outputs a ciphertext m.

• Dec(sk,m) → m∗/ ⊥: Given the secret key sk and a
ciphertext m, it outputs a message m∗ ∈ P or ⊥.

• Eval(ek, ϕ,m1, . . . ,mn) → mϕ : It takes the evalua-
tion key ek , a function ϕ : Pn

→ P , and a set
of n ciphertexts m1, . . . ,mn as inputs and outputs a
cihpertext mϕ .

Here, arbitrary functions ϕ are allowed to be evaluated in the
Eval algorithm of pure FHE schemes.
An FHE scheme is said to be IND-CPA secure if it achieves

indistinguishability against chosen plaintext attacks. We use
a widely known formulation of IND-CPA security, defined as
follows.
Definition 1 (IND-CPA Security): An FHE scheme is

IND-CPA secure if for any PPT adversary A, it holds that∣∣∣Pr[A(pk, ek,Enc(pk,m0)) = 1]

− Pr[A(pk, ek,Enc(pk,m1)) = 1]
∣∣∣ ≤ negl(λ)

where KG(1λ)→ (pk, ek, sk) and m0,m1 ∈ P are chosen by
the adversary A.

Since Rivest et al. [18] proposed the concept of FHE
in 1978, it remained an open problem to realize a plausible

construction for 30 years. In 2009, Gentry proposed the first
FHE scheme from ideal lattices [19]. Following his design
philosophy, various studies [20]–[22] have been presented on
constructing efficient FHE schemes, however they have fairly
poor performance.

To resolve the efficiency problem, Brakerski and Vaikun-
tanathan [23] introduced the concept of leveled FHE schemes,
which allows the evaluation of functions of at most a pre-
determined multiplicative depth, instead of arbitrary func-
tions. Shortly after, Brakerski, Gentry, and Vaikuntanathan
(BGV) [24] proposed a leveled FHE scheme over polynomial
rings, which has significantly improved performance over the
previous schemes.

When an FHE scheme is fixed, the efficiency of evaluating
a function is primarily determined by the required levels to
evaluate a circuit corresponding to the function. Furthermore,
when plaintext spaces of FHE schemes are extension fields,
we can further reduce the required multiplicative depth by
using FHE schemes that support depth-free automorphism
evaluation. We will exploit such FHE schemes [24], [25] in
our proposed protocol.

C. EQUALITY TEST ON ENCRYPTIONS
Our protocols will utilize an equality test algorithm on
encrypted data using FHE schemes as a building block.
An equality test algorithm between two encrypted data,
denoted by EQ(·, ·), is defined as follows: For two mes-
sages m1,m2 ∈ P ,

EQ(m1,m2) :=

{
1 if m1 = m2

0 otherwise.

As mentioned above, its computational efficiency is also
determined by the required multiplicative depth when evalu-
ated using that FHE scheme. Some works in the literature [4],
[5], [26] measured the required multiplicative depth of per-
forming an equality test algorithm on encrypted data using
FHE schemes.

According to a very recent analysis by Kim et al. [5],
it consumes an optimal multiplicative depth dlog `e to per-
form an equality test algorithm between two ciphertexts of
`-bit messages, when the plaintext space of the exploited
FHE scheme is a field of characteristic 2 and no multi-
plicative depth is consumed to evaluate the Frobenius map.
Therefore, our proposed protocols will utilize FHE schemes,
such as [24], [25], whose plaintext space is F2` and which
consumes no multiplicative depth to evaluate the Frobenius
map.

III. OUR SEARCH CONDITION-HIDING PDQ PROTOCOL
In this section, we describe our search condition-hiding pri-
vate database query (SCH-PDQ) protocol that hides whether
a query is either a CQ or a DQ. Subsequently, we look into the
correctness, the efficiency, and the security of the proposed
SCH-PDQ protocol.

VOLUME 7, 2019 161287

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

A. WARM-UP
Before describing our SCH-PDQ protocol, we first give some
notations and assumptions used for our protocols in this and
the next sections.

We assume an encrypted database D = α1‖α2‖ · · · ‖αn
using an FHE scheme is given to the server, where αi = (αi.v,
αi.w1, . . . , αi.wτ) with αi.v ∈ {0, 1}`−1 and αi.wj ∈ {0, 1}`

for all i ∈ [n], j ∈ [τ] and where αi is a component-
wise encryption of αi, i.e., αi = (αi.v, αi.w1, . . . , αi.wτ). For
convenience, we frequently use vi and wij in place of αi.v and
αi.wj, respectively. 2

For the correctness of our protocols, we assume that
vi 6= 0 for all i ∈ [n]. To handle this issue, we exploit an FHE
scheme with the plaintext space F2` , not F2`−1 , and assume
that each vi is encoded as 1‖vi in advance, where a‖b denotes
the concatenation of strings a and b. Unless confusion arises,
we omit encoding and decoding steps between vi and 1‖vi in
our protocols.

For the purpose of efficiency, we exploit FHE schemes
that consume no multiplicative depth to evaluate the Frobe-
nius map and its plaintext space is F2` , such as [24], [25].
In this case, the EQ algorithm that is a main component of
our protocols, consumes dlog `e multiplicative depth from
the analysis in [5]. Throughout the paper, p(x) denotes an
irreducible polynomial of degree ` where F2` is isomorphic
to F2[x]/〈p(x)〉. We denote by t ∈ F2` a root of p(x) and it is
predetermined before beginning the protocols.

To encrypt an `-bit message a = (a`, . . . , a1) ∈ {0, 1}`

using an FHE scheme with the plaintext space F2` , we first
encode the message a to

∑`−1
i=0 ai+1t

i
∈ F2` . Then, we write

an encryption of the message a as

a := Enc

(
pk,

`−1∑
i=0

ai+1t i
)

where pk is the public key of the exploited FHE scheme.
Henceforth, a + b and a · b denote operations between

ciphertexts that they preserve addition and multiplication on
encrypted data, respectively. We notice that 1 + 1 = 0 since
it is assumed that the plaintext space of the exploited FHE
scheme in our protocols is F2` .

B. OUR SCH-PDQ PROTOCOL DESCRIPTION
We now give the detailed description of our SCH-PDQ pro-
tocol. Recall the two types of queries–CQ and DQ.
• A conjunctive query (CQ) means a query to return vi’s
such that

∧
j∈J
(
αi.wj = aj

)
.

• A disjunctive query (DQ) means a query to return vi’s
such that

∨
j∈J
(
αi.wj = aj

)
.

Throughout the paper, we refer to J as an index set and
J ⊆ [τ].
The Description: The following is the description of our

SCH-PDQ protocol between the client and the server.

2It is assumed that the client and the server share the schema description
of D as well.

1) The client performs as follows: On input query Q with
the index set J and constants aj for j ∈ J ,

a) For all j ∈ [τ], set

• bj =

{
1 j ∈ J
0 otherwise,

and

• aj
$
← {0, 1}` if j 6∈ J .

b) Set c =

{
1 if Q is conjunction
0 if Q is disjunction

c) Encrypt aj, bj for all j ∈ [τ] and c, and send them
to the server.

2) The server performs as follows:

a) Compute d j = 1+ c · bj for all j ∈ [τ].

b) Compute

β ij = d j + EQ(αi.wj, aj) · bj (2)

for all i ∈ [n] and j ∈ [τ].

c) Compute ζ i = (1+ c)+
∏

j∈[τ] β ij for all i ∈ [n].

d) Compute γ i = ζ i · vi for all i ∈ [n].

e) Send {γ 1, · · · , γ n} to the client.

3) The client obtains γ1, · · · , γn by decrypting γ i’s using
the secret key of the exploited FHE scheme.

C. ANALYSIS OF OUR SCH-PDQ PROTOCOL
We begin with discussing why the SCH-PDQ protocol works
correctly and then analyze its costs in terms of computation
and communication. The security property of our construc-
tion will be studied in the next subsection.

1) CORRECTNESS
The following theorem argues the correctness of our
SCH-PDQ protocol.
Theorem 1: Let Q be a query statement over a database D

such that it is either a CQ or a DQ. Then, the client obtains
the result set RD(Q) correctly after the execution of our
SCH-PDQ protocol.

Proof: Our proof proceeds in a case-by-case manner.

1) Conjunction (c = 1): Let Q be a CQ. Then,

• If j ∈ J , bj = 1 meaning d j = 1+ c · bj = 0 and

β ij = d j + EQ(αi.wj, aj) · bj

= 0+ EQ(αi.wj, aj) · 1

=

{
1 if αi.wj = aj

0 if αi.wj 6= aj.

• If j 6= J , bj = 0 meaning d j = 1+ c · bj = 1 and

β ij = d j + EQ(αi.wj, aj) · bj

= 1+ EQ(αi.wj, aj) · 0 = 1.

161288 VOLUME 7, 2019

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

Let c′ = 1+ c. Then, for each i ∈ [n],

ζ i = c′ +
∏
j∈[τ]

β ij =

{
1 if αi.wj = aj for all j ∈ J
0 otherwise

and

γ i = ζ i · vi =

{
vi if αi.wj = aj for all j ∈ J
0 otherwise.

2) Disjunction (c = 0): In turn, let Q be a DQ. Then,

• If j ∈ J , bj = 1 meaning d j = 1+ c · bj = 1 and

β ij = d j + EQ(αi.wj, aj) · bj

= 1+ EQ(αi.wj, aj) · 1

=

{
1 if αi.wj 6= aj
0 if αi.wj = aj.

• If j 6= J , bj = 0 meaning d j = 1+ c · bj = 1 and

β ij = d j + EQ(αi.wj, aj) · bj

= 1+ EQ(αi.wj, aj) · 0 = 1.

Similarly, let c′ = 1+ c. Then, for each i ∈ [n],

ζ i = c′ +
∏
j∈[τ]

β ij =

{
0 if αi.wj 6= aj for all j ∈ J
1 otherwise

and

γ i = ζ i · vi =

{
0 if αi.wj 6= aj for all j ∈ J
vi if

∨
j∈J
(
αi.wj = aj

)
.

From the above, we see that the client obtains the correct
values once he decrypts γ i’s for all i ∈ [n] and therefore the
client obtains the correct result set for each query over the
database.

In what follows, we analyze the efficiency of our
SCH-PDQ protocol.

2) COMPUTATIONAL COSTS
We evaluate the computational cost of our SCH-PDQ proto-
col in terms of the requiredmultiplicative depth. At Step 2) b),
it requires dlog `e + 1 multiplicative depth to compute β ij
because the EQ algorithm consumes dlog `e multiplicative
depth when the exploited FHE scheme of plaintext space F2`

consumes no multiplicative depth to evaluate the Frobenius
map [5]. (Note that 1 multiplicative depth for Step 2) a)
is not counted since it is dominated by the second term of
the right side in Eq. (2).) At Step 2) c), it takes dlog τe
multiplicative depth to compute

∏
j∈[τ] β ij. Computing γ i at

Step 2) d) consumes 1 multiplicative depth. Thus, the total
required multiplicative depth is dlog `e + dlog τe + 2.

3) COMMUNICATION COSTS
At Step 1) c), the client sends encryptions of aj, bj and c
for all j ∈ [τ]. Hence, the communication costs of the
client come to (2τ + 1) FHE-ciphertexts. On the other hand,
the server sends γ i’s for all i ∈ [n] to the client at Step 2) e).
Hence, the communication costs of the server come to n FHE-
ciphertexts.

D. SECURITY OF OUR SCH-PDQ PROTOCOL
In this section, we examine the security property of our SCH-
PDQ construction. We will argue that the construction of our
SCH-PDQ protocol in Section III-B hides the query structure
as well as the query constant in a query statement Q, which
implies that we can enhance the privacy of PDQ protocols.
Theorem 2: Assume that the exploited FHE scheme is

IND-CPA secure, then in the semi-honest adversary model,
no PPT algorithms can learn any information about the query
structure and the constants of a query statement which is
either a CQ or a DQ.

Proof: It suffices to build a PPT simulator S such that
for all PPT adversaries A, given a set H of polynomially
many encrypted queries over an encrypted database D by
the exploited FHE scheme, S can simulate the adversary’s
view V . We assume that D is already in place. Of course,
the adversary can observe the generation of the encrypted
database D, but it has no extra information except for the size
of D (i.e., n = |D|) since the exploited FHE scheme is IND-
CPA secure.

Specifically, we show that S taking as inputH can generate
a view V∗ which is computationally indistinguishable from
V which, in turn, is the real view of the adversary A. By V∗,
we mean

V∗ :=
(
D
∗
= {α∗i }i∈[n],Q

∗
,RD∗ (Q

∗
)
)
.

Now S constructs the simulated view V∗ as follows.
• Generating D

∗
. S first initializes D

∗
← ∅. For each

α∗i∈[n]
$
←− P (τ+1) where P is the plaintext space of the

exploited FHE scheme, it computes α∗i with the public
key pk and a randomness r∗i , and set D

∗
← D

∗
∪ {α∗i }.

Indeed each tuple α∗i consists of τ + 1 attributes, but
because their values are clear from the context we omit
their full descriptions.

• Generating Q
∗
. From the list H in the given view V ,

S can determine the same index set [τ] as in V . Then
for each j ∈ [τ], it computes a∗j and b

∗

j with a∗j
$
←− P

and b∗j
$
←− P using the FHE encryption algorithm under

the public key pk in the same way as above. Similarly,

it computes c∗ under the public key pk for c∗
$
←− P .

• Generating RD∗ (Q
∗
). For each i ∈ [n], S generates

γ ∗i
$
←− P , and computes γ ∗i under the public key pk in

the same way as above. It then uses the collection of the
encryptions as RD∗ (Q

∗
).

VOLUME 7, 2019 161289

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

We show thatV∗ is computationally indistinguishable from
V by comparing them component-wise. It is easy to check
that if the exploited FHE scheme is IND-CPA secure, then
D and D

∗
are computationally indistinguishable. Next, let us

consider an actual query Q and a simulated query Q
∗
. Then

we see that

{aj, bj}j∈[τ]
c
≈ {a∗j , b

∗

j }j∈[τ] and c
c
≈ c∗

if the exploited FHE scheme is IND-CPA secure, where
c
≈

means computational indistinguishability.
Finally for all i ∈ [n], the indistinguishability between γ i

in the result set and γ ∗i in the simulated result set is straight-
forward. Thus, we can conclude the proof of Theorem 2.

IV. OUR THRESHOLD SCH-PDQ PROTOCOL
In this section, we provide our threshold search condition-
hiding private database query (TSCH-PDQ) protocol that
hides which of the three query types–CQ, DQ, and TCQ a
query lies in.

Recall that a TCQ means a query to return vi’s such that
κ ≥ T where T is a pre-fixed positive integer and κ = |{j ∈
J |αi.wj = aj}|. We observe that CQs and DQs are special
forms of TCQs. More concretely,
• A CQ, which returns vi’s such that

∧
j∈J
(
αi.wj = aj

)
,

can be interpreted as a TCQ with threshold T = |J |.
• A DQ, which returns vi’s such that

∨
j∈J
(
αi.wj = aj

)
,

can be also interpreted as a TCQ with threshold T = 1.
This is the reason why our TSCH-PDQ protocol attempts to
evaluate a function with concealing a threshold value T from
the server.

A. OUR TSCH-PDQ PROTOCOL DESCRIPTION
The Description: We now give the description of our
TSCH-PDQ protocol below.

1) The client performs as follows: On input a TCQ Q
which requests to return vi’s such that κ ≥ T for a pre-
determined positive integer T and κ = |{j ∈ J |αi.wj =
aj}|,
a) For all j ∈ [τ], set

• bj =

{
1+ t j ∈ J
0 otherwise

and

• aj
$
← {0, 1}` if j 6∈ J .

b) Compute a polynomial g =
∑τ

k=0 gkx
k
∈ F2` [x]

such that g(tκ) =

{
1 if T ≤ κ ≤ τ
0 if 0 ≤ κ < T .

c) Encrypt aj, bj for all j ∈ [τ] and gk for all 0 ≤
k ≤ τ , and send them to the server.

2) The server performs as follows:
a) Compute

β ij = 1+ EQ(αi.wj, aj) · bj (3)

for all i ∈ [n] and j ∈ [τ].

b) Compute ζ i =
∏

j∈[τ] β ij for all i ∈ [n].

c) Compute γ i = g(ζ i) · vi for all i ∈ [n].

d) Send {γ 1, . . . , γ n} to the client.

3) The client obtains γ1, . . . , γn by decrypting γ i’s using
the secret key of the exploited FHE scheme.

B. ANALYSIS OF OUR TSCH-PDQ PROTOCOL
1) CORRECTNESS
The following theorem shows the correctness of our TSCH-
PDQ protocol.
Theorem 3: For a pre-fixed positive integer T and κ =
|{j ∈ J |αi.wj = aj}|, let Q be a TCQ over a database D that
returns vi’s such that κ ≥ T . Then, the client obtains the
result set RD(Q) correctly after the execution of our TSCH-
PDQ protocol.

Proof: Let Q be a TCQ that returns vi’s such that κ ≥ T
where T is a pre-determined positive integer and κ = |{j ∈
J |αi.wj = aj}|. Then,
• If j ∈ J ,

β ij = 1+ EQ(αi.wj, aj) · bj

= 1+ EQ(αi.wj, aj) · 1+ t

=

{
t if αi.wj = aj
1 if αi.wj 6= aj.

• If j 6= J ,

β ij = 1+ EQ(αi.wj, aj) · bj

= 1+ EQ(αi.wj, aj) · 0 = 1.

Hence, for each i ∈ [n],

ζ i =
∏
j∈[τ]

β ij = tκ

where κ = |{j ∈ J |αi.wj = aj}| and

γ i = g(ζ i) · vi =

{
vi if T ≤ κ ≤ τ
0 if 0 ≤ κ < T .

by the definition of g. From the above, we confirm that the
client obtains the correct values once he decrypts γ i’s for all
i ∈ [n] and therefore the client obtains the correct result set
for each query over the database.

2) GENERALIZING TSCH-PDQ
With our TSCH-PDQ protocol, we achieve more than hiding
the threshold value by evaluating an encryption of the polyno-
mial g. To compute threshold conditions, Kim et al. [5] used
a polynomial g such that if the exponent of t in ζi = tκ where
κ ≥ T for some threshold T , then g(ζi) = 1 and g(ζi) = 0
otherwise. But we note that their idea is actually much more
powerful.

This technique can be used to partition the set of possible
outputs, {1, t, . . . , tτ }. In the case for these queries, we are
interested in partitioning it into two disjoint sets, T0 and T1
such that if κ ∈ Ti ⊆ [τ], then g(tκ) = i for i ∈ {0, 1}.

161290 VOLUME 7, 2019

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

Encompassed under this framework are queries that are the
inverse of threshold conditions, g(tκ) = 1 if κ ≤ T , ‘‘range’’
conditions, where g(tκ) = 1 if L ≤ κ ≤ U and multiple
disjoint range conditions between 0 and τ .

Next, we analyze the computational and communicational
costs of our TSCH-PDQ protocol.

3) COMPUTATIONAL COSTS
We first evaluate the computational costs of our TSCH-PDQ
protocol in terms of the required multiplicative depth. We
note at the server-side that Steps 2) a), b) and c) were slightly
modified from our SCH-PDQ protocol, but Steps 2) a) and
b) still consume the same amount of multiplicative depth as
Steps 2) b) and c) of our SCH-PDQ scheme, respectively.
On the other hand, at Step 2) c), it takes dlog (1+ τ)e mul-
tiplicative depth additionally for evaluating a polynomial g
of degree τ . As a result, the total multiplicative depth is
approximately dlog `e + 2dlog (1+ τ)e + 2.

4) COMMUNICATION COSTS
Compared to our SCH-PDQ protocol, while the client does
not send encryption of c, he sends encryption of all gk ’s
additionally, and the communication costs from the client
is τ more than our SCH-PDQ protocol, i.e., (3τ + 1)
FHE-ciphertexts. The communication costs from the server
are exactly the same as those of our SCH-PDQprotocol, i.e., n
FHE-ciphertexts.

C. SECURITY OF OUR TSCH-PDQ PROTOCOL
As before, we explore the security of our TSCH-PDQ pro-
tocol. The following theorem argues that our TSCH-PDQ
protocol hides the query structure as well as the constants in
a query statement Q which is one of CQ, DQ and TCQ.
Theorem 4: Assuming that the utilized FHE scheme is

IND-CPA secure, no PPT algorithms can reveal any informa-
tion about the query structure and the constants in a query
statement which is one of CQ, DQ and TCQ, in the semi-
honest adversary model.

Proof: The proof of this theorem is almost the same as
that of Theorem 2, except for the way to generate Q

∗
since

our TSCH-PDQ protocol generates a polynomial g, instead
of constant c. As in the proof of Theorem 2, we build a PPT
simulator S such that for all PPT adversaries A, given a set
H of polynomially many encrypted queries over an encrypted
database D by the utilized FHE scheme, S can simulate the
adversary’s view V . It is assumed that D is already in place
and the adversary can see the generation of D, but it cannot
reveal any extra information except for the size ofD (i.e., n =
|D|) since the utilized FHE scheme is IND-CPA secure.

Now, we show that S taking as inputH can generate a view
V∗ which is computationally indistinguishable from V where

V∗ :=
(
D
∗
= {α∗i }i∈[n],Q

∗
,RD∗ (Q

∗
)
)

and V is the real view of the adversary A.

Then, S constructs V∗ as follows. We note that the ways to
generate D

∗
and RD∗ (Q

∗
) are exactly the same as those of S

in the proof of Theorem 2.
• Generating D

∗
. S first initializes D

∗
← ∅. For each

α∗i∈[n]
$
←− P (τ+1) where P is the plaintext space of the

utilized FHE scheme, it computes α∗i with the public
key pk and a randomness r∗i , and set D

∗
← D

∗
∪ {α∗i }.

• Generating Q
∗
. It generates a∗j and b

∗

j for all j ∈ [τ].

Then, the client chooses a polynomial g∗(x)
$
←− F2` [x]

such that deg(g∗) = τ and computes an encryption of its
coefficients g∗k for k ∈ {0} ∪ [τ].

• Generating RD∗ (Q
∗
). For each i ∈ [n], S generates

γ ∗i
$
←− P , and computes γ ∗i under the public key pk in

the same way as above. It then uses the collection of the
encryptions as RD∗ (Q

∗
).

We can easily confirm that

{aj, bj}j∈[τ]
c
≈ {a∗j , b

∗

j }j∈[τ]

and

{gk}k∈[τ]
c
≈ {g∗k}k∈[τ]

if the utilized FHE scheme is IND-CPA secure, where
c
≈

means computational indistinguishability. Furthermore, for
all i ∈ [n], the indistinguishability between γ i in the result
set and γ ∗i in the simulated result set is straightforward.
Therefore, we can conclude the proof of Theorem 4.

V. IMPLEMENTATION
In this section, we provide implementation results of our
proposed PDQ protocols for several scenarios.

A. EXPERIMENT SETTING
1) TEST ENVIRONMENT
The testing platform was a server with Intel R© Xeon

TM

Platinum 8170 with a peak frequency of 3.7 GHz and
192 GB RAM. The implementation of our protocol was
written in C++ using the following libraries: HElib (commit
d0a00be) [27], NTL 11.3.2 [28] (AVX-accelerated FFT), and
GMP Library 6.1.2 [29]. Experiments were conducted using
programs running on a single thread, with the thread boosting
functionalities of NTL and HElib turned off.

2) DEPTH AND LEVELS VERSUS CAPACITY
With HElib 1.0.0, the concept of ciphertext capacity is intro-
duced to replace the notions of depth and level. Previously,
ciphertexts had moduli qc =

∏c
i=0 pi, where each pi was a

22-25 bit long prime number. After each ciphertext multi-
plication, the last prime pc would be dropped and this gave
an almost one-to-one correspondence between circuit depth
and level; although SIMD operations such as shifts, rotations
and Frobenius maps evaluations affected the actual noise of
ciphertexts as well.

VOLUME 7, 2019 161291

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

TABLE 2. Performance result of the condition-hiding PDQ protocols.

Noise growth is actually not the same for every multipli-
cation and ciphertext operation, and depends on other factors
such as plaintext modulus and current ciphertext noise levels
too. Ciphertext capacity gives more fine-grained control over
noise growth by allowing us to reduce the modulus by arbi-
trary amounts tailored to the situation. In Table 2, we mention
the capacity parameters used to instantiate the BGV scheme
in HElib; the actual capacity obtained will be slightly larger.

3) PARAMETER SELECTION FOR BGV SCHEME
In our experiments, we chose a plaintext space for the BGV
scheme that is slightly larger than needed. This is because
the parameters of the scheme are determined by the desired
security level, required depth and minimum plaintext size,
which greatly limit the set of suitable parameters.

Particularly, for the experiments in this work, we used a
variety of parameters, with fixed plaintext space p = 2, key-
switching digit parameter c = 3 and

• cyclotomic polynomial 820857(X), yielding a plaintext
space of Z2[X]/820857(X) ∼=

∏316
i=1 F266 , allowing us

to fit 64-bit entries and λ ≥ 149 with the largest BGV
instance used;

• cyclotomic polynomial 819811(X), yielding a plaintext
space of Z2[X]/819811(X) ∼=

∏360
i=1 F250 , allowing us

to fit 48-bit entries and λ ≥ 127 with the largest BGV
instance used.

4) DATABASE CHARACTERISTICS
We generated random databases, each with one value and
τ = 16 keyword attributes, with entries that have maximum
sizes of k = 48 or 64 bits. Each database was tailored to fit
in a single ciphertext with SIMD packing techniques to deter-
mine how the protocols would scale with such optimizations.

B. OPTIMIZATIONS
In our implementation, we employed the BGV encryption
scheme [24] as the underlying FHE scheme and exploited
two additional techniques to improve the performance of the
protocol.

1) We apply depth-free Frobenius maps when evaluating
the polynomial g on a ciphertext as well as in the
equality test algorithm. Frobenius maps can be used
to compute powers of two of any ciphertext without
consuming levels in case of BGV encryption scheme
of plaintext space F2` . This in turn means that we can
reduce the number of multiplications required to evalu-
ate a polynomial on a ciphertext. For each integer j, j =∑dlog je

i=1 bi · 2i and x j =
∏dlog je

i=1 xbi·2
i
with bi ∈ {0, 1}.

This means that any monomial x j can be computed in
dlog dlog jee multiplications when Frobenius maps are
used to pre-compute x2

i
for all 0 ≤ i ≤ dlog je. Thus,

for ḡ of degree τ , ḡ is computed in dlog dlog τee levels.
2) Our implementation uses the dynamic programming

paradigm to reduce the number of multiplications that
depth-reduced polynomial evaluation requires. We first
evaluate all monomials whose exponent is a power of
two, i.e., x2, x4, · · · , with depth-free Frobenius auto-
morphisms. Then, we compute in ascending order,
starting with x3, all other monomials x i by expressing
i = e1 + 2je2 where e1, e2 have similar Hamming
weights and multiplying xe1 and x2

je2 . Finally, poly-
nomial evaluation is performed by multiplying each
monomial with its corresponding coefficient and sum-
ming them up.

C. EXPERIMENTAL RESULTS
To evaluate the performance of our condition-hiding PDQ
protocols, we ran them with two different databases, where
entries have 48/64-bit length and present the results in Table 2
in several scenarios.
First, we determined and tested them with the best

HElib parameters that achieve minimum security levels, λ,
of greater than 120 bits. From the results, it is clear that
the bulk of the protocol’s computation time, at least 80%,
is on the equality conditions. In these cases, for both entry
sizes, there is an overhead of around 24% for the TSCH-PDQ
protocol compared to simply hiding conjunction/disjunction.
This is mainly because a larger capacity is necessary to
evaluate threshold conjunction queries compared to conjunc-
tion/disjunction queries, which stems from its more complex

161292 VOLUME 7, 2019

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

FIGURE 2. Performance of various PDQ protocols.

algorithm. For the chosen entry sizes of 48 and 64, the depth
required to compute the protocols does not differ theoretically
which is reflected in the similar capacities used. Although we
gave HElib capacities of 300 and 310 for the 48 and 64-bit
TSCH-PDQ protocols, the actual capacity obtained was 313
and 320 which only has a 7-bit difference. The size of the
resulting ciphertext encrypting γi’s were quite small, less than
350 KB overall which means that the actual space overhead
is about 800

6 ≈
1060
8 ≈ 133× in both instances.

While the total running times of SCH-PDQ protocol
were nearly indistinguishable, their amortized performance
showed a gap of 0.013 seconds which is a 15% increase.
This is mostly due to the greater number, around 13% more,
of entries that we could pack in a single ciphertext. With
greater database sizes, the amortized time of the SCH-PDQ
protocols will improve slightly as the d i’s are only computed
once, requiring around 2.4 seconds, and will have less impact
on the overall running time.

1) IMPROVING QUERY GENERATION WITH SIMD
From Table 2, it is clear that the time and space complexity of
query generation can be improved. For 64-bit entries, it took
more than 1 minute to prepare the necessary data which
amounted to more than 100MB. This was because encryption
required almost 2 seconds per ciphertext, and we needed to
encrypt 33 and 49 plaintexts for the SCH and TSCH protocols
respectively. The situation is better for 48-bit entries due to
much faster encryption times but the size of the data to be
sent to the server was still over 50 MB.

We can exploit SIMD techniques to improve the situation.
BGV instances can actually encrypt more than 300 plaintexts
into a single ciphertext. Plaintexts needed by the server for
multiple queries can be encrypted into a single ciphertext,
reducing communication costs to around 1 MB of data.
However, the server has to process this packed ciphertext
to extract the plaintexts for each query. It would incur an
one-time processing overhead and increase the depth of the
computation slightly.

More concretely, below we introduce an optimized query
processing technique for packing the information required
to execute a single query, focusing on the TSCH protocol.
The client packs the query information as follows: First,
let v be the vector of the aj’s, bj’s and coefficients of g,
(a1, . . . , aτ , b1, . . . , bτ , g0, . . . , gτ , 0, . . . , 0), padded with 0
to the nearest power of two greater than 3τ+1. Then, we form

κ︷ ︸︸ ︷
v‖v‖ · · · ‖v ‖0 by packing and encrypting as many copies
of v as possible in a single ciphertext with 0 denoting a
short vector of 0’s that fill out the plaintext vector. For the
server, to process this ciphertext and obtain the ciphertexts
required by the original protocol, we apply a mask to select
one coefficient, say g0, from each copy of v and then apply
shifts to obtain a ciphertext encrypting (g0, g0, . . . , g0).
We implemented this modification and present the results

now. As expected, adding query processing on the server
required us to increase the HElib capacity to 370. This
reduced the security levels of the protocol to λ = 126 but did
not otherwise significantly impact running time because the
capacity of the processed query ciphertexts is similar to fresh
ciphertexts from the original protocol. In total, there are 3τ+1
query coefficients to process and for our single-threaded
implementation took about 72.06 seconds to complete. The
client’s query generation time was reduced to 1.936 seconds
and communication cost is reduced to around 2.67 MB.

2) COMPARISON WITH THE PREVIOUS WORK
To determine the overhead of condition hiding, we also imple-
mented the protocols of Kim et al. [5] for the same database.
Due to keeping the same database, we cannot reduce HElib
parameters since the protocol might receive a query that
involves all attributes. However, we varied the number of
equality conditions in the queries to the database to see how
their protocol performs.

From Figure 2(a), we see that running time of the protocols
scales as expected with the number of conditions. At the high

VOLUME 7, 2019 161293

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

end, when every attribute is involved, the overhead needed to
hide conditions is about 2−3 seconds or roughly 10%. Below
that, the overhead increases significantly since we process
much fewer ciphertexts when we do not mask the attributes
involved in the queries.
Remark: That said, this overhead is not necessarily inher-

ent in the protocols’ designs. Our protocols were imple-
mented in to use a single-thread but there are opportunities
to optimize with parallel computing if desired. As mentioned
previously, the bulk (80%) of the protocol’s execution time
is on the computation of the equality conditions. Steps 2) b)
and 2) a) of the SCH-/TSCH-PDQ protocols respectively are
particularly amenable to parallelization.
Each β ij can be computed independently of each other and

so if we use α threads, then we can reduce the amount of time
it takes to compute β ij for each i by a factor of

τ
α
. This means

that if there are enough resources available, the protocol’s
latency can be on the lower end of the graphs in Figure 2. Of
course, another way to use parallelization is to use multiple
threads to run multiple single-threaded executions of the
protocols. Finally, the query processing step is another good
target for parallelization to reduce the latency of the protocol.

VI. SUMMARY
In this work, we revisited the problem of private database
query (PDQ), which allows a client to store its databases on
a remote server in such a way that it can search over it in a
private manner. To enhance the privacy of PDQs, we provide
two PDQ protocols that hide information more than constants
in a query statement to be evaluated. The first protocol sup-
ports conjunctive and disjunctive queries without revealing
informations of queries to be evaluated. The second protocol
extends the range of queries to be evaluated to threshold con-
junctive queries. Finally, we provided implementation results
of our proposed PDQ protocols.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. The part of
this work was done while B. H. M. Tan was with Nanyang
Technological University, Singapore.

REFERENCES
[1] Amazon. Amazon Relational Database Service. Accessed: Aug. 1, 2019.

[Online]. Available: https://aws.amazon.com/rds/
[2] F. Olumofin and I. Goldberg, ‘‘Privacy-preserving queries over relational

databases,’’ in Privacy Enhancing Technologies (Lecture Notes in Com-
puter Science), vol. 6205, M. J. Atallah and N. J. Hopper, Eds. Berlin,
Germany: Springer, 2010, pp. 75–92.

[3] A. Arasu andR. Kaushik, ‘‘Oblivious query processing,’’ inProc. Int. Conf.
Database Theory (ICDT), N. Schweikardt, V. Christophides, and V. Leroy,
Eds., 2014, pp. 26–37.

[4] J. H. Cheon, M. Kim, and M. Kim, ‘‘Optimized search-and-compute
circuits and their application to query evaluation on encrypted data,’’
IEEE Trans. Inf. Forensics Security, vol. 11, no. 1, pp. 188–199,
Jan. 2016.

[5] M. Kim, H. T. Lee, S. Ling, and H. Wang, ‘‘On the efficiency of FHE-
based private queries,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 2,
pp. 357–363, Mar./Apr. 2018.

[6] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
‘‘CryptDB: Protecting confidentiality with encrypted query processing,’’
in Proc. ACM Symp. Oper. Syst. Princ. (SOSP), T. Wobber and P. Druschel,
Eds., 2011, pp. 85–100.

[7] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, ‘‘Processing analyt-
ical queries over encrypted data,’’ Proc. VLDB Endowment, vol. 6, no. 5,
pp. 289–300, 2013.

[8] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu, ‘‘Private
database queries using somewhat homomorphic encryption,’’ in Applied
Cryptography and Network Security—ACNS (Lecture Notes in Computer
Science), vol. 7954, M. Jacobson, Jr., M. Locasto, P. Mohassel, and
R. Safavi-Naini, Eds. Berlin, Germany: Springer, 2013, pp. 102–118.

[9] T. K. Saha and T. Koshiba, ‘‘Private conjunctive query over encrypted
data,’’ in Progress in Cryptology—AFRICACRYPT (Lecture Notes in
Computer Science), vol. 10239, M. Joye and A. Nitaj, Eds. Cham,
Switzerland: Springer, 2017, pp. 149–164.

[10] T. K. Saha, Mayank, and T. Koshiba, ‘‘Efficient protocols for private
database queries,’’ inData and Applications Security and Privacy—DBSec
(Lecture Notes in Computer Science), vol. 10359, G. Livraga and S. Zhu,
Eds. Cham, Switzerland: Springer, 2017, pp. 337–348.

[11] M. J. Freedman, K. Nissim, and B. Pinkas, ‘‘Efficient private matching
and set intersection,’’ in Advances in Cryptology—EUROCRYPT (Lecture
Notes in Computer Science), vol. 3027, C. Cachin and J. Camenisch, Eds.
Berlin, Germany: Springer, 2004, pp. 1–19.

[12] L. Kissner and D. X. Song, ‘‘Privacy-preserving set operations,’’ in
Advances in Cryptology—CRYPTO (Lecture Notes in Computer Science),
vol. 3621, V. Shoup, Ed. Berlin, Germany: Springer, 2005, pp. 241–257.

[13] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu,
A. Sahai, E. Shi, and H. Zhou, ‘‘Multi-input functional encryption,’’ in
Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer Sci-
ence), vol. 8441, P. Q. Nguyen and E. Oswald, Eds. Berlin, Germany:
Springer, 2014, pp. 578–602.

[14] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman, ‘‘Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation,’’ in Advances
in Cryptology–EUROCRYPT (Lecture Notes in Computer Science),
vol. 9057, E. Oswald and M. Fischlin, Eds. Berlin, Germany: Springer,
2015, pp. 563–594.

[15] V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin, ‘‘Private
search in the real world,’’ in Proc. Annu. Comput. Secur. Appl. Conf.
(ACSAC), R. H. Zakon, J. P. McDermott, and M. E. Locasto, Eds., 2011,
pp. 83–92.

[16] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T.Malkin, S. G. Choi,W. George,
A. Keromytis, and S. Bellovin, ‘‘Blind seer: A scalable private DBMS,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 359–374.

[17] B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov,
T. Malkin, and S. M. Bellovin, ‘‘Malicious-client security in blind seer:
A scalable privateDBMS,’’ inProc. IEEE Symp. Secur. Privacy,May 2015,
pp. 395–410.

[18] R. L. Rivest, L. Adleman, andM. L.Dertouzos, ‘‘On data banks and privacy
homomorphisms,’’ Found. Secure Comput., vol. 4, no. 11, pp. 169–180,
1978.

[19] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
ACM Symp. Theory Comput. (STOC), M. Mitzenmacher, Ed., 2009,
pp. 169–178.

[20] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 6110, H. Gilbert,
Ed. Berlin, Germany: Springer, 2010, pp. 24–43.

[21] J. Coron, A. Mandal, D. Naccache, andM. Tibouchi, ‘‘Fully homomorphic
encryption over the integers with shorter public keys,’’ in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 6841,
P. Rogaway, Ed. Berlin, Germany: Springer, 2011, pp. 487–504.

[22] L. Ducas and D. Micciancio, ‘‘FHEW: Bootstrapping homomorphic
encryption in less than a second,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 9056, E. Oswald
and M. Fischlin, Eds. Berlin, Germany: Springer, 2015, pp. 617–640.

[23] Z. Brakerski andV. Vaikuntanathan, ‘‘Efficient fully homomorphic encryp-
tion from (standard) LWE,’’ in Proc. IEEE Symp. Found. Comput. Sci.
(FOCS), R. Ostrovsky, Ed., Oct. 2011, pp. 97–106.

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ in Proc. Innov. Theor. Com-
put. Sci. (ITCS), S. Goldwasser, Ed., 2012, pp. 309–325.

161294 VOLUME 7, 2019

M. Kim et al.: Search Condition-Hiding Query Evaluation on Encrypted Databases

[25] J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig, ‘‘Improved security for
a ring-based fully homomorphic encryption scheme,’’ in Proc. IMA Int.
Conf. Cryptogr. Coding (IMACC), in Lecture Notes in Computer Science,
vol. 8308, M. Stam, Ed. Berlin, Germany: Springer, 2013, pp. 45–64.

[26] G. S. Çetin, Y. Doröz, B. Sunar, and E. Savaş, ‘‘Depth optimized effi-
cient homomorphic sorting,’’ in Progress in Cryptology—LATINCRYPT
(Lecture Notes in Computer Science), vol. 9230, K. E. Lauter
and F. Rodríguez-Henríquez, Eds. Cham, Switzerland: Springer, 2015,
pp. 61–80.

[27] S. Halevi and V. Shoup. (2018).HElib: Software Library for Homomorphic
Encryption. [Online]. Available: http://github.com/shaih/HElib.git

[28] V. Shoup. (2018). NTL: A Library for Doing Number Theory Version
11.3.2. Accessed: Jul. 1, 2019. [Online]. Available: http://www.shoup.
net/ntl/

[29] GMP: The GNU Multiple Precision Arithmetic Library Version 6.1.2.
Accessed: Jul. 1, 2019. [Online]. Available: http://gmplib.org

MYUNGSUN KIM received the B.S. degree in
computer science and engineering from Sogang
University, Seoul, South Korea, in 1994, the M.S.
degree in computer science and engineering from
the Information and Communications University
(ICU), Daejeon, in 2002, and the Ph.D. degree
in mathematics from Seoul National University
(SNU), Seoul, in 2012. He is currently an Assis-
tant Professor with the Department of Information
Security, University of Suwon. His research inter-

est includes multiparty computation in cryptography.

HYUNG TAE LEE received the B.S., M.S., and
Ph.D. degrees in mathematics from Seoul National
University, South Korea, in 2006, 2008, and 2013,
respectively. He is currently an Assistant Pro-
fessor with the Division of Computer Science
and Engineering, College of Engineering, Jeon-
buk National University, South Korea. Prior to
that, he was a Research Fellow with Nanyang
Technological University, Singapore. His research
interests include computational number theory and
cryptography.

SAN LING received the B.A. degree in mathemat-
ics from the University of Cambridge, in 1985,
and the Ph.D. degree in mathematics from the
University of California, Berkeley, in 1990. Since
April 2005, he has been a Professor with the Divi-
sion of Mathematical Sciences, School of Physical
and Mathematical Sciences, Nanyang Technologi-
cal University, Singapore. Prior to that, hewaswith
the Department of Mathematics, National Univer-
sity of Singapore. His research interests include

arithmetic modular curves and applications of number theory to combina-
torial design, coding theory, cryptography, and sequences.

SHU QIN REN received the bachelor’s degree in
computer engineering from the Hefei University of
Technology, in 1997, and the Ph.D. degree in com-
puter engineering Korea Aerospace University, in
2009. She is currently with the Security and Pri-
vacy Competence Center, Continental Automotive
Singapore Pte Ltd. Her research interests include
data privacy and security, secure data sharing and
computing on cloud storage, distributed QoS stor-
age, automotive security, and secure production.

BENJAMIN HONG MENG TAN received the
B.Sc. and Ph.D. degrees in mathematical sci-
ences from Nanyang Technological University,
Singapore, in 2013 and 2019, respectively. He
is currently a Researcher with the Institute of
Infocomm Research, A*STAR, Singapore. His
research interests include cryptography,multiparty
computation, and secure cloud computing.

HUAXIONG WANG received the Ph.D. degree
in mathematics from the University of Haifa,
Israel, in 1996, and the Ph.D. degree in computer
science from the University of Wollongong,
Australia, in 2001. He is currently an Asso-
ciate Professor with the Division of Mathematical
Sciences, School of Physical and Mathemati-
cal Sciences, Nanyang Technological University,
Singapore. His research interests include cryptog-
raphy, information security, coding theory, combi-

natorics, and theoretical computer science.

VOLUME 7, 2019 161295

	INTRODUCTION
	THE PROBLEM STATEMENT
	SYSTEM MODEL
	OVERVIEW OF OUR CONTRIBUTIONS
	OUR KEY IDEAS
	OUR RESULTS

	RELATED WORK
	THE OUTLINE OF THE PAPER

	PRELIMINARIES
	DATABASE MODEL
	DATABASE STRUCTURE
	QUERY, ITS TYPE AND STRUCTURE

	FULLY HOMOMORPHIC ENCRYPTION
	EQUALITY TEST ON ENCRYPTIONS

	OUR SEARCH CONDITION-HIDING PDQ PROTOCOL
	WARM-UP
	OUR SCH-PDQ PROTOCOL DESCRIPTION
	ANALYSIS OF OUR SCH-PDQ PROTOCOL
	CORRECTNESS
	COMPUTATIONAL COSTS
	COMMUNICATION COSTS

	SECURITY OF OUR SCH-PDQ PROTOCOL

	OUR THRESHOLD SCH-PDQ PROTOCOL
	OUR TSCH-PDQ PROTOCOL DESCRIPTION
	ANALYSIS OF OUR TSCH-PDQ PROTOCOL
	CORRECTNESS
	GENERALIZING TSCH-PDQ
	COMPUTATIONAL COSTS
	COMMUNICATION COSTS

	SECURITY OF OUR TSCH-PDQ PROTOCOL

	IMPLEMENTATION
	EXPERIMENT SETTING
	TEST ENVIRONMENT
	DEPTH AND LEVELS VERSUS CAPACITY
	PARAMETER SELECTION FOR BGV SCHEME
	DATABASE CHARACTERISTICS

	OPTIMIZATIONS
	EXPERIMENTAL RESULTS
	IMPROVING QUERY GENERATION WITH SIMD
	COMPARISON WITH THE PREVIOUS WORK

	SUMMARY
	REFERENCES
	Biographies
	MYUNGSUN KIM
	HYUNG TAE LEE
	SAN LING
	SHU QIN REN
	BENJAMIN HONG MENG TAN
	HUAXIONG WANG

