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Public key encryption with equality test (PKEET) is a special kind of public encryption 
scheme (PKE) that allows a tester to perform equality tests on ciphertexts generated by 
different public keys as well as the same public key. This feature enables us to apply PKEET 
to various scenarios in practice, such as efficient data management on encrypted databases 
and spam filtering in encrypted email systems. From these reasons, since Yang et al. [1]
first proposed the concept of PKEET, there have been proposed many PKEET schemes to 
improve efficiency or to enhance functionalities. However, to the best of our knowledge, 
almost all existing schemes were presented under assuming the existence of random ora-
cles, except for generic construction proposed by Lee et al. On the other hand, their generic 
approach for PKEET employs a 2-level hierarchical identity-based encryption and a strongly 
unforgeable one-time signature, which suffers from low efficiency.
In this paper, we propose an efficient PKEET scheme under a specific cryptographic as-
sumption in the standard model. To this end, we first encrypt a message and its hash 
value in a parallel way by following the recently proposed strategy. Then, to prevent 
adaptive chosen ciphertext attacks (CCA2), we give a link between them by adapting 
the technique which was originally proposed for identity-based encryption and previously 
exploited to design efficient CCA2-secure PKE schemes. We show that our proposed con-
struction satisfies formal security requirements for PKEET under the decisional bilinear 
Diffie–Hellman (DBDH) assumption in the standard model. As a result, we obtain a new 
PKEET scheme which has shorter ciphertext and trapdoor sizes, and improves computa-
tional costs for encryption, decryption, and test algorithms, by about 60%, 77%, and 66%, 
respectively, compared to a PKEET instantiation obtained by the prior generic framework.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Public key encryption with equality test (PKEET), which was first proposed by Yang et al. [1], is a special notion of public 
key encryption (PKE) that allows a tester to perform equality tests on encrypted data using different public keys as well as 
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the same public key. Specifically, suppose that U1 and U2 are users in a PKEET system and let ct1 and ct2 be ciphertexts 
of messages m1 and m2 generated by using U1’s and U2’s public keys, respectively. Some day, once a need arises, each 
user Ui issues a trapdoor tdi to a tester. Since then, the tester who has trapdoors, can perform equality tests between ct1
and ct2 using td1 and td2, to check whether m1 is equal to m2 or not. This property enables PKEET schemes to be applied 
for various scenarios in practice, e.g., keyword search on encrypted data, efficient data management on encrypted databases, 
spam filtering in encrypted email systems, and personal health record systems.

Since being introduced in [1], due to its broad applications, there have been proposed many PKEET schemes to en-
hance functionalities and/or to improve efficiency. However, almost all existing PKEET constructions [1–7] were given in 
the random oracle model [8], which generally views exploited hash functions as random oracles in the security analysis. 
However, random oracles do not exist in reality and so a PKEET construction that was proven secure in the random oracle 
model may turn into be insecure when random oracles are instantiated with truly hash functions, as in other cryptographic 
primitives [9].

To the best of our knowledge, there is only one PKEET construction in the standard model. Very recently, Lee et al. [10]
presented a generic construction for PKEET derived from a 2-level hierarchical identity-based encryption (HIBE) scheme 
which is secure under selective identity and chosen plaintext attacks and a strongly unforgeable one-time signature scheme. 
This approach immediately yields the first specific PKEET construction in the standard model by employing Boneh and 
Boyen’s 2-level HIBE scheme [11] and Boneh, Shen, and Waters’ strongly unforgeable signature [12]. However, those cause 
inefficiency in both computational costs and parameter sizes.

1.1. Our results

In this paper, we propose a new PKEET construction in the standard model. Our proposed scheme achieves security 
requirements for PKEET schemes under assuming the decisional bilinear Diffie–Hellman (DBDH) assumption holds and 
exploited hash functions are one-way and collision resistant. Differently from Lee et al.’s generic approach [10], our construc-
tion is designed directly without employing strong cryptographic primitives, such as HIBE schemes and strongly unforgeable 
signatures. As a result, our proposed scheme outperforms the specific scheme obtained from Lee et al.’s generic approach 
by exploiting Boneh and Boyen’s 2-level HIBE scheme [11] and Boneh, Shen, and Waters’ strongly unforgeable signature 
scheme [12], in terms of both parameter sizes and computational costs.

Strategy for our PKEET construction. Similarly to recently proposed PKEET constructions [7,10], we begin by generating 
two ciphertexts of a message and its hash value under different public keys, respectively. Let G, GT be multiplicative groups 
of prime order p and e : G × G → GT be a bilinear map. Let g be a random generator of G. Consider an ElGamal-type 
encryption

E(pk,m) = (m · e(gα,h)s, gs)

where a public key pk is (g, e(gα, h)) for randomly chosen α ∈ Zp and h ∈ G in the key generation algorithm and s is the 
randomness chosen in the encryption algorithm. Then, we consider our provisional encryption algorithm E for message m
as

E(pk,m) = (E(pk1,m),E(pk2,H1(m))

= ((m · e(gα,h)s, gs), (H1(m) · e(gβ,h)s′ , gs′)) (1)

where a public key pk = (pk1, pk2) = ((g, e(gα, h)), (g, e(gβ, h))) for randomly chosen α, β ∈ Zp and h ∈ G in the key 
generation algorithm, s, s′ are randomness chosen by the encryption algorithm, and H1 : GT → GT is a cryptographic hash 
function.

Next, to maximize the efficiency of our construction, we modify our encryption algorithm so that both ciphertexts of the 
encryption algorithm E share the same randomness. Thus, we have a modified encryption algorithm

E′(pk,m) = (m · e(gα,h)s,H1(m) · e(gβ,h)s, gs).

However, unfortunately, a ciphertext obtained by the above encryption algorithm E′ can still be manipulated easily by 
an adversary who can perform adaptive chosen ciphertext attacks (CCA2), similarly to the CCA2 attack for the ElGamal 
encryption [13]. (We remark that the ElGamal encryption does not achieve CCA2 security.)

To prevent CCA2 attacks, we adapt the technique presented by Lai et al. [14], which was originally proposed to obtain an 
efficient CCA2-secure PKE scheme in the standard model. In [14], the authors paid attention that many (generic) CCA2-secure 
PKE schemes in the standard model were constructed using identity-based encryption and then attempted to apply an 
identity-based technique to design a direct CCA2-secure PKE scheme. As a result, they obtained an efficient CCA2-secure 
PKE scheme under the DBDH assumption by attaching two additional components to a ciphertext of an ElGamal-type PKE, 
where it requires only 3 additional exponentiations to compute them. By adapting their technique, we finally obtain our 
encryption algorithm as follows:
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Enc(pk,m) = (C0, C1, C2, C3, C4)

= (
m · e(gα,h)s, H1(m) · e(gβ,h)s, gs, (ut vrω)s, r

)
(2)

where a public key pk = (g, e(gα, h), e(gβ, h), u, v, ω) for randomly chosen u, v, ω ∈ G in the key generation algorithm, 
r ∈ Zp is a random element chosen by the encryption algorithm, t = H2(C0, C1, C2), and H2 : GT × GT × G → Zp is a 
cryptographic hash function.

Informally, in the CCA2 security game, the adversary who wants to ask a decryption query by manipulating the challenge 
ciphertext, cannot obtain a valid modification of the challenge ciphertext because she does not know the exact randomness s
utilized in the challenge ciphertext and thus she cannot generate C3 in Equation (2) for another valid ciphertext correctly. 
On the other hand, if a tester has the value hβ , which is a secret key corresponding to E(pk2, H1(m)) in Equation (1), then 
he can obtain H1(m) from Equation (2) since it holds that

C1/e(C2,hβ) = H1(m) · e(gβ,h)s/e(gs,hβ) = H1(m).

Thus, he can perform equality tests by comparing H1(m) values. In this case, we expect that a tester cannot obtain the exact 
value m from given H1(m) if the exploited hash function H1 is one-way. (To this end, as in other PKEET schemes, we also 
assume that the size of message space is exponential in λ and the min-entropy of the message distribution is sufficiently 
higher than λ for security parameter λ. See Remark 1 for details.)

We formally show that our construction achieves one-wayness under adaptive chosen ciphertext attacks (OW-CCA2) 
against Type-I adversaries who have trapdoors for equality tests and indistinguishability under adaptive chosen ciphertext 
attacks (IND-CCA2) against Type-II adversaries who do not have trapdoors. They are achieved in the standard model under 
assuming that the DBDH assumption holds and exploited hash functions are one-way and collision-resistant.

Our proposed scheme has better performance than the outcome obtained from Lee et al.’s generic construction [10]
by employing Boneh and Boyen’s 2-level HIBE scheme [11] and Boneh, Shen, and Waters’ signature scheme [12]: Our 
construction reduces the number of group elements in a ciphertext from linear in λ to constant for security parameter λ. The 
computational costs for encryption, decryption, and test algorithms are improved by about 60%, 77%, and 66%, respectively. 
Furthermore, parameter sizes and the efficiency of our encryption algorithm are also comparable to those of the existing 
efficient schemes [4,6] in the random oracle model. (Refer to Table 2 in Section 5 for the details of efficiency comparison.)

1.2. Related work

In this subsection, we briefly review existing PKEET constructions.

PKEET in the random oracle model. Since Yang et al. [1] introduced the concept of PKEET and presented the first in-
stantiation, there have been proposed various PKEET constructions in the random oracle model. Tang [2,3] proposed a 
security-enhanced PKEET scheme in the sense that the system model separates a tester who has trapdoors for equality tests 
and others who do not have. However, his constructions exploited an interactive protocol between a receiver and a tester to 
issue a trapdoor and it caused a drawback of efficiency. Later, Tang [4] proposed an efficiency-improved version by removing 
an interactive protocol. We note that our scheme and several recently proposed schemes [6,7,10] follow this system model. 
Ma et al. [5] gave a PKE scheme with delegated equality test that employs an entity that is the only party who can access to 
storage. Independently, Huang et al. [15] proposed a PKE scheme with authorized equality test where it can issue two types 
of trapdoors for a specified ciphertext and all user’s ciphertexts, respectively. However, their scheme was not IND-CCA2 
secure and Lee et al. [16] recently pointed out and rectified it. Ma et al. [6] proposed a PKEET construction that supports 
four types of authorizations. Very recently, Lee et al. [7] provided a semi-generic construction for PKEET. We say that their 
scheme is semi-generic in the sense that a specific scheme can be obtained by employing IND-CCA2 secure PKE schemes, 
and one-way and collision-resistant hash functions with the computational Diffie–Hellman assumption.

PKEET in the standard model. As far as we know, there exists only one PKEET construction in the standard model. Very 
recently, Lee et al. [10] proposed a generic construction for PKEET which was derived from a 2-level HIBE scheme that is 
secure under selective identity and chosen plaintext attacks and a strongly unforgeable one-time signature. Let us elaborate 
their construction: Assume that there are a 2-level HIBE scheme HIBE = (Setup, KeyGen, Enc, Dec) and a one-time signa-
ture OTS = (KeyGen, Sign, Verify). Then, a ciphertext of their scheme for message m consists of ct = (vk, C0, C1, C2) where 
vk is a verification key generated by executing the key generation algorithm of one-time signature OTS.KeyGen(λ) for input 
a security parameter λ,

C0 = HIBE.Enc([0.vk],m), C1 = HIBE.Enc([1.vk],H1(m)), and C2 = OTS.Sign(sk, [C0‖C1]).
Here, sk is a signing key corresponding to vk, H1 is a cryptographic hash function, and [ID1.ID2] denotes an identity whose 
i-th level identity is IDi for i = 1, 2. In this scheme, the secret key sk1 for the first-level identity 1 is a trapdoor since a 
tester who has sk1 can generate a secret key of identity [1.vk] for any vk using sk1 and thus he can perform equality 
tests by recovering H1(m) from C1. Their scheme yields the first specific construction by employing existing HIBE schemes 
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and one-time signatures in the standard model. However, unfortunately, there are no efficient HIBE scheme and one-time 
signature in the standard model, which generate PKEET schemes that have comparable performance to existing PKEET 
schemes in the random oracle model.

Roadmap. In Section 2, we introduce the system model and definitions for our PKEET construction and give preliminaries 
used in our construction. We present our PKEET scheme in Section 3 and analyze its security in Section 4. Section 5
compares features and efficiency of our work with related works and Section 6 concludes this work.

2. Preliminaries

In this section, we introduce our PKEET system model and provide formal definitions for PKEET and its security model. 
Then, we recall cryptographic assumptions and primitives that will be utilized in our construction.

Notations. For a finite set S , we denote by s $←− S the process of uniformly sampling a random element s from S . If A is an 
algorithm, a ← A denotes that A outputs a. Denote by [n] the set {1, . . . , n}. We say that a function f : N → R is negligible 
if f (λ) ≤ 1/p(λ) for all polynomials p(·) and sufficiently large λ.

2.1. Public key encryption with equality test

System model for our PKEET. Our PKEET system consists of the following three entities, a sender(s), a receiver(s), and a 
tester(s): When a sender wants to send his/her data to a receiver, he/she encrypts his/her data using the receiver’s public 
key and sends a ciphertext to the receiver. The receiver may decrypt the ciphertext using his/her secret key and/or store it 
at the server. Once a need arises, the receiver issues a trapdoor for equality tests of all his/her ciphertexts to a tester who 
can access to the server. Since then, the tester can perform equality tests on the ciphertexts encrypted using the public key 
of the receiver who passed the trapdoor to the tester.

Before introducing definitions of PKEET, we remark that a PKEET system is formulated in a multi-user setting. Throughout 
the paper, we assume that each user is assigned an index i for 1 ≤ i ≤ N where N is the number of users in the system. For 
notational convenience, we often use a subscripted index to represent a user and his/her ciphertexts, keys and trapdoors. 
For example, Ui is the i-th user and pki , cti , and tdi are a public key, a ciphertext, and a trapdoor for user Ui , respectively.

Definition 1. A public key encryption with equality test (PKEET) consists of the following six polynomial-time algorithms:

• Setup(λ): On input a security parameter λ, it outputs the public parameter pp.

We note that pp includes M where M denotes the message space of the PKEET scheme. We also remark that all the 
following algorithms take pp as an input, although it is not explicitly stated.

• KeyGen(pp): It takes the public parameter pp as an input and outputs a pair of user’s public and secret keys (pk, sk).
• Enc(pk, m): It takes the public key pk and a message m as inputs and outputs a ciphertext ct.
• Dec(sk, ct): On input the secret key sk and a ciphertext ct, it outputs a message m′ or ⊥.
• Td(ski): It takes the secret key ski for user Ui as an input and returns a trapdoor tdi .
• Test(tdi, td j, cti, ct j): It takes two trapdoors tdi, td j and two ciphertexts cti, ct j for users Ui, U j , respectively, as inputs 

and outputs 1 or 0.

Correctness. We say that a PKEET scheme is correct if the following three conditions hold:
(1) For any security parameter λ, any user Ui and any message m ∈M, it holds that

Pr

⎡
⎣Dec(ski,cti) = m

∣∣∣∣∣∣
pp ← Setup(λ);
(pki, ski) ← KeyGen(pp);
cti ← Enc(pki,m)

⎤
⎦ = 1.

(2) For any security parameter λ, any users Ui, U j and any messages mi, m j ∈M, it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Test

⎛
⎜⎜⎝

tdi,

td j,

cti,

ct j

⎞
⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp ← Setup(λ);
(pki, ski) ← KeyGen(pp);
cti ← Enc(pki,mi);
tdi ← Td(ski);
(pk j, sk j) ← KeyGen(pp);
ct j ← Enc(pk j,m j);
td j ← Td(sk j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1

if mi = m j regardless of whether i = j or not.
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(3) For any security parameter λ, any users Ui, U j and any two messages mi, m j ∈M, it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Test

⎛
⎜⎜⎝

tdi,

td j,

cti,

ct j

⎞
⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp ← Setup(λ);
(pki, ski) ← KeyGen(pp);
cti ← Enc(pki,mi);
tdi ← Td(ski);
(pk j, sk j) ← KeyGen(pp);
ct j ← Enc(pk j,m j);
td j ← Td(sk j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is negligible in λ for any two ciphertexts cti and ct j such that Dec(ski, cti) 
= Dec(sk j, ct j) regardless of whether i = j or 
not.

2.2. Security model for PKEET

Since a tester can have trapdoors for equality tests, we consider two types of adversaries for the security of PKEET 
schemes, depending on whether an adversary has a trapdoor for the target user or not. If the adversary has a trapdoor 
for the target user, then she can perform equality tests on the challenge ciphertext. Thus, we cannot expect to achieve 
the indistinguishability-based security notion against her. Instead, one-wayness of the target ciphertext is expected. On the 
other hand, if the adversary cannot have a trapdoor, we can expect to achieve the indistinguishability-based security notion, 
as in traditional PKE schemes. In summary, we consider the following two types of adversaries:

• Type-I adversary: This type of adversaries can request to issue a trapdoor for the target user and thus can perform 
equality tests on the challenge ciphertext. Hence, we regard that the aim of this type of adversaries is to reveal the 
message in the challenge ciphertext.

• Type-II adversary: This type of adversaries cannot request to issue a trapdoor for the target user and thus cannot 
perform equality tests on the challenge ciphertext. Hence, we regard that the aim of this type of adversaries is to 
distinguish which message is in the challenge ciphertext between two candidates.

OW-CCA2 security against Type-I adversaries. We define an experiment played by a challenger and a Type-I adversary A
who can have a trapdoor for all ciphertexts of the target user Uθ as follows:

Experiment ExpOW-CCA2
A,PKEET (λ)

pp ← Setup(λ); Uθ ← A(pp);
(pki, ski) ← KeyGen(pp) for 1 ≤ i ≤ N;
req ← AOKeyGen(·),ODec(·,·),OTd(·)({pki}N

i=1);
m

$←− Sample(req); ct
∗
θ ← Enc(pkθ ,m);

m′ ← AOKeyGen(·),ODec(·,·),OTd(·)({pki}N
i=1,ct

∗
θ )

where m $←− Sample(req) denotes that the challenger samples a random message m from M once it receives the challenge 
request req from A. Here, OKeyGen(·) is a secret key extraction oracle that takes an index i as an input and returns a secret 
key of user Ui , ODec(·, ·) is a decryption oracle that takes an index i and a ciphertext cti for user Ui as inputs and returns 
a message mi which is the outcome of Dec(ski, cti), and OTd(·) is a trapdoor extraction oracle that takes an index i as an 
input and returns a trapdoor tdi for user Ui . In the above experiment, there are two restrictions for A that (1) the index of 
the target user θ cannot be queried to the secret key extraction oracle OKeyGen(·) and (2) the pair of the index of the target 
user and the challenge ciphertext (θ, ct

∗
θ ) cannot be queried to the decryption oracle ODec(·).

A PKEET scheme is OW-CCA2 secure against Type-I adversaries if for any probabilistic polynomial-time (PPT) adversary A, 
its advantage function defined as

AdvOW-CCA2
A,PKEET (λ) := Pr[m′ = m]

in the above experiment is negligible in λ.

Remark 1. We remark that a Type-I adversary can perform equality tests between the challenge ciphertext and ciphertexts 
of any messages, generated by herself, since she has the trapdoor for the challenge ciphertext. Thus, if the size of mes-
sage space is polynomial in the security parameter λ or the min-entropy of the message distribution is not as high as λ, 
the adversary can reveal the message in the challenge ciphertext within polynomial time or sufficiently small exponential 
time in λ. Therefore, we assume that the size of message space is exponential in λ and the min-entropy of the message 
distribution is sufficiently higher than λ.
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IND-CCA2 security against Type-II adversaries. We define an experiment played by a challenger and a Type-II adversary A
who cannot have a trapdoor for all ciphertexts for the target user Uθ as follows:

Experiment ExpIND-CCA2
A,PKEET (λ)

pp ← Setup(λ); Uθ ← A(pp);
(pki, ski) ← KeyGen(1λ) for 1 ≤ i ≤ N;
(m0,m1) ← AOKeyGen(·),ODec(·,·),OTd(·)({pki}N

i=1);
γ

$←− {0,1}; ct
∗
θ,γ ← Enc(pkθ ,mγ );

γ ′ ← AOKeyGen(·),ODec(·,·),OTd(·)({pki}N
i=1,ct

∗
θ,γ )

where OKeyGen(·), ODec(·, ·), and OTd(·) are oracles defined as the same as in the experiment for the OW-CCA2 security 
of PKEET. Here, there are two restrictions for A that (1) the index for the target user θ cannot be queried to the trapdoor 
generation oracle OTd(·) as well as the secret key generation oracle OKeyGen(·), and (2) the pair of the index of the target 
user and the challenge ciphertext (θ, ct

∗
θ,γ ) cannot be queried to the decryption oracle ODec(·).

A PKEET scheme is IND-CCA2 secure against Type-II adversaries, if for any PPT adversary A, its advantage function de-
fined as

AdvIND-CCA2
A,PKEET (λ) :=

∣∣∣∣Pr[γ ′ = γ ] − 1

2

∣∣∣∣
in the above experiment is negligible in λ.

2.3. Cryptographic assumptions

Now, we review cryptographic assumptions that we will utilize in our construction.

Decisional bilinear Diffie–Hellman assumption. The security of our construction relies on the decisional bilinear Diffie–
Hellman (DBDH) assumption. Consider the following game between the challenger C and the adversary A: Let Gen be 
an algorithm that takes a security parameter λ as an input and outputs a pair (p,G,GT , e, g) where G, GT are mul-
tiplicative cyclic groups of order p, e is a bilinear map from G × G to GT , and g is a generator of G. C first obtains 
(p, G, GT , e, g) by executing Gen(1λ). C then chooses random elements a, b, c from Zp and tosses an unbiased random 
coin β . If β = 1, C sets T to e(g, g)abc . Otherwise (i.e., β = 0), C sets T to a randomly chosen element from GT . C passes 
the instance (g, ga, gb, gc, T ) to A. A then outputs a guess β ′ ∈ {0, 1}. We define an advantage of A in the above game as ∣∣Pr[β ′ = β] − 1

2

∣∣.

Definition 2. We say that the decisional bilinear Diffie–Hellman assumption holds in (G, GT ) if for any adversary, its ad-
vantage in the above game is negligible in the security parameter λ.

Properties of hash functions. We will exploit one-wayness and collision resistance of hash functions for the correctness and 
the security of our construction. We provide formal definitions of those properties below.

Definition 3. We say that a function H : X → Y is one-way if H can be computed by a polynomial time algorithm, but any 
PPT adversary A that attempts to recover the pre-image for H succeeds with negligible probability, that is, for y $←− Y

Pr[H(x) = y | x ← A(λ,H, y)]
is negligible in λ.

Definition 4. We say that a function H : X → Y is collision-resistant if H can be computed by a polynomial time algorithm, 
but any PPT adversary A that finds a collision for H with negligible probability, that is,

Pr[(x′ 
= x) ∧ (H(x) = H(x′)) | x, x′ ← A(λ,H)]
is negligible in λ.

3. Our PKEET construction

In this section, we present our PKEET construction and look into the correctness of our scheme. First, the description of 
our PKEET scheme is as follows.
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Setup(λ): Given a security parameter λ, generate a bilinear map e : G × G → GT where G, GT are two cyclic groups of 
prime order p = p(λ). Choose a random generator g of group G. Set G = (p, G, GT , e, g). Generate two crypto-
graphic hash functions H1 :GT →GT and H2 :GT ×GT ×G → Zp . Output a system parameter

pp = (G,H1,H2).

KeyGen(pp): Given the public parameter pp, select random elements α, β, x, y, z from Zp . Set g1 = gα, g2 = gβ, u = gx,

v = g y, ω = gz . Pick a random element h $←− G and output a public key and a secret key

pk = (A := e(g1,h), B := e(g2,h), u, v,ω) ,

sk = (K1, K2, K3, K4, K5) = (hα,hβ, x, y, z).

Enc(pk,m): On input pk and a message m ∈ GT , it randomly chooses s, r $←− Zp , computes

C0 = m · As, C1 = H1(m) · Bs, C2 = gs, C3 = (ut vrω)s

where t = H2(C0, C1, C2), and sets C4 = r. Then, it outputs a ciphertext ct = (C0, C1, C2, C3, C4).
Dec(sk,ct): On input sk = (K1, K2, K3, K4, K5) and ct = (C0, C1, C2, C3, C4), it performs as follows:

1. Compute t = H2(C0, C1, C2).
2. Check whether (C2)

t K3+C4 K4+K5 = C3. If it does not hold, output ⊥.
3. Otherwise, compute

H′ = C1

e(C2, K2)
and m′ = C0

e(C2, K1)
.

4. Output m′ if H′ = H1(m′) and 0 otherwise.
Td(ski): Given a user Ui ’s secret key ski = (Ki,1, Ki,2, Ki,3, Ki,4, Ki,5), it outputs a trapdoor tdi = Ki,2.
Test(tdi, td j,cti,ct j): It takes trapdoors tdi, td j and ciphertexts cti, ct j for users Ui, U j , respectively, as inputs. Then, it 

parses cti = (Ci,0, Ci,1, Ci,2, Ci,3, Ci,4) and ct j = (C j,0, C j,1, C j,2, C j,3, C j,4), and computes

H′
i = Ci,1

e(Ci,2, tdi)
and H′

j = C j,1

e(C j,2, td j)
.

Output 1 if H′
i = H′

j and 0 otherwise.

Remark 2. To improve the efficiency of the encryption process, we avoid pairing operations in computing (C0, C1) of cipher-
texts by handing them over to the key generation algorithm. From our current construction, one may consider to define our 
scheme on a group over a finite field, not a pairing group: For example, let G be a multiplicative subgroup of Z∗

q for suffi-
ciently large prime q and g be a generator of G whose order is prime p. Set A = gα and B = gβ in the public key where α
and β are secret keys randomly chosen from Zp . The trapdoor is β . We carefully guess this provisional construction works 
correctly.

However, unfortunately, we cannot find an appropriate way to implement decryption oracle queries in the security game 
under that setting. Thus, to adapt Lai et al.’s technique [14] which was originally presented to construct IND-CCA2 PKE 
schemes, our scheme is defined on pairing groups. (See the proofs of Theorems 2 and 3 for decryption oracle queries.)

Correctness. The following theorem demonstrates the correctness of our PKEET construction.

Theorem 1. Our PKEET construction described in the above is correct if H1 and H2 are collision-resistant hash functions.

Proof. 1. Let ct = (C0, C1, C2, C3, C4) be a valid ciphertext of message m under the public key pk. Then, for sk = (K1, K2,

K3, K4, K5) = (hα, hβ, x, y, z), we have

(C2)
t K3+C4 K4+K5 = (C2)

tx+ry+z = (gs)tx+ry+z = (ut vrω)s = C3

where t = H2(C0, C1, C2) and r = C4 since u = gx , v = g y , and ω = gz . Furthermore, we obtain

C0

e(C2, K1)
= m · e(g1,h)s

e(gs,hα)
= m · e(gα,h)s

e(g,h)αs
= m = m′

and

C1

e(C2, K2)
= H1(m) · e(g2,h)s

e(gs,hβ)
= H1(m) · e(gβ,h)s

e(g,h)βs
= H1(m) = H′. (3)

Thus, it holds H′ = H1(m′) and the decryption algorithm always outputs m.
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2. Let ctk := (Ck,0, Ck,1, Ck,2, Ck,3, Ck,4) be a valid ciphertext of message mk under the user Uk ’s public key pkk for k = i, j. 
If mi = m j , then H′

i = H1(mi) = H1(m j) = H′
j since for k = i, j

Ck,1

e(Ck,2, Kk,2)
= H1(mk) = H′

k

from Equation (3) where the user Uk ’s secret key is skk = (Kk,1, Kk,2, Kk,3, Kk,4, Kk,5). Thus, the Test algorithm always 
outputs 1.

3. Otherwise (i.e., if mi 
= m j), H′
i = H1(mi) 
= H1(m j) = H′

j with overwhelming probability since H1 is collision-resistant. 
Thus, the Test algorithm outputs 1 with negligible probability.

From the above, the proof of Theorem 1 is completed. �
4. Security analysis of our PKEET construction

In this section, we show that our PKEET scheme is OW-CCA2 secure against Type-I adversaries and IND-CCA2 secure 
against Type-II adversaries. Recall that a Type-I adversary can have a trapdoor for the target user’s ciphertexts and then 
can perform an equality test with the challenge ciphertext ct

∗
θ , whereas a Type-II adversary cannot have a trapdoor for the 

target user’s ciphertexts and thus cannot perform an equality test with ct
∗
θ .

First, we look into OW-CCA2 security of our PKEET construction against Type-I adversaries.

Theorem 2. Assume that the DBDH assumption holds in (G, GT ), H1 is a one-way hash function, and H2 is a collision-resistant hash 
function. Then, our proposed PKEET scheme in Section 3 is OW-CCA2 secure against Type-I adversaries in the standard model.

Proof. Assume that there exists a PPT Type-I adversary A who breaks OW-CCA2 security of our PKEET construction with 
non-negligible probability εOURS. Then, using A, we construct a simulator B who solves the DBDH problem on in-
stance (g, ga, gb, gc, T ) where T is the solution of the DBDH problem, e(g, g)abc , or a random element in GT . Let N be 
the number of users in our PKEET system and Uθ be the target user in the OW-CCA2 security game for our construction 
where θ is chosen by A from the set [N] once she receives the public parameter from B. Denote by ct

∗
θ = (C∗

θ,0, C∗
θ,1, C∗

θ,2,

C∗
θ,3, C

∗
θ,4) the challenge ciphertext in the security game.

Description of simulator B’s behaviors. First, we describe B’s behaviors below.

1. Once the DBDH instance (g, ga, gb, gc, T ) with (p, G, GT , e) is given by the challenger C of the game for solving the 
DBDH problem, B first generates two cryptographic hash functions H1 : {0, 1}∗ → Zp and H2 : GT ×GT ×G → Zp , sets 
a system parameter pp = (G := (p, G, GT , e, g), H1, H2), and sends pp to A. A returns an index θ for the target user. 
B then executes (pki, ski) ← KeyGen(pp) for 1 ≤ i 
= θ ≤ N . For pkθ , B picks random elements η, xv , xω, yu, yv , yω ∈ Zp

and sets

g1 = ga, g2 = gη, h = gb, u = gb g yu = gb+yu , v = (gb)xv g yv = gbxv+yv , ω = (gb)xω g yω = gbxω+yω .

Then it sets pkθ := (e(g1, h), e(g2, h), u, v,ω). We note that the secret key skθ for user Uθ satisfies the following relation

skθ := (hα = ha = gab, hβ = (gb)
η = gbη, x = b + yu, y = bxv + yv , z = bxω + yω),

although B cannot have hα , x, y, and z explicitly since B does not know a and b. Finally, B passes all pki ’s to A.
2. For A’s queries, B responds as follows. First, since B has all secret keys ski ’s for 1 ≤ i 
= θ ≤ N , B can respond correctly 

to all OKeyGen(i), OTd(i), and ODec(i, cti) queries using ski if i 
= θ . A cannot request a query on θ to OKeyGen(·) and B
can respond correctly to OTd(θ) by sending hβ = (gb)η because η was chosen by B. Lastly, for A’s decryption queries 
on (θ, ctθ ) where ctθ = (Cθ,0, Cθ,1, Cθ,2, Cθ,3, Cθ,4), B performs as follows: B computes tθ = H2(Cθ,0, Cθ,1, Cθ,2) and 
checks whether

e(Cθ,2, utθ vrθ ω) = e(g, Cθ,3) (4)

where rθ = Cθ,4. If it does not hold, output ⊥. We note that Cθ,2 = gsθ and Cθ,3 = (utθ vrθ ω)sθ for some sθ ∈ Zp if the 
submitted ciphertext is valid, and thus it holds Equation (4). Next, it checks whether

tθ + rθ xv + xω = 0. (5)

If it holds, B aborts and returns a random guess. We denote the event that submitted ciphertexts hold Equation (5) by 
Event1. Otherwise, B computes H′ = Cθ,1/e(Cθ,2, hη) using the knowledge of η. Since
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H′ = Cθ,1/e(Cθ,2,hη)

= H1(mθ ) · e(gη, gb)sθ /e(gsθ , (gb)η)

= H1(mθ )

where sθ ∈ Zp is the randomness in ctθ , it holds that H′ = H1(mθ ) if the given ciphertext is valid and mθ is the message 
in the ciphertext ctθ . Next, B randomly chooses s′

θ ∈ Zp , computes

Kθ,1,1 = g
− tθ yu+rθ yv +yω

tθ +rθ xv +xω
1 (utθ vrθ w)s′θ ,

Kθ,1,2 = g
− 1

tθ +rθ xv +xω
1 gs′θ

and then computes

m′ = Cθ,0 · e(Cθ,3, Kθ,1,2)

e(Cθ,2, Kθ,1,1)
.

Since Cθ,3 = (utθ vrθ ω)sθ if it is valid, we have

e(Cθ,3, Kθ,1,2)/e(Cθ,2, Kθ,1,1) = e((utθ vrθ ω)sθ , g
− 1

tθ +rθ xv +xω
1 gs′θ )

e(gsθ , g
− tθ yu+rθ yv +yω

tθ +rθ xv +xω
1 (utθ vrθ ω)s′θ )

= e((gtθ (b+yu)+rθ (bxv+yv )+bxω+yω)sθ , g
− 1

tθ +rθ xv +xω
1 )

e(gsθ , g
− tθ yu+rθ yv +yω

tθ +rθ xv +xω
1 )

= e((gbtθ +brθ xv+bxω)sθ , g
− 1

tθ +rθ xv +xω
1 )

= e((gb)sθ , g−a)

= e(g, g)−absθ (6)

and thus

m′ = Cθ,0 · e(Cθ,3, Kθ,1,2)

e(Cθ,2, Kθ,1,1)

= mθ · e(g1,h)sθ · e(g, g)−absθ

= mθ · e(ga, gb)sθ · e(g, g)−absθ = mθ

if the given ciphertext is valid and mθ is the message in the submitted ciphertext ctθ . Finally, B checks whether 
H′ = H1(m′). If it holds, B outputs m′ for A’s decryption query. Otherwise, it returns ⊥.

3. Once A returns the challenge request req, B picks a random message m from M, computes

C∗
θ,0 = m · T ,

C∗
θ,1 = H1(m) · e(gc, (gb)

η
) = H1(m) · e(g, g)ηbc,

where (g, ga, gb, gc, T ) is the challenge of the DBDH problem, and sets

C∗
θ,2 = gc .

Then, it computes t∗
θ = H2(C∗

θ,0, C
∗
θ,1, C

∗
θ,2) and

C∗
θ,4 = r∗

θ = − t∗
θ + xω

xv
.

Finally, it computes

C∗
θ,3 = (gc)t∗θ yu+r∗

θ yv+yω

and then returns

ct
∗
θ = (C∗ , C∗

θ,1, C∗ , C∗ , C∗ )
θ,0 θ,2 θ,3 θ,4
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as the challenge ciphertext. We note that C∗
θ,0 is the first part of the valid ciphertext if T is the solution of the DBDH 

problem. Otherwise, C∗
θ,0 is independent of m. Since gc , xv , and xω firstly appear in the challenge ciphertext, C∗

θ,2 and 
C∗

θ,4 look random in the view of A. C∗
θ,1 and C∗

θ,3 are also valid since

C∗
θ,1 = H1(m) · e(g2,h)c = H1(m) · e(g, g)ηbc

and

C∗
θ,3 = (gc)t∗θ yu+r∗

θ yv+yω

= (gc)
t∗θ yu− t∗

θ
+xω
xv

yv+yω

= (gt∗θ (b+yu)− (t∗
θ
+xω)

xv
(bxv+yv )+(bxω+yω)

)c

= ((gb+yu )t∗θ · (gbxv+yv )r∗ · gbxω+yω)c

= (ut∗θ vr∗ω)c .

4. B continues to respond to A’s queries as almost the same as in the previous, except for the followings:
(a) If A submits a decryption query on the challenge ciphertext ct

∗
θ , B returns ⊥.

(b) Else if the submitted ciphertext ctθ is of the form

ctθ = (Cθ,0, Cθ,1, C∗
θ,2, C∗

θ,3, C∗
θ,4) (7)

such that H2(Cθ,0, Cθ,1, C∗
θ,2) = t∗

θ , but ctθ 
= ct
∗
θ , then B aborts and returns a random guess. We denote this event 

by Event2.
(c) Otherwise, it checks whether

tθ + rθ xv + xω = 0 (8)

where tθ = H2(Cθ,0, Cθ,1, Cθ,2) and rθ = Cθ,4. If the above holds, B aborts and returns a random guess. We denote 
this event by Event3.

5. Finally, once A outputs m′ , B outputs 1 if m′ = m. Otherwise, it returns ⊥.

Analysis of B’s advantage. Now, we analyze B’s advantage. We first note that any abortion in the experiment does not leak 
any meaningful information for A. Particularly, when Event3 occurs, it may leak some information of xv and xω . However, 
Equation (8) can hold for p possible pairs of (xv , xω) and each of them is satisfied equally. Thus, information-theoretically, 
the probability that each pair is actual value (xv , xω) used to generate (v, ω) is at most 1/p. Furthermore, the information 
of xv and xω in v and ω is perfectly hidden by yv and yω , respectively. Finally, Equation (4) gives the information that Cθ,2
and Cθ,3 share the same randomness only.

Next, we consider the following cases that B’s simulation fails.
(1) FailH1 : Since A has the trapdoor hβ = hη = (gb)η for user Uθ , A may obtain

H1(m) = Cθ,1/e(Cθ,2,hη)

from Cθ,1 and Cθ,2. Thus, A may obtain any information of the challenge message m from H1(m), not C∗
θ,0. In fact, we 

cannot expect A’s behaviors after H1(m) is given to A, but we can estimate the bound of the probability that A obtains 
the correct m from H1(m) by constructing a simulator B that breaks the one-wayness of H1.

To construct B using A, for given the instance H′ , when B generates the challenge ciphertext, B embeds H′ into the 
challenge ciphertext as follows: First, select random elements s, r $←− Zp and a random message m $←− M. Then, compute

Cθ,0 = m · e(g1,h)s, Cθ,1 = H′ · e(g2,h)s, Cθ,2 = gs, Cθ,3 = (ut vrω)s, Cθ,4 = r

where t = H2(C∗
θ,0, C

∗
θ,1, C

∗
θ,2) and send ct

∗
θ = (C∗

θ,0, C
∗
θ,1, C

∗
θ,2, C

∗
θ,3, C

∗
θ,4) to A. Then, A finally returns the pre-image of H′

and so B can break the one-wayness of H1 using A’s answer. Thus, we have

Pr[FailH1 ] ≤ εH1,OW

where εH1,OW is the success probability that A breaks the one-wayness of H1.
(2) AbortB: Let AbortB denote the union of events that B aborts in the simulation.

• Event1 and Event3: Information-theoretically, it tells that the probability that the equation tθ + rθ xv + xω = 0 holds is 
at most 1/p where rθ is randomly chosen from Zp , tθ is independent of rθ , and xv and xω are fixed. Thus, we have

Pr[Event1 ∨ Event3] ≤ Pr[Event1] + Pr[Event3] ≤ q · 1/p

where A allows at most q queries.
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• Event2: This event occurs when A generates a ciphertext ctθ = (Cθ,0, Cθ,1, C∗
θ,2, C

∗
θ,3, C

∗
θ,4) such that H2(Cθ,0, Cθ,1, C∗

θ,2)

= t∗
θ , but ctθ 
= ct

∗
θ = (C∗

θ,0, C
∗
θ,1, C

∗
θ,2, C

∗
θ,3, C

∗
θ,4). On the other hand, it holds that H2(C∗

θ,0, C
∗
θ,1, C

∗
θ,2) = t∗

θ and thus we 
find a collision (Cθ,0, Cθ,1, C∗

θ,2), (C∗
θ,0, C

∗
θ,1, C

∗
θ,2) of the hash function H2. Hence, we have

Pr[Event2] ≤ εH2,CR

where εH2,CR is the success probability that A breaks the collision resistance of H2.

From the above, we have

Pr[AbortB] = Pr[Event1 ∨ Event2 ∨ Event3] ≤ q/p + εH2,CR.

Furthermore, let F be the union of the events FailH1 and AbortB . Then, we have

Pr[F] = Pr[FailH1 ∨ AbortB] ≤ εH1,OW + εH2,CR + q/p.

Now, we are ready to compute the advantage of B. Denote by SuccB the event that B outputs the correct answer in the 
DBDH game. Recall that the DBDH challenge instance is (g, ga, gb, gc, T ) where T = T1 = (g, g)abc or T = T0

$←− GT . Then, 
we have

εB,DBDH = Pr[SuccB ∧ ¬F]
≥ Pr[SuccB ∧ ¬F ∧ (m′ = m)]
= 1

2
· ( Pr[SuccB ∧ ¬F ∧ (m′ = m) | T = T1] + Pr[SuccB ∧ ¬F ∧ (m′ = m) | T = T0] )

≥ 1

2
· Pr[SuccB | ¬F ∧ (m′ = m) ∧ (T = T1)] · Pr[¬F ∧ (m′ = m) | T = T1] + 0

= 1

2
· 1 · Pr[¬F ∧ (m′ = m) | T = T1]

= 1

2
· Pr[m′ = m | ¬F ∧ (T = T1)] · Pr[¬F | T = T1]

= 1

2
· AdvOW−CCA

A · (1 − Pr[F | T = T1])

= 1

2
· εOURS · (1 − Pr[F ∧ (T = T1)] · 1

2
)

≥ 1

4
· εOURS · (2 − Pr[F])

≥ 1

4
· (2 − εH1,OW − εH2,CR − q/p) · εOURS.

The third and eighth steps hold since Pr[T = T0] = Pr[T = T1] = 1/2. The fifth step holds because when B’s simulation does 
not fail and T = e(g, g)abc along with A outputting m′ = m, the probability that B outputs the correct answer is 1. The 
seventh step holds because when B’s simulation does not fail and T = e(g, g)abc , A’s view is identical to its view in the 
real security game and thus the probability that A outputs m′ = m is the same as the advantage of A.

Therefore, we obtain the relation

εOURS ≤ 4

2 − εH1,OW − εH2,CR − q/p
· εB,DBDH. �

Now, we look into IND-CCA2 security of our PKEET construction against Type-II adversaries.

Theorem 3. Assume that the DBDH assumption holds in (G, GT ) and H2 is a collision-resistant hash function. Then, our proposed 
PKEET scheme in Section 3 is IND-CCA2 secure against Type-II adversaries in the standard model.

Proof. We note that the proof of this theorem is similar to the proof of Theorem 2. Assume that there exists a PPT Type-II 
adversary A who breaks IND-CCA2 security of our PKEET construction with non-negligible probability εOURS. Then, we 
construct a simulator B who solves the DBDH problem on instance (g, ga, gb, gc, T ) using A, where T is the solution of the 
DBDH problem, e(g, g)abc , or a random element in GT . Assume that there are N users in our PKEET system.
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Description of simulator B’s behaviors. We first describe B’s behaviors.

1. When the DBDH instance (g, ga, gb, gc, T ) with (p, G, GT , e) is given by the challenger C of the game for solving the 
DBDH problem, B generates two cryptographic hash functions H1 : {0, 1}∗ → Zp and H2 : GT × GT × G → Zp , sets a 
system parameter pp = (G := (p, G, GT , e, g), H1, H2), and forwards pp to A. A submits an index θ for the target user 
to B. Then, B runs (pki, ski) ← KeyGen(pp) for 1 ≤ i 
= θ ≤ N . To generate pkθ , B first tosses an unbiased coin δ ∈ {0, 1}
and selects random elements η, xv , xω, yu, yv , yω ∈ Zp . According to the value δ, B behaves differently:
(1) If δ = 0, B sets pkθ = (e(g1, h), e(g2, h), u, v, ω) where

g1 = ga, g2 = gη ,h = gb,

u = gb g yu , v = (gb)xv g yv , and ω = (gb)xω g yω , and regards that the secret key is

skθ :=
(

hα = ha = gab, hβ = hη = gbη, x = b + yu, y = bxv + yv , z = bxω + yω

)
.

We note that B cannot have hα .
(2) If δ = 1, B sets pkθ = (e(g1, h), e(g2, h), u, v, ω) where

g1 = gη, g2 = gα ,h = gb,

u = gb g yu , v = (gb)xv g yv , and ω = (gb)xω g yω , and regards that the secret key is

skθ :=
(

hα = hη = gηb, hβ = ha = gab, x = b + yu, y = bxv + yv , z = bxω + yω

)
.

We note that B cannot have hβ .
Finally, B forwards all pki ’s for 1 ≤ i ≤ N to A.

2. For A’s queries, B responds differently depending on the choice of δ. We note that OTd(θ) query is not allowed to A
in this experiment.
(1) If δ = 0, B’s responses are exactly the same as those in the proof of Theorem 2.
(2) If δ = 1, B can respond correctly to OKeyGen(i), OTd(i) and ODec(i, cti) queries using the secret key ski for 1 ≤
i 
= θ ≤ N . For decryption queries on (θ, ctθ ) where ctθ = (Cθ,0, Cθ,1, Cθ,2, Cθ,3, Cθ,4), B performs as follows: B first 
computes tθ = H2(Cθ,0, Cθ,1, Cθ,2) and checks if

e(Cθ,2, utθ vrθ ω) = e(g, Cθ,3)

where rθ = Cθ,4. If it does not hold, B outputs ⊥. Otherwise, it checks if

tθ + rθ xv + xω = 0. (9)

If it holds, B aborts and returns a random guess. Otherwise, B randomly chooses s′
θ ∈ Zp and computes

Kθ,2,1 = g
− tθ yu+rθ yv +yω

tθ +rθ xv +xω
1 (utθ vrθ w)s′θ ,

Kθ,2,2 = g
− 1

tθ +rθ xv +xω
1 gs′θ

and then computes

H′ = Cθ,1 · e(Cθ,3, Kθ,2,2)

e(Cθ,2, Kθ,2,1)
.

Since Cθ,3 = (utθ vrθ ω)sθ for the randomness sθ in ctθ if it is valid, we obtain e(Cθ,3, Kθ,2,2)/e(Cθ,2, Kθ,2,1) = e(g, g)−absθ

as Equation (6) and thus

H′ = Cθ,0 · e(Cθ,3, Kθ,2,2)

e(Cθ,2, Kθ,2,1)

= H1(mθ ) · e(g2,h)sθ · e(g, g)−absθ

= H1(mθ ) · e(ga, gb)sθ · e(g, g)−absθ = H1(mθ )

if the given ciphertext is valid and mθ is the message in the submitted ciphertext ctθ . Next, B computes m′ =
Cθ,0/e(Cθ,2, hη) by directly using the knowledge of η (hη = hα ). Since

m′ = Cθ,0/e(Cθ,2,hη)

= mθ · e(gη, gb)sθ /e(gsθ , (gb)η) = mθ
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if the given ciphertext is valid and mθ is the message in the ciphertext ctθ , then B has m′ = mθ . Finally, B checks 
whether H′ = H1(m′). If it does not hold, B outputs ⊥. Otherwise, B outputs m′ for A’s decryption query.

3. Upon receiving two messages m0 and m1 from A, B picks a random bit γ ∈ {0, 1} and computes the challenge cipher-
text differently depending on the value δ: For the DBDH instance (g, ga, gb, gc, T ), set C∗

θ,2 = gc . Then,
(1) if δ = 0, compute

C∗
θ,0 = mγ · T , C∗

θ,1 = H1(mγ ) · e(C∗
θ,2, (gb)

η
),

(2) if δ = 1, compute

C∗
θ,0 = mγ · e(C∗

θ,2, (gb)
η
), C∗

θ,1 = H1(mγ ) · T .

Then, compute t∗
θ = H2(C∗

θ,0, C
∗
θ,1, C

∗
θ,2), set C∗

θ,4 = r∗
θ = −(t∗

θ + xω)/xv and compute

C∗
θ,3 = (gc)t∗θ yu+r∗

θ yv+yω .

Finally, B passes ct
∗
θ = (C∗

θ,0, C
∗
θ,1, C

∗
θ,2, C

∗
θ,3, C

∗
θ,4) to A as the challenge ciphertext. We note that we confirm the validity 

of the challenge ciphertext as in the proof of Theorem 2.
4. B continues to respond to A’s queries as the same as Step 2, except for the cases defined at Step 4 of B’s behaviors in 

the proof of Theorem 2. For those cases, B performs as at Step 4 of B’s behaviors in the proof of Theorem 2.
5. Lastly, A outputs its answer γ ′ . If γ ′ = γ , B outputs 1.

Analysis of B’s advantage. Now, we evaluate B’s advantage. By the same reason in the proof of Theorem 2, we first note that 
any abortion does not leak any meaningful information for A. We also consider the cases that B aborts in the experiment 
below.

• Event1 and Event3: These events are the cases that the submitted ciphertext satisfies Equation (9) at Step 2 and Step 4, 
respectively. From the argument in the proof of Theorem 2, we know that

Pr[Event1 ∨ Event3] ≤ Pr[Event1] + Pr[Event3] ≤ q · 1/p

where A allows at most q queries.
• Event2: This event is the case that the submitted ciphertext is of the form ctθ = (Cθ,0, Cθ,1, C∗

θ,2, C∗
θ,3, C∗

θ,4) such that 
H2(Cθ,0, Cθ,1, C∗

θ,2) = t∗
θ , but ctθ 
= ct

∗
θ = (C∗

θ,0, C
∗
θ,1, C

∗
θ,2, C

∗
θ,3, C

∗
θ,4) at Step 4. We know that this event generates a 

collision of the hash function H2. Hence, we have

Pr[Event2] ≤ εH2,CR

where εH2,CR is the success probability that A breaks the collision resistance of H2.

Denote by AbortB the union of the events Event1, Event2, and Event3. Then, we have

Pr[AbortB] = Pr[Event1 ∨ Event2 ∨ Event3] ≤ Pr[Event1 ∨ Event3] + Pr[Event2] ≤ q/p + εH2,CR.

Denote by SuccB the event that B outputs the correct answer in the DBDH game. Recall that DBDH challenge tuple is 
(g, ga, gb, gc, T ) where T = T1 = e(g, g)abc or T = T0

$←− GT . Then, we have

εB,DBDH = Pr[SuccB ∧ ¬AbortB]
≥ Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ ]
= 1

4

(
Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 0 ∧ T = T1] + Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 1 ∧ T = T1]

+ Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 0 ∧ T = T0] + Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 1 ∧ T = T0]
)

≥ 1

4
Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 0 ∧ T = T1] + 1

4
Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 1 ∧ T = T1]

≥ 1

2
· Pr[SuccB ∧ ¬AbortB ∧ γ ′ = γ | δ = 0 ∧ T = T1]

= 1

2
· Pr[SuccB | ¬AbortB ∧ γ ′ = γ ∧ δ = 0 ∧ T = T1] · Pr[¬AbortB ∧ γ ′ = γ | δ = 0 ∧ T = T1]

= 1 · 1 · Pr[¬AbortB ∧ γ ′ = γ | δ = 0 ∧ T = T1]

2
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Table 1
Feature comparison of our construction with existing PKEET schemes.

Security Model Assumptions
OW-CCA2 IND-CCA2

[1] ✓ ✗ ROM CDH
[4] ✓ ✓ ROM CDH
[6] ✓ ✓ ROM CDH
[10] ✓ ✓ SM Generic
Ours ✓ ✓ SM DBDH

Legend: ROM: random oracle model, SM: standard model, CDH: computational 
Diffie–Hellman assumption, DBDH: decisional bilinear Diffie–Hellman assumption.

= 1

2
· Pr[γ ′ = γ | ¬AbortB ∧ δ = 0 ∧ T = T1] · Pr[¬AbortB | δ = 0 ∧ T = T1]

≥ 1

2
· AdvIND−CCA

A · (1 − Pr[AbortB | δ = 0 ∧ T = T1])

≥ 1

2
· εOURS · (1 − 4 Pr[AbortB ∧ δ = 0 ∧ T = T1])

≥ 1

2
· εOURS · (1 − 4 Pr[AbortB])

≥ 1

2
· (1 − 4(εH2,CR − q/p)) · εOURS.

The third and tenth steps hold since Pr[δ = 0 ∧ T = T0] = Pr[δ = 0 ∧ T = T1] = Pr[δ = 1 ∧ T = T0] = Pr[δ = 1 ∧ T = T1] = 1/4
where δ is independent of T . In the fourth step, we assume that the former probability is less than the latter one without 
loss of generality, so the fifth step holds. The seventh step holds because when B does not abort and T = e(g, g)abc along 
with A outputting γ ′ = γ and δ = 0, the probability that B outputs the correct answer is 1. The eighth step holds because 
when B does not abort, T = e(g, g)abc and δ = 0, A’s view is identical to its view in the real security game, and thus the 
probability that A outputs γ ′ = γ is the same as the advantage of A.

Therefore, we obtain

εOURS ≤ 2

1 − 4(εH2,CR − q/p)
· εB,DBDH. �

5. Comparisons and discussions

In this section, we provide comparisons of our proposed scheme with existing PKEET constructions under the same PKEET 
system model as ours. In Table 1, we present a feature comparison among them; the third, fourth, fifth, sixth and last rows 
show features of Yang et al.’s first PKEET scheme [1], Tang’s construction [4], Ma et al.’s scheme [6], Lee et al.’s generic 
construction [10], and our scheme, respectively. Table 1 tells us that our scheme is the first scheme whose security relies 
on a specific cryptographic assumption in the standard model. We remark that Lee et al.’s work [10] is generic in the sense 
that it requires generic cryptographic assumptions such as the existence of 2-level HIBE schemes which are secure under 
selective identity and chosen plaintext attacks, and strongly unforgeable one-time signature schemes. All other listed work 
achieve security requirements in the random oracle model; we note that Yang et al.’s construction [1] achieves OW-CCA2 
security only since anyone can perform equality tests publicly without trapdoors in their scheme.

Table 2 also gives a comparison of space and time complexities among existing PKEET constructions. We employed 
Boneh and Boyen’s 2-level HIBE scheme [11] and Boneh, Shen, and Waters’ signature scheme [12] for Lee et al.’s generic 
construction. We set the output size of exploited hash functions to 2λ bits for security parameter λ. We remark that Ma 
et al.’s work [6] additionally supports flexible authorization that can issue trapdoors of different authorization levels, e.g., 
trapdoors for one specific ciphertext or all ciphertexts. Thus, it seems natural that their scheme is somewhat inefficient 
compared to other listed PKEET schemes in the random oracle model.

We observe that the schemes in the random oracle model are generally more efficient than those in the standard model. 
However, we confirm that parameter sizes of our construction and performance of our encryption algorithm are compara-
ble to those of the existing efficient schemes [4,6] in the random oracle model. Table 2 also shows that our scheme has 
better performance than the outcome obtained by Lee et al.’s generic construction: Our work reduces the number of group 
elements in a ciphertext from linear in λ to constant for security parameter λ. Furthermore, we also reduce computational 
costs for encryption, decryption, and test algorithms by about 60%, 77%, and 66%, respectively.

Practical consideration for encrypting binary string messages. The message space of our proposed scheme in Section 3
is GT , which is the image of the employed bilinear map. Generally, it is a subgroup of a multiplicative group of a finite 
extension field if we exploit a bilinear map defined using elliptic curves. Hence we need an encoding function from the set 
of binary strings into GT to encrypt a binary string message using our scheme. However, to the best of our knowledge, there 
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Table 2
Efficiency comparison of our construction with existing PKEET schemes.

Parameter sizes
Public key Ciphertext Trapdoor

[1] |G| 3|G| + |Zp | –
[4] 2|G| 4|G| + |Zp | + 2λ |Zp |
[6] 3|G| 5|G| + |Zp | |Zp |
[10] 5|G| (2λ + 13)|G| + 2|GT | + |Zp | 2|G|
Ours 3|G| + 2|GT | 2|G| + 2|GT | + |Zp | |G|

Computational costs Model
Encryption Decryption Test

[1] 3Exp 3Exp 2BP ROM
[4] 5Exp 2Exp 4Exp ROM
[6] 6Exp 5Exp 2BP + 2Exp ROM
[10] 1BP + 15Exp 9BP + 11Exp 6BP + 6Exp SM
Ours 6Exp 2BP + 1Exp 2BP SM

Legend: |G|, |GT |, |Zp |: bit-lengths to represent elements in groups G, GT , and Zp , respectively, 
BP: computational cost for one bilinear map evaluation, Exp: computational cost for an expo-
nentiation operation, ROM: random oracle model, SM: standard model, λ: security parameter.

is no efficient encoding algorithm from a set of binary strings to GT if the size of the set of binary strings is exponential 
in the security parameter. (Recall that the size of the message space of our scheme should be exponential in the security 
parameter.)

One way to overcome this obstacle is to apply a hybrid encryption technique proposed by Cramer and Shoup [17]. The 
hybrid encryption technique employs a PKE scheme and a symmetric key encryption (SKE) scheme together. To encrypt a 
message, the employed PKE scheme encrypts a randomly chosen secret key of the employed SKE scheme (or a random seed 
for generating a secret key of the employed SKE scheme). Then, the employed SKE scheme encrypts the message under 
the secret key (or it generated by the seed) encrypted by the PKE scheme. The ciphertext consists of these two ciphertexts 
generated by the PKE and SKE schemes, respectively.

More concretely, by applying the hybrid encryption technique to our proposed scheme, our encryption algorithm is 
modified so that C0 in a ciphertext is replaced by (C0, C ′

0) such that

C0 = R · As, C ′
0 = SKE.Enc(PRF(R),m),

where R is a randomly chosen element from GT , PRF is a pseudo-random function (PRF), and SKE.Enc(sk, m) is an encryp-
tion algorithm of the exploited SKE scheme that takes a secret key sk and a message m as inputs, and returns a ciphertext. 
(We note that the pre-image of H1 in our scheme should be also changed from GT to the set of binary strings.) The above 
modification additionally requires one encryption/decryption of the SKE scheme and one PRF evaluation for encryption/de-
cryption each. The ciphertext size of the SKE scheme is also added to the size of a ciphertext of our scheme. We note that 
the modification maintains the same security level as our original scheme if the employed SKE scheme is CCA2-secure.

6. Conclusions

In this paper, we proposed an efficient PKEET scheme in the standard model. Our construction achieves OW-CCA2 secu-
rity against Type-I adversaries who have trapdoors for equality tests and IND-CCA2 security against Type-II adversaries who 
do not have trapdoors, under the DBDH assumption and the one-wayness and collision-resistance of exploited hash func-
tions. Our proposed scheme improves the efficiency of both parameter sizes and computational costs much: The ciphertext 
size of our scheme is a small constant number of group elements, while that of the previous scheme is linear in the security 
parameter. The encryption, decryption, and test algorithms are also improved by about 60%, 77%, and 66%, respectively, than 
the previous scheme.

As far as we know, there is no specific construction of identity-based encryption with equality test (IBEET) in the standard 
model, except an outcome obtained by Lee et al.’s generic approach [10]. Thus, it would be an interesting research topic to 
design an efficient IBEET construction in the standard model.
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