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ABSTRACT Range proofs are proofs that a committed number m belongs to a range [a, b] for public
constants a, b, without leaking any information about the value m. In this work, we evaluate and analyze
the performance of existing techniques for range proofs based on the strong RSA assumption while varying
the range sizes.Wefirst group the techniques into two classes. Our experiments show that the first class, being
built on finding sums of squares (e.g., Groth’s range proof), has sharply decreasing performance trends as the
range size increases. Thus, solutions in this class seem to be useful primarily for small ranges. The second
class, which relies on a direct proof (e.g., Boudot’s range proof), exposes that the performance degradation
slopes are not as steep as the range size grows, compared to solutions in the first group. However, this class’s
main drawback is that these methods require considerably more modular arithmetic than the first class.
Concretely, the Groth and Boudot protocols achieve the best performance when the range sizes are less than
and greater than 1410 bits, respectively. As part of this work, we consider an extension by combining the
strong points of existing solutions and examine the result efficiency. Interestingly, however, our experimental
results report that this extension outperforms either Groth’s or Boudot’s protocol for certain ranges, but there
is no range for which the extension outperforms both.

INDEX TERMS Non-interactive zero-knowledge proof, range proof, strong RSA assumption.

I. INTRODUCTION
Zero-knowledge proofs have many applications as a key
primitive in cryptographic constructions such as group
signature [1], (security-enhanced) public-key encryption [2]
and secure multiparty computation [3]. Particularly when
employed in real-life applications, these examples demon-
strate the usefulness of non-interactive zero-knowledge
(NIZK) proofs, as they do not require connection-oriented
interactions between participants.

In this work, we are interested in NIZK proofs for ranges
that allow a prover to convince a verifier that a value m lies
in a public set R = {a, a + 1, · · · , b} for a ≤ b ∈ Z without
revealing the value of m. Examples extensively relying on
NIZK range proofs include smart contracts [4], anonymous
credential [5], e-voting [6] and e-cash [7]. Since Brickell
et al.’s first proposal [8], many solutions have been proposed
to perform range proofs (e.g., [6], [9]–[16]). Among them,
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we restrict our interest to NIZK range proofs based on the
strong RSA assumption [17], which is a widely adopted and
well-studied cryptographic assumption.

There are two branches in this line of research: Boudot’s
approach [9] and Lipmma’s approach [10]. Lipmma’s range
proof technique was later improved by Groth [6] and Couteau
et al. [16].1 To the best of our knowledge, there are no known
works that comprehensively demonstrate which work is a
better choice for a given range. The primary goal of this work
is to answer the problem.

A. OVERVIEW OF OUR RESULTS
1) PROBING AND ASSESSING KNOWN SOLUTIONS
Recall that our motivation is to identify, among various range
proof solutions, which solution performs best for a given

1Precisely speaking, Couteau et al.’s range proof protocol [16] depends on
the RSA assumption, not the strong RSA assumption. However, to simplify
the comparison, throughout this paper, we do not consider the advantage of
relying on a weaker assumption.
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interval. To achieve this goal, we hone in on existing solutions
through experimental study.

First, we review existing protocols for range proofs based
on the strongRSA assumption and evaluate their performance
characteristics from the prover perspective by varying the
range size. Our starting point is the following question: ‘‘How
quickly can we find a sum of squares of a large positive
integer, v?’’ This is a natural question because the range proof
techniques studied by Lipmaa [10] and their variants (e.g., [6]
and most recently [16]) require executing an online algorithm
to find such solutions. Thus, the algorithm’s execution time is
a key factor that heavily affects the overall performance, espe-
cially on the prover’s side. Indeed, according to our exper-
iments, the algorithm performance decreases considerably
as the size of v increases. For example, in our experiments,
while the algorithm finds the solutions within 10.3ms for a v
of 800 bits, it requires 200.0ms for a v of 2000 bits.
Boudot’s approach [9] can also be considered to prevent

the heavy computation problem on the fly. However, a nega-
tive aspect of this protocol is that it requires a relatively large
number of modular arithmetic on the prover’s side. Allowing
the commitment to an arbitrary integer, the sizes of the expo-
nents in modular exponentiations may exceed the modulus
size of range proof protocols. This is why our efficiency
comparisons rely on the size of the exponents in modular
exponentiations. From our analysis, when we assume that the
output size of a deployed hash function is 2λ for a security
parameter λ, the total exponent size of the prover in Boudot’s
protocol is 25|R|+8`n+140λ+32 bits, where |R| is the target
range size and `n is the bit size of the modulus of an exploited
commitment scheme. However, the Groth protocol requires
smaller exponent sizes than does the Boudot protocol. Con-
cretely, the Groth protocol requires only 16|R|+3`n+54λ+
13 bits on the prover’s side, and this quantity is always smaller
than that of the Boudot protocol.

Accordingly, we may estimate that when the range size is
relatively small, because the time to find a sum of squares
has no significant impact on the prover’s online run time,
the Groth protocol outperforms all the other protocols on
the prover’s side. Reversely, we determine that, as the range
size increases, an algorithm to find a sum of squares takes
much longer to execute; in such cases, the Boudot protocol
is faster than the Groth protocol. Indeed, our experimental
results show that this performance reversal occurs at a size of
approximately 1410 bits.

2) A HYBRID OF THE TWO
As a natural extension, we attempt to design an NIZK argu-
ment protocol for range proofs by integrating the features of
the two branches of existing solutions based on the strong
RSA assumption. (We call this extension Hybrid throughout
the paper.) However, our experimental results unfortunately
confirm that Hybrid outperforms either the Groth or Boudot
protocol in certain ranges but does not outperform both
simultaneously.

B. LITERATURE REVIEW
Since Brickell et al.’s solution [8], many range proofs
have been proposed. As mentioned before, throughout this
paper, we focus on strong RSA-based range proofs in the
non-interactive manner. The key idea of protocols in this vein
is the observation that if m ∈ [a, b], then (m− a) and (b−m)
should be non-negative, where [a, b] denotes a closed interval
between a and b, i.e., [a, b] = {m ∈ Z : a ≤ m ≤ b}.
To prove that m ∈ [a, b], Boudot’s protocol [9] sets v1 =

(m− a) and v2 = (b− m), and writes them as v1 = α1 + α22
and v2 = β1 + β

2
2 , where α2 = b

√
v1c, α1 = v1 − α22 , and

β2 = b
√
v2c, β1 = v2 − β22 . Here, bxc denotes the largest

integer that is less than or equal to x for a real number x.
Then, the protocol uses two sub-protocols: One is to prove a
square in commitments to α22 and β22 , and the other is Chan,
Frankel and Tsiounis’s protocol (termed the CFT protocol for
short) [18], which is used to prove that α1, β1 are bounded
appropriately. Refer to Section III-A for the technical details
of each sub-protocol.

The next consideration is Lipmaa’s suggestion [10],
in which the basic idea is to prove the non-negativity of
integers as Boudot did. However, the Lipmaa protocol takes
a different approach, using Lagrange’s four-square theo-
rem (a.k.a., Bachet’s conjecture), which states that any pos-
itive integer can be written as a sum of four squares. Later,
Groth [6] improved the Lipmaa protocol by exploiting Leg-
endre’s three-square theorem, which states that a positive
integer v can be written as a sum of three squares if and only
if v is not of the form 4s(8t + 7) for integers s and t . Most
recently, Couteau et al. [16, Section 7.2] presented a variant
of the Lipmaa protocol. Couteau et al.’s protocol proves the
non-negativity of v = (m − a)(b − m), instead of m − a and
b−m each, by representing 4v+1 as the sum of three squares.

Regarding the above protocols based on sums of squares,
our main concern is that they should invoke an algorithm to
find four (or three) squares whose sum is the given positive
integer on the fly. In general, the Rabin-Shallit algorithm
(RS algorithm for short) [19] is applied to find the four (or
three) squares whereby their sum is a secret positive integer;
however, this algorithm takes O(|b−a|4) time, where |b−a|
is the size of the range [a, b]. Lipmaa [10] introduced a
somewhat improved algorithm in the RS algorithm to find the
sum of four squares; however, the asymptotic complexities
of both algorithms are the same. Consequently, solutions in
this approach would suffer from performance bottlenecks in
applications in which a large-sized interval should be used.

Indeed, this argument is confirmed by our implementation
of the RS algorithm and Lipmaa’s variant to find the sum of
three and four squares, respectively (see Section IV-A).When
the range size is 1200 bits, the average run times of the RS
algorithm and Lipmaa’s variant are approximately 33.9ms
and 33.5ms, respectively. At the prover’s side, the run times
of the Groth protocol and the Lipmaa protocol are approx-
imately 133.1ms and 305.4ms, respectively. These times
mean that the algorithms account for 25.5% and 11.0% of
the prover’s total run times, respectively. However, when
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the interval length increases to 1600 bits, the RS algorithm
and Lipmaa’s variant require approximately 91.0ms and
87.0ms, respectively, meaning that they consume approxi-
mately 35.3% and 21.6% of the total run times of the Groth
and Lipmaa protocols, respectively. We note that because the
Groth and Lipmaa protocols should run the RS algorithm and
the Lipmaa’s variant twice, respectively, in reality, the run
times of the algorithms account for 70.6% and 43.2% of the
total run times of the protocols, respectively, when the range
size is 1600 bits.

1) A WAY OF COMBINING BOTH APPROACHES
For a secret integer m, if m ∈ [a, b], then we have a non-
negative integer v = (m − a)(b − m). Integrating Boudot’s
and Couteau et al.’s ideas, one can express the integer v as
α1 + α

2
2 for some integers α1 and α2, and thus, we can prove

the non-negativity of v by showing that α1 is bounded and
that α22 is in a square. We expect that such an approach to
prove non-negativity helps to reduce the number of modulus
arithmetic operations.

FIGURE 1. Key insights of the existing solutions.

In Fig. 1, we summarize the key ideas of the existing pro-
tocols and Hybrid with respect to the ways of decomposing
non-negative integer(s) for a range proof.

C. OUTLINE OF THE PAPER
The remainder of this work is organized as follows. In
Section II, we introduce the hardness assumption and build-
ing blocks common to known protocols. We then review
representative strong RSA-based range proof protocols and
explain a natural extension by combining two protocols
among them in Section III. Our experimental results, along
with detailed evaluations, are given in Section IV.

II. CRYPTOGRAPHIC ASSUMPTIONS AND PRIMITIVES
In this section, we briefly review the cryptographic assump-
tions and primitives used in known solutions.

1) NOTATION

Throughout this paper, for a set X , we use x
$
←− X to denote

that an element x is sampled uniformly at random from X . For

i, j ∈ Z, we denote the closed interval, {m ∈ Z|i ≤ m ≤ j},
by [i, j] and the open interval, {m ∈ Z|i < m < j}, by (i, j).
For a real number x, bxc denotes the largest integer that is less
than or equal to x.

A function ν : N → R is negligible in λ if for all
positive polynomials f (·) and sufficiently large λ, ν(λ) ≤
1
f (λ) . We use poly(λ) to represent unspecified polynomials
in λ. A probabilistic polynomial-time (PPT) algorithm is a
randomized algorithm that runs in poly(λ) time.

A. CRYPTOGRAPHIC ASSUMPTIONS
Let λ be a security parameter. Let G be an algorithm that
takes a pair of λ and b ∈ {0, 1} as inputs and returns an RSA
modulus n, a positive integer e such that gcd(e, φ(n)) = 1 for
the Euler-totient function φ, and a random element y ∈ Z∗n if
b = 1; otherwise, it returns an RSA modulus n and a random
element y ∈ Z∗n. Throughout the paper, if implied by context,
we sometimes omit explicitly writing ‘‘mod n’’ for modulo
calculations of n.

1) THE FLEXIBLE RSA PROBLEM
The RSA problem can be stated as follows: Given a triple of
values (n, e, y) ← G(1λ, 1), find x ∈ Z∗n such that xe = y
(mod n). The flexible RSA problem is defined as follows.
Definition 1 (Flexible RSA Problem): Given a pair of val-

ues (n, y) obtained by invoking the algorithm G(1λ, 0), find
e > 1 and x ∈ Z∗n such that xe = y (mod n).

2) THE STRONG RSA ASSUMPTION
The cryptographic primitives (e.g., commitment) in this
section are based on the strong RSA assumption, which
informally states that the flexible RSA problem is hard to
solve. Since it was first introduced in [20], the strong RSA
assumption has been used in constructing various crypto-
graphic schemes (e.g., [17], [21]). This is considered as a
stronger assumption than the RSA assumption (i.e., infor-
mally, the RSA problem is harder to solve than the strong
RSA problem); however, currently, the only known way to
break the assumptions is to solve the integer factorization
problem.
Definition 2 (Strong RSA Assumption): The strong RSA

assumption holds relative to G if for any PPT algorithm A,

Pr
[
(e > 1) ∧ (xe = y)

∣∣(n, y)← G(1λ, 0); (x, e)← A(n, y)
]

is negligible in the security parameter λ.

B. CRYPTOGRAPHIC TOOLS
1) INTEGER COMMITMENT
Existing range proofs under the strong RSA assumption
use homomorphic integer commitment schemes. Only a few
schemes are known in the literature (e.g., [6], [17], [22]), and
all of them are very similar in structure.

Our implementations use the Fujisaki-Okamoto (FO) com-
mitment scheme, which was first proposed in [17] and then
revised by Damgård and Fujisaki [22]. Upon input of a
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security parameter λ, we generate an RSA modulus n of
bit length `n = poly(λ) by generating two safe primes
p = 2p′ + 1 and q = 2q′ + 1 for primes p′, q′ and setting
n = pq. We select a random element g of order p′q′ (this
step can be accomplished by selecting a random element in
Z∗n and squaring it). Then, we choose a random element x
from {0, 1}`r for `r = `n + λ and set h = gx . Let G be a
cyclic group generated by g. Throughout this paper, we use
desc(G) to denote a description of the groupG–including the
generator g and the element h. Finally, we set a commitment
key ck = (n,desc(G), `n, `r ).

To commit a message m, we select an element r
$
←−

{0, 1}`r , and we compute c = gmhr . We write this as
c = CMTg,h(m, r). To verify the commitment c, if we
reveal m, r , and µ, one checks if c = µ · CMTg,h(m, r)
and µ2

= 1 mod n, and when both hold, it out-
puts 1; otherwise, it outputs 0. When we want to com-
mit to multiple messages m1, . . . ,mt , we compute c =
CMTg1,...,gt ,h(m1, . . . ,mt ; r) = gm1

1 · · · g
mt
t h

r with a ran-

domly chosen r
$
←− {0, 1}`r , where all gi are random gen-

erators of G.
When additional bases (e.g., ĝ, ĥ, and gi’s) are needed

for use, we implicitly assume that these values are known
to the associated group description desc(G) before running
protocols that have access to the commitment scheme.

2) NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS
A range proof is a typical example of the three-move hon-
est verifier zero-knowledge argument. The prover has some
statement y that she wants to prove, and she knows a wit-
ness x. She sends an announcement a, receives a random
challenge e and responds with an answer z. Given (y, a, e, z),
the verifier can now test whether to accept the argument.

Using the Fiat-Shamir transformation [23], we make the
prover compute the challenge e as a hashed value of y and a.
Specifically, the prover computes an argument (a, e, z), where
e = H (y, a) for a hash function H : {0, 1}∗ → {0, 1}`h for
sufficiently large integer `h. This is a de facto standard to
make the argument non-interactive. Here, the hash function
is modeled as a random function that pairs inputs (y, a) with
a random output e. Furthermore, to argue zero-knowledge,
we use a trick to program the random oracle. We refer the
reader to [24, Chapter 4] for more details of theories about
and practical examples of zero-knowledge proofs.

III. CASE STUDY: NIZK RANGE PROOF
We offer a compact specification of known results of the
NIZK range proof based on the strong RSA assumption.
As mentioned in the introduction, the literature includes
four representative protocols: Boudot, Lipmaa, Groth, and
Couteau et al. protocols. We additionally have some variants
(e.g., [15] is a variant of Boudot’s protocol); however, those
variants are quite similar to the original protocols with respect
to security and structure except that they attempted to adapt
themselves to a specific setting. Thus, we will not consider

Sub-protocol 1 PSE: Proof of the Same Exponent
Common input: ck, c, ĉ and the randomness space R
Prover’s input: m, r, r̂ such that c = CMTg,h(m, r) and ĉ =

CMTĝ,ĥ(m, r̂)

[argument]
1: choose ν

$
←− R, r1

$
←− {0, 1}`r+`h+λ, and r2

$
←−

{0, 1}`r+`h+λ

2: compute c1 = CMTg,h(ν, r1) and c2 = CMTĝ,ĥ(ν, r2)
3: compute e = H (c1 ‖ c2) /* H : a hash function */
4: compute δ0 = ν + em, δ1 = r1 + er, δ2 = r2 + er̂
5: output the argument π = (e, δ0, δ1, δ2)

[verification]
6: check if e ?

= H (gδ0hδ1c−e ‖ ĝδ0 ĥδ2 ĉ−e)

such variants in our experiments. We begin with the Boudot
protocol.

We assume that all NIZK protocols additionally
take (implicitly) as input the system parameter `h, which
indicates the output size of the exploited hash function.

A. THE BOUDOT PROTOCOL
The Boudot protocol consists of three sub-protocols. The first
sub-protocol is an NIZK protocol to prove that two commit-
ments have the same message and the second sub-protocol
is an NIZK protocol for proving that a committed value is a
square of an integer. The last sub-protocol is an NIZK pro-
tocol for boundedness. For the last sub-protocol, the author
utilized the protocol studied by Chan, Frankel and Tsiou-
nis (CFT) in [18] without modifications. Throughout this
paper, we denote the first sub-protocol by

PSE
(
m, r, r̂|c = CMTg,h(m, r) ∧ ĉ = CMTĝ,ĥ(m, r̂)

)
,

the second sub-protocol by

PSQ
(
m, r|c = CMTg,h(m2, r)

)
,

and the last sub-protocol by

CFT(m, r|c = CMTg,h(m, r) ∧ m ∈ [L,U ]).

For the first sub-protocol PSE, various methods have been
proposed and have attempted to argue that two commitments
retain the same secret value, e.g., see [8], [9], [18], [25]. We
now describe a concrete example of NIZK argument proto-
cols for the proof of the same exponent in [9], as exploited in
our implementations in Section IV. Note that although we do
not provide a concrete description of the randomness spaceR
in the protocol, it should be at least 2`h+λ-times larger than
the public set to which the committed value m belongs for
ensuring the security of the protocol, where λ is the security
parameter and `h is the hash output size.
Next, a specific construction of PSQ can be attained by

calling the protocol PSE as a sub-routine. Given a commit-

117508 VOLUME 7, 2019



M. Kim, H. T. Lee: Experimenting With Non-Interactive Range Proofs Based on the Strong RSA Assumption

Sub-protocol 2 CFT: Proof of the Boundedness
Common input: ck, c, [−θ, θ], and the randomness space

R0

Prover’s input: m, r such that c = CMTg,h(m, r) ∧ m ∈
[−θ, θ]

[argument]
1: choose ν

$
←− [0, θ − 1] and γ

$
←− {0, 1}`r+`h+λ

2: compute c1 = CMTg,h(ν, γ )
3: compute e = H (c1)
4: compute δ0 = ν + em and δ1 = γ + er .

If δ0 /∈ [e · θ/ε, θ − 1], go to Step 1
5: output the argument π = (e, δ0, δ1)

[verification]

6: check if e ?
= H (gδ0hδ1c−e) and δ0

?
∈ [e · θ/ε, θ − 1]

ment c to m, consider a commitment ĉ to m by computing the
power of c by m. Then, ĉ can be thought of as a commitment
to m2 to base g. Thus, an NIZK argument to prove that a
committed integer is a square can be written as

PSE(m, r, r̂|c = CMTg,h(m, r) ∧ ĉ = CMTc,h(m, r̂)) (‡)

where ĉ = cmhr̂ = (CMTg,h(m, r))mhr = gm
2
hmr+r̂ . Clearly,

ĉ is a commitment tom2. In conclusion, runningPSE as in (‡)
results in PSQ(m, r ′|ĉ = CMTg,h(m2, r ′)) with r ′ = mr + r̂ .
Finally, the Boudot protocol exploits the CFT protocol,

which proves that, given a commitment c to m, the absolute
value of m is less than θ , i.e., m ∈ [−θ, θ], although m has to
be in [0, θ/ε] to achieve zero knowledge, where ε = 2`h+λ is
an expansion rate.

The CFT protocol for this is presented in Sub-protocol 2.
Because the CFT protocol has an expansion rate, the Boudot
protocol cannot prove the exact boundness that it has to show
using the CFT protocol without any modifications. To over-
come this issue, when it would like to show m ∈ [a, b],
the Boudot protocol expands the target range from [a, b] to
[A,B], where A = 2T a and B = 2T b for a proper integer T .
Thereafter, if we show thatM = 2Tm is in [2T a−θ ′, 2T b+θ ′]
for some parameter θ ′ < 2T , this guarantees that m ∈ (a −
1, b + 1) and that it is equivalent to m ∈ [a, b] because m is
an integer.

The same issue occurs in the hybrid protocol pre-
sented in Section III-C. Refer to [9] and Section III-C of
this paper for the details on why the expanded range is
required.

We provide the description of the Boudot protocol in Proto-
col 3. The Boudot protocol, using the CFT protocol at Step 8,
guarantees that

−θ ′ ≤ M̃2, M̂2 ≤ θ
′.

Protocol 3 Boudot’s NIZK Range Proof
Common input: a commitment c and the commitment key

ck
Prover’s input: m and r such that c = CMTg,h(m, r) for

m ∈ R = [a, b] and randomizer r

[argument]
1: set T = 2(`h + λ+ 1)+ |R|
2: set θ ′ = 2`h+λ+T/2+1

√
b− a, A = 2T a, and B = 2T b

3: compute C = c2
T
= CMTg,h(M ,R), where M = 2Tm

and R = 2T r
4: compute C̃ = Cg−A, Ĉ = gBC−1

5: set M̃ = M − A and M̂ = B − M , and compute M̃1 =

b

√
M̃c, M̃2 = M̃−M̃2

1 and M̂1 = b
√
M̂c, M̂2 = M̂−M̂2

1
6: compute C̃1 = CMTg,h(M̃2

1 , R̃1), C̃2 = CMTg,h(M̃2, R̃2)
and Ĉ1 = CMTg,h(M̂2

1 , R̂1), Ĉ2 = CMTg,h(M̂2, R̂2),

where R̃1
$
←− {0, 1}`r and R̂1

$
←− {0, 1}`r , and R̃2, R̂2 are

set so that R̃1 + R̃2 = R, R̂1 + R̂2 = −R
7: compute proofs π̃1 and π̂2 by running

PSQ(M̃1, R̃1|C̃1 = CMTg,h(M̃2
1 , R̃1))

and

PSQ(M̂1, R̂1|Ĉ1 = CMTg,h(M̂2
1 , R̂1)),

respectively
8: compute proofs π̃2 and π̂2 by running

CFT(M̃2, R̃2|C̃2 = CMTg,h(M̃2, R̃2) ∧ M̃2 ∈ [−θ ′, θ ′])

and

CFT(M̂2, R̂2|Ĉ2 = CMTg,h(M̂2, R̂2) ∧ M̂2 ∈ [−θ ′, θ ′]),

respectively
9: output π = (C, C̃, Ĉ, π̃1, π̂1, π̃2, π̂2)

[verification]
10: set T = 2(`h + λ+ 1)+ |R|
11: setA = 2T a andB = 2T b, and computeC = c2

T
mod n

12: compute C̃ = Cg−A, Ĉ = gBC−1 and verify if they are
equal to corresponding commitments in π

13: fetch C̃1, Ĉ1 from π̃1, π̂1, and verify π̃1 and π̂1 to test the
validity of the commitments to a square

14: compute C̃2 = C̃/C̃1 and Ĉ2 = Ĉ/Ĉ1

15: verify π̃2 and π̂2 to test if the committed integers M̃2, M̂2

are in [−θ, θ], letting θ ′ = 2`h+λ+T/2+1
√
b− a

Because M − A ≥ M̃2 ≥ −θ
′ and B −M ≥ M̂2 ≥ −θ

′, we
have

A− θ ′ ≤ M ≤ B+ θ ′.
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Specifically, if we set the parameters T and θ ′ appropriately
so that θ ′ < 2T , it holds that

2T (a− 1) < M = 2Tm < 2T (b+ 1),

and thus, a ≤ m ≤ b.

B. THE LIPMAA PROTOCOL
It is well known from number theory that 0 ≤ m ∈ Z if
and only if it can be written as m =

∑4
i=1 α

2
i with αi ∈ Z.

Lipmaa’s protocol [10] uses this fact to prove that m− a ≥ 0
and b − m ≥ 0. We present the Lipmaa protocol in Protocol
4.

Later, Groth [6] improved Lipmaa’s protocol in terms of
efficiency by writingm−a and b−m as integers v1 = 4(m−
a) + 1 and v2 = 4(b − m) + 1, respectively, and then by
expressing v1 and v2 as sums of three squares (i.e., v1 = α21+
α22 + α

2
3 and v2 = β21 + β

2
2 + β

2
3 with αi, βi ∈ Z). Then,

the author applied the same technique as Lipmaa to prove that
both v1 and v2 are such integers.
Most recently, Couteau et al. [16] suggested a way to

improve Lipmaa’s protocol while representing v = (m −
a)(b − m) as a sum of four squares. However, note that the
primary goal of their work is to construct a cryptographic
protocol under the RSA assumption rather than the strong
RSA assumption. We omit full descriptions of the last two
protocols (i.e., Groth and Couteau et al.’s protocols) because
proof techniques in both cases are quite similar to Lipmaa’s
protocol.

C. HYBRID: A COMBINATION OF BOUDOT AND COUTEAU
et al.’s PROTOCOLS
It is quite natural to consider a combination of Boudot
and Couteau et al.’s ideas so that the resulting solution is
expected to inherit their positive properties. Roughly speak-
ing, the combination proves the non-negativity of v = (m −
a)(b − m) as Couteau et al.’s idea but in a different manner.
To prove the positivity of v, as in the Boudot protocol, this
protocol represents v as α1 + α22 for α2 = b

√
vc and α1 =

v − α22 and proves the squareness of α22 . Then, the protocol
shows that α1 is non-negative by the CFT protocol. However,
the CFT protocol does not allow one to directly show that
α1 ∈ [0, b0] for some integer b0. To address this problem,
we show that 22Tα1 ∈ [−ϑ, 22T b0 + ϑ] for ϑ < 22T with
a proper value T , as in Boudot’s protocol. Then, it holds that
α1 ∈ (−1, b0 + 1) = [0, b0].

For notational convenience, we use R = [A, B] to denote
an extended range of R = [a, b] by setting A = 2T a and
B = 2T b (i.e., R = [2T a, 2T b]) and use |R| to denote the
bit size of the cardinality of the input range R (i.e., |R| =
dlog2(b−a)e). We now give a full description of the protocol
in Protocol 5.

1) THE SIZE OF T
Because the verifier confirms the non-negativity of α1 by
checking the value δα1 , it cannot confirm whether α1 belongs

Protocol 4 Lipmaa’s NIZK Range Proof
Common input: a commitment c and the commitment key

ck
Prover’s input: m−a and r such that c = CMTg,h(m−a, r)

for m− a ≥ 0 and randomizer r

[argument]
1: compute ca = cg−a and cb = gbc−1

2: set α = m− a and β = b− m
3: find {αi}4i=1 and {βi}

4
i=1 such that α =

∑4
i=1 α

2
i and β =∑4

i=1 β
2
i using the Lipmaa algorithm

4: compute ci = CMTg,h(αi, ri) and di = CMTg,h(βi, si)

by choosing ri, si
$
←− {0, 1}`r and for i = 1, 2, 3, 4

5: pick

ᾱi
$
←− {0, 1}

|R|
2 +`h+λ, r̄i

$
←− {0, 1}`r+`h+λ,

r̄
$
←− {0, 1}

|R|
2 +`h+`r+λ

β̄i
$
←− {0, 1}

|R|
2 +`h+λ, s̄i

$
←− {0, 1}`r+`h+λ,

s̄
$
←− {0, 1}

|R|
2 +`h+`r+λ

for 1 ≤ i ≤ 4
6: compute c̄i = CMTg,h(ᾱi, r̄i), d̄i = CMTg,h(β̄i, s̄i) for

1 ≤ i ≤ 4
7: compute c̄ = CMTc1,c2,c3,c4,h(ᾱ1, ᾱ2, ᾱ3, ᾱ4, r̄) and
d̄ = CMTd1,d2,d3,d4,h(β̄1, β̄2, β̄3, β̄4, s̄)

8: compute 11 = H (c̄1, c̄2, c̄3, c̄4, c̄) and 12 =

H (d̄1, d̄2, d̄3, d̄4, d̄)
9: compute e1 = H (c1, c2, c3, c4, c̄1, c̄2, c̄3, c̄4, c̄) and
e2 = H (d1, d2, d3, d4, d̄1, d̄2, d̄3, d̄4, d̄)

10: compute zi = e1αi + ᾱi, ui = e1ri + r̄i, wi = e2βi +
β̄i, ui = e2si + s̄i for 1 ≤ i ≤ 4

11: compute u = e1(r −
∑4

i=1 αiri) + r̄, v = e2(s −∑4
i=1 βisi)+ s̄

12: output the argument π = ((ci)4i=1, (di)
4
i=1, (c̄i)

4
i=1,

(d̄i)4i=1, c̄, d̄,11,12, e1, e2, (zi)4i=1, (wi)
4
i=1, (ui)

4
i=1,

(vi)4i=1, u, v)

[verification]
13: compute ca = cg−a and cb = gbc−1

14: check whether the following holds:

e1
?
= H (c1, c2, c3, c4, c̄1, c̄2, c̄3, c̄4, c̄)

e2
?
= H (d1, d2, d3, d4, d̄1, d̄2, d̄3, d̄4, d̄)

11
?
= H

(
(gzihuic−e1i )4i=1,

(
4∏
i=1

czii

)
huc−e1

)
12

?
= H

(
(gwihvid−e2i )4i=1,

(
4∏
i=1

dwii

)
hvd−e2

)
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Protocol 5 Hybrid

Common input: ck, c,R = [a, b],T ,A = 2T a, and B =
2T b

Prover’s input: m, r such that c = CMTg,h(m, r) ∧ m ∈ R

[argument]
1: compute C = c2

T
mod n, and set M = 2Tm and R =

2T r
2: compute CA = Cg−A and CB = gBC−1

3: compute Ĉ = CMTCA,h(B−M , R̂) with R̂
$
←− {0, 1}`r

4: compute a proof π1 by executing

π1← PSE(B −M ,−R, R̂|CB = CMTg,h(B −M ,−R)

∧ Ĉ = CMTCA,h(B −M , R̂))

where π1 = (e1, δ11, δ12, δ13)
5: find α1, α2 such that v = α1 + α

2
2 by setting α2 =

b
√
vc and α1 = v− α22 , where v = (M − A)(B −M )

6: compute C̄ = CMTg1,...,g4,h(v, α1, α2,1; r̄), where

r̄
$
←− {0, 1}`r ,

rv
$
←− {0, 1}2T+2|R|+`h+λ,

rα1 , rα2
$
←− {0, 1}T+|R|+`h+λ

and 1 = rv − rα1 − 2α2 rα2
7: compute C̄r = CMTg1,...,g4,h(rv, rα1 , rα2 ,−r

2
α2
; rr̄ ) with

rr̄
$
←− {0, 1}`r+`h+λ

8: Crv = CMTg,h(rv,RR̂) with RR̂
$
←− {0, 1}2T+|R|+`r+`h+λ

9: compute e = H (C ‖ Ĉ ‖ C̄ ‖ C̄r ‖ Crv )
10: compute

δv = rv + ev, δα1 = rα1 + eα1, δα2 = rα2 + eα2,

δr̄ = rr̄ + er̄, δR̂ = RR̂ + e(R(B −M )+ R̂);

if δα1 6∈ [0, 2`h (2λ+ 1)(B−A)], then restart the protocol
11: output the argument π = (e,C,CA,CB, Ĉ, C̄, C̄r ,Crv ,

π1, δv, δα1 , δα2 , δr̄ , δR̂)
[verification]

12: compute C = c2
T

mod n and check the validity of CA
and CB

13: verify π1 by checking if e1
?
= H (gδ11hδ12C−e1B ‖

Cδ11A hδ13Ĉ−e1 )

14: check if δα1
?
∈ [0, 2`h (2λ + 1)(B− A)]

15: check if e ?
= H (C ‖ Ĉ ‖ C̄ ‖ C̄r ‖ Crv )

16: check whether Ĉe
· Crv

?
= CMTg,h(δv, δR̂)

17: check whether C̄e
· C̄r

?
= CMTg1,...,g4,h(δv, δα1 , δα2 ,

δ1; δr̄ ), where δ1 = e(δv − δα1 )− (δα2 )
2

to the exact set that it wants to check. More precisely, assume
that the verifier wants to check whether α1 ∈ [l, u] for the
integers l and u. If α1 ∈ [l, u], then we have

0 ≤ δα1 = rα1 + eα1 ≤ 2`hu+ 2`h+λu (1)

because e is the output of a hash function and rα1
$
←−

[0, 2`h+λu]. Therefore, the verifier can check whether

δα1
?
∈ [0, 2`hu + 2`h+λu]. However, this does not guarantee

that α1 ∈ [l, u]. If 0 ≤ δα1 ≤ 2`hu+ 2`h+λu, then the verifier
guarantees only that

−2`h+λu ≤ α1 = (δα1 − rα1 )/e ≤ 2`hu+ 2`h+λu. (2)

Thus, we can prove only that v ≥ −2`h+λu and not that v ≥ 0.
To address this problem, we enlarge the range of R by 2T and
consider the non-negativity of v = 22T (m−a)(b−m) instead
of (m − a)(b − m). To this end, we set A = 2T a, B = 2T b,
and M = 2Tm.

Let v = (M − A)(B −M ), which has a maximum value of( B−A
2

)2
atM = A+B

2 . Because α2 = b
√
vc and α1 = v− α22 ,

α2 = b
√
vc <

B − A
2

and

α1 = v− α22 < v− (
√
v− 1)2 = 2

√
v− 1 < B − A.

Thus, if we set l = 0 and u = B− A in relation (1), we obtain
v = α1 + α22 ≥ −2

`h+λ(B − A) from relation (2). Because v
is an integer, if 2`h+λ(B − A) < 22T , then

v = 22T (m− a)(b− m) > −22T ,

which means that v ≥ 0. Hence, T should satisfy

2`h+λ(B − A) ≤ 2`h+λ · 2T+|R| < 22T ,

and consequently, T > |R| + `h + λ. Therefore, we set
T = |R| + `h + λ+ 1.

D. COMPREHENSIVE ANALYSIS
Now, we compare the computational and communication
costs of Hybrid with Groth and Boudot’s protocols, which
achieve the best performance in the two branches.

1) COMPUTATIONAL COSTS
Existing range proof protocols consist mainly of modular
exponentiations, hash evaluations, and integer multiplica-
tions. The prover and verifier require relatively large numbers
of modular exponentiations, while only a small number of
hash evaluations and integer multiplications is required. The
exponent sizes of the modular exponentiations in range proof
protocols can be larger than the modulus size. Thus, it does
notmake sense that the number ofmodular exponentiations of
the protocol correctly indicates the computational cost of the
protocol. To resolve this issue, wemeasured the costs in terms
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TABLE 1. Comparison of computational costs (in bits).

of the total exponent bit size of the modular exponentiation
required.

Recall that the RSAmodulus size is `n bits, the randomizer
size is `r bits, the output size of the hash function is `h bits,
and the input range size is |R| bits. We set `r = `n + λ and
`h = 2λ for the security parameter λ.
Table 1 provides a comparison of the computational costs

of representative protocols with respect to the bit size of the
total exponents in the modular exponentiations. From the
table, clearly, the prover in the Groth protocol requires the
smallest exponents. However, the protocol needs to execute
an algorithm to find the sum of squares; thus, it may require
substantially more time if that algorithm’s run time is large.
In contrast, the computational efficiencies of the provers in
Boudot’s protocol and Hybrid rely on the input range size.

In general, if the input range |R| is small, then a prover
using Hybrid is faster than one using the Boudot proto-
col. Otherwise, the prover in the Boudot protocol performs
better. For example, when `n = 3072 and λ = 128, the
computational cost of a prover in Hybrid is less than that in
Boudot’s protocol when |R| < 580 bits.
However, our implementation results are slightly differ-

ent from the theoretical expectations. More specifically, the
range that Hybrid outperforms Boudot’s protocol is rather
larger than the theoretical bound. This is because Hybrid’s
prover does 21 modular exponentiations, but Boudot’s prover
does 27 modular exponentiations, in total. When the total
exponent is the same size, usually a small number of mod-
ular exponentiations with large exponents takes less time
than a large number of modular exponentiations with small
exponents. According to our experiments, when the modulus
size is 3072 bits, 2 modular exponentiations with 2000-bit
exponents require 2.877× 107 CPU cycles, while 1 modular
exponentiation with 4000-bit exponent requires 2.824× 107

CPU cycles.
Meanwhile, the Groth protocol achieves the best perfor-

mance on the verifier’s side regardless of the size of the
input range. In Section IV, we will discuss the details using
a comprehensive implementation of the protocols examined
above.

2) COMMUNICATION COSTS
Table 2 shows a comparison of the communication costs
among the protocols studied so far. We confirm that the
communication cost of the Groth protocol is the shortest. For
example, when `n = 3072 and λ = 128, the communication
costs of the Groth, Boudot and Hybrid protocols are 4.2 KB,

TABLE 2. Comparison of communication costs (in bits).

TABLE 3. Computational costs for finding a sum of squares (Test
platform: Intel core i5 @ 3.4 GHz with 32 GB RAM).

7.8 KB and 7.8 KB, respectively, for a range size of 1536 bits
(i.e., |R| = 1536).

IV. EXPERIMENTS AND EVALUATION
In this section, we evaluate the effectiveness and efficiency of
existing NIZK protocols for range proofs based on the strong
RSA assumption. We first examine the CPU cycles and run
times of algorithms for finding the sum of squares, which
several protocols utilize as a key subroutine. We then provide
detailed comparisons of existing representative protocols for
range proofs in terms of CPU cycles and runtimes.

The testing platform was a modern PC with an Intel Core
i5 CPU running at 3.4 GHz with 32 GB of DDR4 RAM. We
employed NTL 11.3.2 [26] and GMP 6.1.2 [27] for efficient
mathematical operations with large numbers.

A. EFFICIENCY OF FINDING A SUM OF SQUARES
We provide experimental results of the RS algorithm [19]
and the Lipmaa algorithm [10] to find the sum of three and
four squares. We remark that the RS algorithm is employed
in the Groth and Couteau et al. protocols [6], [16], while the
Lipmaa algorithm is utilized as a part of Lipmaa’s range proof
protocol [10].

Table 3 lists the run times and the CPU cycles of the
two algorithms for various input sizes. All the results in the
table are average values achieved from over 1000 randomly
generated input values.

117512 VOLUME 7, 2019



M. Kim, H. T. Lee: Experimenting With Non-Interactive Range Proofs Based on the Strong RSA Assumption

TABLE 4. Results of execution time comparisons based on CPU cycles and runtimes (Test platform: Intel core i5 @ 3.4 GHz with 32 GB RAM).

Table 3 shows the general trend that finding a solution
for a larger input size requires more CPU time and cycles.
More precisely, each algorithm takes 1.48–3.35 times longer
as the input size increases by 400 bits. One may expect that
the RS algorithm would be more efficient than the Lipmaa
algorithm because the latter exploits the former as a subrou-
tine. However, if an input value has the form 2t · (2k + 1)
for some non-negative integers t and k , we see that the input
size of the RS algorithm is reduced by approximately t bits.
Consequently, the performance gap between the run times of
the two algorithms depends on a specific form in which the
input values are written as 2t · (2k + 1).

Our experiments show that the RS algorithm is slightly
faster than the Lipmaa algorithm when the input size is
3200 bits, whereas the Lipmaa algorithm is slightly faster
for other cases. However, the differences in the results for all
input bit sizes are very narrow, and they can be reversed in
each experiment.

B. COMPARISONS AND EVALUATIONS
We continue by providing detailed comparisons of the
prover’s online run times and CPU cycles using the exist-
ing protocols while varying the range sizes. We set the
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TABLE 5. Comparison of the selected protocols by narrowing down a measuring interval size (Test platform: Intel core i5 @ 3.4 GHz with 32 GB RAM).

FIGURE 2. Run time comparisons of the selected protocols.

size of an RSA modulus n to 3072 bits to achieve 128-bit
security [28].

Table 4 shows experimental results for the existing proto-
cols for range proofs with respect to various range sizes. The
table rows show the run times and CPU cycles of Boudot’s
protocol [9], Lipmaa’s protocol [10], Groth’s protocol [6],2

Couteau et al.’s protocol [16], and Hybrid described in
Section III-C. All the results in the table are average values
calculated over 1000 randomly generated input values by
executing 10 parameter generations of the FO commitment
scheme and generating 100 input values for each parameter.

2In [6], Groth presented an NIZK protocol for positivity by modifying
Lipmaa et al.’s protocol [29] with an algorithm that finds the sum of three
squares. Groth’s protocol can easily be applied for range proofs; however,
he did not give detailed specifications for such a protocol. To perform a range
proof of a message m in an interval R = [a, b], we obtain the protocol by
setting v0 = (m− a), v1 = (b − m), and M = b as shown in Fig. 4 of [6].

Together with Table 3 in Section IV-A, Table 4 tells us
that Lipmaa’s, Groth’s, and Couteau et al.’s protocols require
considerably more time to generate arguments than does
Boudot’s protocol or Hybrid as the range size increases. This
result occurs because of the run times required to find the
sums of three or four squares. Note that Lipmaa’s and Groth’s
protocols invoke the Lipmaa algorithm and the RS algorithm,
respectively, twice for each experiment. Compared with the
results in Table 3, we observe that finding the sum of squares
for one target element requires 20.7%, 35.4%, and 81.7% of
the prover’s run time in Lipmaa, Groth, and Couteau et al.’s
protocols, respectively, when the range size is 1600 bits.
Recall that in the Couteau et al. protocol, the input size of
the RS algorithm is twice as long as the range size because
it considers the non-negativity of v = (m − a)(b − m) for
m ∈ [a, b]. Furthermore, we see that the ratio between the
time to find the sum of squares and the prover’s total run time
tends to increase rapidly as the range size increases. Thus,
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their protocols do not seem suitable for large ranges (i.e.,
larger than 1600 bits).

Table 4 also shows that the Groth protocol achieves the
best performance on the prover’s side if the range size is less
than 1400 bits, while the Boudot protocol achieves the best
performance when the range size is greater than 1400 bits.

To take a closer look at the efficiency with respect to
range size, we provide the experimental results of run times
and CPU cycles under Boudot’s and Groth’s protocols and
Hybrid by restricting to a specific range from 900 bits to
1600 bits; see Table 5. All the results in the table are average
values calculated over 1000 randomly generated input values,
as in Table 4. The results in Table 5 are graphically shown
in Fig. 2a and Fig. 2b.

In summary, on the prover’s side, if the range size is less
than 1410 bits, the Groth protocol achieves the best per-
formance; otherwise, the Boudot protocol achieves the best
performance. We can observe that in the case that the range
sizes are less than 1050 bits and larger than 1450 bits, the
Hybrid protocol outperforms the Boudot andGroth protocols,
respectively. Unfortunately, there is no range size such that
the Hybrid protocol achieves the best performance. On the
other hand, on the verifier’s side, the Groth protocol runs
about 2 times faster than the Boudot protocol and Hybrid.

As a side note, we remark that prover’s run time of the
Groth protocol in Fig. 2a increases quartic in the range size
due to the quartic complexity of the RS algorithm. (See
Section I-B for the complexity of the RS algorithm.)

V. OUR RESULT SUMMARY
In this work, we evaluated and analyzed the performance
of existing protocols for range proofs based on the strong
RSA assumption. For this purpose, we first classified existing
representative protocols of this line into two branches. One
branch includes the Lipmaa [10], Groth [6], and Couteau
et al. protocols [16], which employ an algorithm to find the
sums of squares as a sub-routine. The other branch includes
Boudot’s protocol [9], which does not employ this technique.
We observed that the run time and CPU cycles for finding
sums of squares in existing protocols consume substantial
percentages of the prover’s online processing time and CPU
cycles, respectively, as the range size is increased. Thus,
the former branch is suitable for small range sizes, e.g., less
than 1410 bits at 128-bit security; however, the latter is better
at larger range sizes. We also attempted to consider a natural
extension by combining the advantages of the two branches.
Unfortunately, the hybrid method outperforms either the for-
mer or latter branch for certain ranges, but not both branches
simultaneously.
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