
Information Sciences 373 (2016) 419–440

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Semi-generic construction of public key encryption and

identity-based encryption with equality test

Hyung Tae Lee

a , San Ling

a , Jae Hong Seo

b , ∗, Huaxiong Wang

a

a Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore
b Department of Mathematics, Myongji University, Republic of Korea

a r t i c l e i n f o

Article history:

Received 17 March 2016

Revised 29 August 2016

Accepted 5 September 2016

Available online 6 September 2016

Keywords:

Public key encryption

Identity-based encryption

Equality test

Random oracle model

a b s t r a c t

Public key encryption with equality test (PKEET), which was first introduced by Yang

et al. (CT-RSA, 2010), has various applications including facilitating keyword search on en-

crypted data and partitioning encrypted data on the cloud. It can be also applied to man-

age personal health records on the internet. For these reasons, there have been improve-

ments on earlier PKEET schemes in terms of performance and functionality.

We present a semi-generic method for PKEET constructions, assuming only the existence of

IND-CCA2 secure traditional public key encryption (PKE) schemes, the hardness of Com-

putational Diffie-Hellman (CDH) problems, and random oracles. Our approach has several

advantages; it enables us to understand requirements for the equality test functionality

more clearly. Furthermore, our approach is quite general, in that if we change the under-

lying PKE scheme with the identity-based encryption (IBE) scheme (and we assume the

hardness of Bilinear Diffie-Hellman problems instead of CDH), then we obtain the first

IBE scheme with equality test (IBEET) satisfying analogous security arguments to those of

PKEET. Although an IBEET construction was recently proposed, but we note that it satisfies

only weak security requirements.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Public key encryption with equality test (PKEET), which was first introduced by Yang et al. [19] , is a public key encryp-

tion (PKE) scheme that supports the capability for testing equality between ciphertexts using different public keys as well

as the same public key. This property can be applied to various scenarios in practice. In particular, it is very useful for

managing outsourced databases in a secure way.

Let us consider the following scenario to elucidate an advantage of using PKEET in secure outsourced database applica-

tions. Suppose that each user stores his/her emails with an email service provider. In this case, we face with two seemingly

conflicting requirements, protecting data privacy and managing stored data efficiently. For the former, storing emails in the

encrypted form seems necessary. But, it precludes operations over stored data without decrypting it, in particular, keyword

search over stored emails. To support it, the email service provider makes senders append encrypted keywords to an en-
∗ Corresponding author.

E-mail addresses: hyungtaelee@ntu.edu.sg (H.T. Lee), lingsan@ntu.edu.sg (S. Ling), jaehongseo@mju.ac.kr , jhsbhs@gmail.com (J.H. Seo),

hxwang@ntu.edu.sg (H. Wang).

http://dx.doi.org/10.1016/j.ins.2016.09.013

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.09.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.09.013&domain=pdf
mailto:hyungtaelee@ntu.edu.sg
mailto:lingsan@ntu.edu.sg
mailto:jaehongseo@mju.ac.kr
mailto:jhsbhs@gmail.com
mailto:hxwang@ntu.edu.sg
http://dx.doi.org/10.1016/j.ins.2016.09.013

420 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

crypted email, and may check encrypted keywords to response to user’s keyword search queries or to filter out spam emails.

However, traditional PKE schemes do not allow such operations to be performed over encrypted data.

Fully homomorphic encryption (FHE) [8] could be a suitable candidate to resolve the above issue, but the service provider

cannot also check the result of operations without decrypting it. Searchable encryption [3] or deterministic encryption

[2] could also be utilized. However, these primitives are basically designed to perform tests on ciphertexts generated by

the same public key. Hence, the email service provider in the above scenario has to generate a token for each user in the

system to monitor stored emails. On the other hand, a goal of PKEET is to enable one who has trapdoors to check equality

among ciphertexts generated by different public keys as well as the same public key, so that the email service provider can

perform tests on ciphertexts regardless of exploited public keys.

Furthermore, as suggested by Tang [18] , PKEET can also be applied to emerging computing scenarios, e.g., internet-based

private health record (PHR) applications [15,18] . In a PHR system, each patient may obtain his/her data from various sources:

prescription results from a doctor, treatment from a hospital, test results from a laboratory, and so on. The patient receives

such data as encrypted using his/her own public key, and stores them with the service provider. When he/she wants to

match his/her data with that of others in order to get some help, he/she requests the service provider to search for them

over encrypted data using different public keys. Due to its various applications as above, many researchers have developed

PKEET schemes [9,11–13,16–18] for the purpose of achieving better performance and providing different levels of authorities

for equality testing.

1.1. Our contribution

We provide a semi-generic PKEET construction that exploits traditional PKE schemes having sufficiently large plaintext

spaces. Our PKEET system model follows that of Tang’s all-or-nothing PKEET scheme [18] . In this scheme, each user issues

a trapdoor to a specified tester and the authority to test the equality of all of his/her ciphertexts. Thus, the tester who has

knowledge of the two user’s trapdoors, is able to check the equality of ciphertexts using their public keys. We note that this

model can also be regarded as a PKEET scheme supporting flexible authorization, where we only consider the authorization

for equality test on all receiver’s ciphertexts (so called Type-1 authorization in [12]).

In Section 1 of [18] , Tang initially attempted to construct a generic PKEET scheme by defining an encryption algorithm

for a message m by:

(C 1 , C 2) = (PKE1 (pk 1 , m) , PKE2 (pk 2 , H 1 (m)))

where PKE1 and PKE2 are traditional PKE schemes and H 1 is a cryptographic hash function. Then, each user issues the

secret key sk 2 for PKE2 to the tester and he/she can check their equality by decrypting the C 2 ’s for both ciphertexts and

then comparing H 1 (m) values. Immediately, however, Tang demonstrated that the above formulation could not achieve the

IND-CCA2 security [18] because an adversary could query

(C

∗
1 , C 2) = (PKE1 (pk 1 , m b) , PKE2 (pk 2 , H 1 (m β)))

to the decryption oracle by guessing b ∈ {0, 1}, chosen by the challenger as β , and then generate the second component C 2

themselves where (C

∗
1 , C

∗
2) is the challenge ciphertext.

We resolve the above problem by providing a way to prevent decryption queries of the obtained ciphertexts by modifying

the challenge ciphertext shown above. Our solution is as follows: Let G be a cyclic group with a generator g of prime

order p , and y = g x is an additional public key for a randomly chosen element x ∈ Z

∗
p . In the encryption algorithm, r is

randomly selected from Z

∗
p and is used to compute g r . Then, the algorithm attaches g r to the message m and its hash value

H 1 (m) . Their ciphertexts are generated using traditional PKE schemes. In addition, the algorithm provides the hash value of

generated ciphertexts by attaching y r . That is, our encryption algorithm for a message m is defined by

PKEET . Enc (pk, m) = (PKE1 (pk 1 , m ‖ g r) , PKE2 (pk 2 , H 1 (m) ‖ g r) , H 2 (C 1 , C 2 , y
r))

where C 1 = PKE1 (pk 1 , m ‖ g r) , C 2 = PKE2 (pk 2 , H 1 (m) ‖ g r) , and H 1 and H 2 are cryptographic hash functions. Informally

speaking, an adversary must know y r to generate a valid ciphertext by modifying the challenge ciphertext, where y r is

the solution to the Computational Diffie-Hellman (CDH) problem for the instance (g , g r , y). We demonstrate that our semi-

generic construction achieves one-wayness under adaptive chosen ciphertext attack (OW-CCA2) security against Type-I ad-

versaries, who have a trapdoor information for the equality test, and the indistinguishability under adaptive chosen cipher-

text attack (IND-CCA2) security against Type-II adversaries, who do not have that information. (See Section 2.1 for the

details of types of adversaries.) Those are shown assuming that the exploited PKE schemes are IND-CCA2 secure and the

CDH assumption holds in the random oracle model. Moreover, we attempt to interpret Tang’s all-or-nothing PKEET scheme

[18] , which coincides with our system model, in the view of our semi-generic construction.

Our construction can be easily extended to the identity-based setting by replacing PKE schemes and the CDH assumption

with traditional identity-based encryption (IBE) schemes and the bilinear Diffie-Hellman (BDH) assumption, respectively.

Thus, our modified encryption algorithm for IBE with equality test (IBEET) is defined as follows: Let G and G T be two cyclic

groups of prime order p . Let g be a generator of G and set a public parameter g 1 = g s for a randomly chosen element s from

Z

∗
p . e : G × G → G T is a bilinear map defined over G and G T . We define an encryption algorithm of our semi-generic IBEET

construction with an identity ID and a message m by

IBEET . Enc (pp, ID , m)

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 421

= (IBE1 (pp 1 , ID , m ‖ g r) , IBE2 (pp 2 , ID , H 1 (m) ‖ g r) , H 2 (C 1 , C 2 , e (H 3 (ID) , g 1)
r))

for a randomly chosen r ∈ Z

∗
p , where IBE1 and IBE2 are traditional IBE schemes, C 1 = IBE1 (pp 1 , ID , m ‖ g r) , C 2 =

IBE2 (pp 2 , ID , H 1 (m) ‖ g r) , and H 1 , H 2 , and H 3 are cryptographic hash functions.

We demonstrate that our suggestion achieves one-wayness under adaptive chosen identity and adaptive chosen cipher-

text attacks (OW-ID-CCA2) security against Type-I adversaries and the indistinguishability under adaptive chosen identity

and adaptive chosen ciphertext attacks (IND-ID-CCA2) security against Type-II adversaries, assuming that the exploited IBE

schemes are IND-ID-CCA2 secure and the BDH assumption holds in the random oracle model. Similar to our PKEET con-

struction, we remark that an adversary must know the e (H 3 (ID) , g 1)
r value to generate a valid ciphertext by modifying the

challenge ciphertext, where e (H 3 (ID) , g 1)
r = e (g x , g s) r = e (g, g) xsr is the solution to the BDH problem for the instance (g , g x ,

g r , g s), assuming that H 3 (ID) is g x ∈ G for some element x in Z

∗
p .

As far as we know, our suggestion is the first IBEET scheme that achieves both the OW-ID-CCA2 security against Type-I

adversaries and the IND-ID-CCA2 security against Type-II adversaries in the random oracle model. Furthermore, we demon-

strate that it has comparable performance to the previous result [11] , which achieves only the OW-ID-CCA2 security against

Type-I adversaries in the random oracle model. According to our analysis, our construction, exploiting Boneh and Franklin’s

IND-ID-CCA2 secure IBE schemes [4] , requires 6 E , 3 P + 2 E , and 2 P + 2 E , for encryption, decryption, and testing, respec-

tively, whereas the previous [11] construction requires 6 E , 2 P + 2 E , and 4 P , respectively, where E and P denote the cost of

computing exponents and pairing operations, respectively. (See Table 2 in Section 6.2 for the details of performance com-

parison.)

1.2. Related works

PKE/IBE with equality test . Yang et al. [19] first proposed the concept of PKEET, which allows anyone to check whether two

ciphertexts under different public keys contain the same message, and provided an instantiation that is OW-CCA2 secure.

Later, Tang [16,17] proposed an enhanced version of PKEET allowing only a tester authorized by two users to perform an

equality test on ciphertexts between those users. However, this suggestion has a drawback that an interactive protocol be-

tween two users must be performed to initiate the authorization. To improve efficiency (with putting up with the looseness

of authorization power), Tang [18] proposed an all-or-nothing PKEET scheme, which specifies the person who is to perform

the equality test on all ciphertexts. Subsequently, Ma et al. [13] presented PKE with a delegated equality test that works

by hiring a delegated party, who is the only party allowed to perform the test by communicating with a cloud server that

stores the ciphertexts. Huang et al. [9] proposed PKE with an authorized equality test. In this formulation, a user separately

issues warrants on all of his/her ciphertexts or only a specified ciphertext. Recently, Ma et al. [12] presented a PKEET scheme

that simultaneously supports four types of flexible authorization. Following their work, Lin et al. [10] provided an improved

construction without the use of bilinear maps.

In the identity-based setting, Ma [11] presented a scheme for IBEET that is OW-ID-CCA2 secure against Type-I adver-

saries. However, the IND-ID-CCA2 security was not considered, and the scheme does not achieve that level of security.

PKE/IBE with keyword search . PKE with keyword search (PKEKS) [3] , which supports the functionality to perform an

equality test between keywords embedded in a tag and a ciphertext, is similar to PKEET. The main difference between

the two constructions is that PKEKS allows tests on ciphertexts under only a fixed public key, related to the issued tag,

whereas PKEET allows equality tests on ciphertexts under different public keys as well as the same public keys. Similarly,

IBE with keyword search (IBEKS) [1] , which is an extension of PKEKS to the identity-based setting, has similar features to

those of IBEET. Similar to the relation between PKEKS and PKEET, IBEKS also allows equality tests on ciphertexts under a

fixed identity, related to the issued tag, whereas IBEET allows equality tests on ciphertexts under different identities as well

as the same identity.

1.3. Organization of the paper

In Section 2 , we introduce basic definitions related to our PKEET and IBEET constructions. Section 3 provides our semi-

generic construction for PKEET and an interpretation of Tang’s all-or-nothing PKEET scheme in the view of our semi-generic

construction. A security analysis of our PKEET construction is given in Section 4 . Section 5 extends the construction to the

identity-based setting. In Section 6 , we provide comparisons of our works with previous results. Some detailed proofs of

theorems and lemmas are presented in the Appendices.

2. Basic definitions

In this section, we look at some basic concepts of PKE and IBE with equality test.

Notation . Throughout the paper, negl (·) denotes a negligible function. For an algorithm A , A → a denotes that an algo-

rithm A outputs a .

422 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

2.1. Public key encryption with equality test

System model of our PKEET . Our PKEET system model consists of users (including a sender and a receiver) and the

tester (e.g., the cloud server): A sender encrypts a data using a receiver’s public key and passes it to the receiver. Then,

the receiver stores it to the cloud server and he/she can decrypt his/her ciphertexts using his/her secret key. One day, once

the receiver wants to delegate the test capability for all of his/her ciphertexts, he/she issues a trapdoor to the tester who

can access to the cloud server. Since then, the tester can perform equality test on ciphertexts under the public key of the

receiver who passed the trapdoor to the tester.

Definition of PKEET . We provide the formal definition of PKEET and its correctness conditions in Definitions 1 and 2 ,

respectively. Since PKEET is an extension of the traditional PKE, Definition 1 already contains the definition of PKE, so we

refrain from rewriting the definition of PKE; instead, we note that PKE consists of the three algorithms in Definition 1 :

the key generation algorithm where a public parameter pp is a security parameter λ, the encryption algorithm, and the

decryption algorithm.

Definition 1. A public key encryption scheme with equality test (PKEET) consists of the following six probabilistic polyno-

mial time (PPT) algorithms PKEET = (PKEET . Setup , PKEET . KeyGen , PKEET . Enc , PKEET . Dec , PKEET . Trap do or , PKEET . Test) :

• PKEET . Setup (λ) : It takes a security parameter λ as an input and returns a public parameter pp .

• PKEET . KeyGen (pp) : It takes the public parameter pp as an input and returns a pair of public and secret keys (pk , sk).

• PKEET . Enc (pk, m) : It takes the public key pk and a plaintext m ∈ M as inputs and returns a ciphertext C . M denotes

the plaintext space of the scheme.

• PKEET . Dec (sk, C) : It takes the secret key sk and a ciphertext C as inputs and returns a plaintext m .

Suppose that each user has his own index i for 1 ≤ i ≤ N . We denote a pair of public and secret keys of user i by (pk i ,

sk i). A ciphertext for user i is denoted by C i .

• PKEET . Trap do or (sk i) : It takes a user i ’s secret key sk i as an input and returns a trapdoor td i for user i ’s ciphertexts.

• PKEET . Test (td i , C i , td j , C j) : It takes a user i ’s ciphertext C i with the trapdoor td i and a user j ’s ciphertext C j with the

trapdoor td j as inputs. Then, it outputs 0 or 1.

Next, we define the correctness of the PKEET scheme.

Definition 2 (Correctness of the PKEET scheme) . We say a PKEET scheme is correct if for any security parameter λ,

PKEET . Setup (λ) → pp, PKEET . KeyGen (pp) → (pk i , sk i) , and PKEET . KeyGen (λ) → (pk j , sk j) , the following conditions are

satisfied:

1. For any message m ∈ M , PKEET . Dec (sk i , PKEET . Enc (pk i , m)) = m always holds.

2. For any ciphertexts C i and C j , if PKEET . Dec (sk i , C i) = PKEET . Dec (sk j , C j) � = ⊥ ,

Pr [PKEET . Test (td i , C i , td j , C j)] = 1 ,

where PKEET . Trap do or (sk i) → td i and PKEET . Trap do or (sk j) → td j .

3. For any ciphertexts C i and C j , if PKEET . Dec (sk i , C i) � = PKEET . Dec (sk j , C j) ,

Pr [PKEET . Test (td i , C i , td j , C j)] ≤ negl (λ) ,

where PKEET . Trap do or (sk i) → td i and PKEET . Trap do or (sk j) → td j .

Remark 1 (Perfect Correctness vs. Computational Correctness) . For the third condition of Definition 2 , we admit a negligible

probability of test failure. It seems natural not to allow such a failure in the correctness definition, though it is negligible.

We note that all existing PKEET schemes except for Yang et al.’s construction

1 [19] , satisfy only our relaxed computational

correctness definition, instead of the perfect correctness definition; their equality test algorithms exploit the hashed values

of some input values, which are expected to be the same, but hash functions inherently lead to negligible errors on the

results of equality tests because of the possibility of collision on their outputs.
1 However, Yang et al.’s proposal allows anyone to perform equality tests and so achieves the weak security notion (i.e., OW-CCA2 security for Type-I

adversaries) only.

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 423

Security definitions of PKEET . Now, we look into the security model of the PKEET scheme. We consider the following two

types of adversaries for the security model of the PKEET scheme under our system model:

• Type-I adversary: We assume an adversary who has the trapdoor about the receiver of the challenge ciphertext and want

him/her not to reveal the message contained in the challenge ciphertext.

• Type-II adversary: We assume an adversary who does not have the trapdoor about the receiver of the challenge ci-

phertext and want him/her not to distinguish whether the challenge ciphertext contains which message between two

candidates.

Below we first define the OW-CCA2 security of the PKEET scheme against Type-I adversaries.

Definition 3 (OW-CCA2 of PKEET with a Trapdoor) . We say that a PKEET scheme is OW-CCA2 secure against Type-I ad-

versaries if for any PPT adversaries A , the advantage of A in the following game with the challenger C is negligible in the

security parameter λ:

1. Setup : C takes the security parameter λ as an input, runs PKEET . Setup (λ) → pp, and sends the public parameter pp to

A . Then, for 1 ≤ i ≤ N , C runs PKEET . KeyGen (pp) → (pk i , sk i) and sends all pk i ’s to A .

2. Phase 1 : A may query the following oracles polynomially many times adaptively and in any order. The constraint is that

an index t does not appear as an input in the O

sk oracle queries.

• O

sk : an oracle that on input an index i , returns sk i .

• O

Dec : an oracle that on input an index i and a ciphertext C i , returns PKEET . Dec (sk i , C i) using the secret key sk i .

• O

td : an oracle that on input an index i , returns PKEET . Trap do or (sk i) → td i using the secret key sk i .

3. Challenge : C selects a random message m ∈ M for the plaintext space M , runs PKEET . Enc (pk t , m) → C ∗t , and sends C ∗t
to A .

4. Phase 2 : C responds to A ’s queries as Phase 1 . The constraints for A ’s queries are that

(a) the index t does not appear as an input in the O

sk oracle queries;

(b) a pair of the index t and the ciphertext C ∗t does not appear as an input in the O

Dec oracle queries.

5. Guess : A outputs m

′ .

We say that the adversary A wins if m

′ = m and the advantage of A in the above game is defined to

Adv
OW - CCA2
PKEET , A (λ) := Pr [A wins] .

When the size of the plaintext space is polynomial in the security parameter or the min-entropy of the message distribu-

tion is much lower than the security parameter, an adversary who has a trapdoor information for the user t , may perform

equality tests with the challenge ciphertext by generating ciphertexts of all messages. To prevent such trivial attacks, we

assume that the size of the plaintext space is exponential in the security parameter and the min-entropy of the message

distribution is sufficiently higher than the security parameter.

Now, we provide the definition of the IND-CCA2 security of the PKEET scheme against Type-II adversaries below.

Definition 4 (IND-CCA2 of PKEET without a Trapdoor) . We say that a PKEET is IND-CCA2 secure against Type-II adversaries

if for any PPT adversaries A , the advantage of A in the following game with the challenger C is negligible in the security

parameter λ:

1. Setup : This step is the same as that of the OW-CCA2 security game in Definition 3 .

2. Phase 1 : This step is almost the same as that of the OW-CCA2 security game in Definition 3 , except that the constraint

is that an index t does not appear as an input in the O

sk and O

td oracle queries.

3. Challenge : A selects messages m 0 , m 1 ∈ M of the same length and sends C them. C selects a random bit b ∈ {0, 1}, runs

PKEET . Enc (pk t , m b) → C ∗
t,b

, and sends C ∗
t,b

to A .

4. Phase 2 : C responds to A ’s queries as Phase 1 . The constraints for A ’s queries are that

(a) the index t does not appear as an input in the O

sk and O

td oracle queries;

(b) a pair of the index t and the ciphertext C ∗
t,b

does not appear as an input in the O

Dec oracle queries.

5. Guess : A outputs b ′ ∈ {0, 1}.

We say that the adversary A wins if b ′ = b in the above game and the advantage of A is defined to

Adv
IND - CCA2
PKEET , A (λ) := Pr [A wins] − 1

2

.

424 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

2.2. Identity-based encryption with equality test

In this subsection, we provide some definitions of IBEET. Basic definitions including the system model, the definition

of IBEET scheme, and its OW-ID-CCA2 security against Type-I adversaries, follow Ma’s ones [11] . Further, we define the

IND-ID-CCA2 security against Type-II adversaries for IBEET scheme by modifying the adaptive IND-ID-CCA2 security of

traditional IBE schemes.

System model of our IBEET . Our IBEET system model consists of users (including a sender and a receiver), the key gen-

eration center (KGC), and the tester (e.g., the cloud server): As traditional IBE schemes, the KGC issues a user’s secret key

according to a user’s identity to the user. The rest is almost the same with that of our PKEET. A sender encrypts a data

using a receiver’s identity and passes it to the receiver. Then, the receiver stores it to the cloud server and he/she can de-

crypt his/her ciphertexts using his/her secret key issued by the KGC. One day, once the receiver wants to delegate the test

capability for all of his/her ciphertexts, he/she issues a trapdoor to the tester who can access to the cloud server. Since then,

the tester can perform equality test on ciphertexts under the identity of the receiver who passed the trapdoor to the tester.

Definition of IBEET . We provide the formal definition of IBEET under our system model as follows.

Definition 5. An identity-based encryption scheme with equality test (IBEET) consists of the following PPT algorithms

IBEET = (IBEET . Setup , IBEET . Extract , IBEET . Enc , IBEET . Dec , IBEET . Trap do or , IBEET . Test) :

• IBEET . Setup (λ) : It takes a security parameter λ as an input and returns a public parameter pp and a master secret

key msk .

• IBEET . Extract (pp, msk, ID) : It takes the public parameter pp , the master secret key msk , and an identity ID ∈ { 0 , 1 } ∗ as

inputs, and outputs a user ID ’s secret key d ID .

• IBEET . Enc (pp, ID , m) : It takes the public parameter pp , an identity ID ∈ { 0 , 1 } ∗, and a message m as inputs, and outputs

a ciphertext C .

• IBEET . Dec (pp, d ID , C) : It takes the public parameter pp , a user ID ’s secret key d ID , and a ciphertext C as inputs, and

outputs a message m

′ .
• IBEET . Trap do or (d ID) : It takes a user ID ’s secret key d ID as an input and outputs a trapdoor td ID for user ID ’s ciphertexts.

• IBEET . Test (td ID i , C ID i , td ID j , C ID j) : It takes a user ID i ’s ciphertext with the trapdoor td ID i and a user ID j ’s ciphertext with

the trapdoor td ID j as inputs. Then, it outputs 0 or 1.

Remark 2. We note that a traditional IBE scheme consists of the first four algorithms in Definition 5 : the setup algorithm,

the key extraction algorithm, the encryption algorithm, and the decryption algorithm.

Now, we define the correctness of the IBEET scheme below.

Definition 6 (Correctness of the IBEET scheme) . We say an IBEET scheme is correct if for any security parameter λ,

all IBEET . Setup (λ) → (pp, msk) , IBEET . Extract (pp, msk, ID i) → d ID i , and IBEET . Extract (pp, msk, ID j) → d ID j , the following

conditions are satisfied:

1. For any message m ∈ M , IBEET . Dec (pp, d ID i , IBEET . Enc (pp, ID i , m)) = m always holds.

2. For any ciphertexts C i and C j , if IBEET . Dec (pp, d ID i , C i) = IBEET . Dec (pp, d ID j , C j) � = ⊥ ,

Pr [IBEET . Test (td ID i , C ID i , td ID j , C ID j)] = 1 ,

where IBEET . Trap do or (d ID i) → td ID i and IBEET . Trap do or (d ID j) → td ID j .

3. For any ciphertexts C i and C j , if IBEET . Dec (pp, d ID i , C i) � = IBEET . Dec (pp, d ID j , C j) ,

Pr [IBEET . Test (td ID i , C ID i , td ID j , C ID j)] ≤ negl (λ) ,

where IBEET . Trap do or (d ID i) → td ID i and IBEET . Trap do or (d ID j) → td ID j .

Security definitions of IBEET . As the security definitions of PKEET, we consider two types of adversaries, Type-I adversaries

who have the trapdoor and Type-II adversaries who do not have that information. We first define the OW-ID-CCA2 security

of the IBEET scheme against Type-I adversaries.

Definition 7 (OW-ID-CCA2 of IBEET with a Trapdoor) . We say that a IBEET scheme is OW-ID-CCA2 secure against Type-I

adversaries if for any PPT adversaries A , the advantage of A in the following game with the challenger C is negligible in the

security parameter λ:

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 425

1. Setup : C takes a security parameter λ as an input, runs IBEET . Setup (λ) → (pp, msk) . C sends the public parameter pp

to A and keeps the master secret key msk private.

2. Phase 1 : A may query the following oracles polynomially many times adaptively and in any order:

• O

Ext : an oracle that on input an identity ID , returns d ID .

• O

Dec : an oracle that on input an identity ID and a ciphertext C , runs IBEET . Dec (pp, d ID , C) → m

′ and outputs m

′ .
• O

td : an oracle that on input an identity ID , runs IBEET . Trap do or (d ID) → td ID and outputs td ID .

3. Challenge : A submits an identity ID

∗ which was not queried to the O

Ext oracle in Step 2. C selects a random message m ,

runs IBEET . Enc (pp, ID

∗, m) → C ∗
ID ∗ , and sends C ∗

ID ∗ to A .

4. Phase 2 : C responds to A ’s queries as Phase 1 . The constraints for A ’s queries are that

(a) the identity ID

∗ does not appear as an input in the O

Ext oracle queries,

(b) a pair of the identity ID

∗ and the ciphertext C ∗
ID ∗ does not appear as an input in the O

Dec oracle queries.

5. Guess : A outputs m

′ .

We say that the adversary A wins if m

′ = m and the advantage of A in the above game is defined to

Adv
OW - ID - CCA 2
IBEET , A (λ) := Pr [A wins] .

Now, we provide the definition of the IND-ID-CCA2 security of the IBEET scheme against Type-II adversaries by modi-

fying the adaptive IND-ID-CCA2 security of traditional IBE schemes.

Definition 8 (IND-ID-CCA2 of IBEET without a Trapdoor) . We say that an IBEET scheme is IND-ID-CCA2 secure against

Type-II adversaries if for any PPT adversaries A , the advantage of A in the following game with the challenger C is negligible

in the security parameter λ:

1. Setup : This step is the same as that of the OW-ID-CCA2 security game in Definition 7 .

2. Phase 1 : This step is the same as that of the OW-ID-CCA2 security game in Definition 7 .

3. Challenge : The adversary selects an identity ID

∗, which was never queried to the O

Ext and O

td oracles in Step 2, and two

messages m 0 , m 1 of the same length and sends C them. C selects a random bit b ∈ {0, 1}, runs IBEET . Enc (pp, ID

∗, m b) →
C ∗

ID ∗,b
, and sends C ∗

ID ∗,b
to A .

4. Phase 2 : C responds to A ’s queries as Phase 1 . The constraints for A ’s queries are that

(a) the identity ID

∗ does not appear as an input in the O

Ext and O

td oracle queries;

(b) a pair of the identity ID

∗ and the ciphertext C ∗
ID ∗,b

does not appear as an input in the O

Dec oracle queries.

5. Guess : A outputs b ′ ∈ {0, 1}.

We say that the advesary wins if b = b ′ in the above game and the advantage of A is defined to

Adv
IND - ID - CCA2
IBEET , A (λ) := Pr [A wins] − 1

2

.

2.3. Cryptographic assumptions

Now, we introduce two well-known cryptographic assumptions, the CDH assumption and the BDH assumption. We will

use them to prove the security of our PKEET and IBEET schemes, respectively.

Definition 9 (CDH Problem and Assumption) . Let G be a cyclic group of order p = p(λ) with a generator g for a security

parameter λ. The Computational Diffie-Hellman (CDH) problem is defined as follows: Given (g , g x , g y) for randomly chosen

x, y ∈ Z

∗
p , a PPT algorithm A finds the value g xy with the advantage

Adv
CDH
G , A (λ) := Pr [A (g, g x , g y) = g xy] .

We say that the CDH assumption on G holds if for any PPT algorithm A , the advantage of A is negligible in the security

parameter λ.

Definition 10 (BDH Problem and Assumption) . Let G and G T be groups of order p = p(λ) for a security parameter λ. Let

e : G × G → G T be a bilinear map and g be a generator of G . The Bilinear Diffie-Hellman (BDH) problem is defined as

follows: Given (g , g x , g y , g z) for randomly chosen x, y, z ∈ Z

∗
p , a PPT algorithm A finds the value e (g , g) xyz with the advantage

Adv
BDH
G , G T , A (λ) := Pr [A (g, g x , g y , g z) = e (g, g) xyz] .

We say that the BDH assumption on (G , G T , e) holds if for any PPT algorithm A , the advantage of A is negligible in the

security parameter λ.

426 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

3. Our semi-generic construction of PKE with equality test

In this section, we provide a semi-generic PKEET construction that exploits traditional PKE schemes. Subsequently, we

interpret Tang’s all-or-nothing PKEET scheme, which coincides with our system model, in the view of our semi-generic

construction.

3.1. Our construction

Now, we provide our semi-generic PKEET construction by exploiting two traditional PKE schemes, PKE1 =
(PKE1 . KeyGen , PKE1 . Enc , PKE1 . Dec) and PKE2 = (PKE2 . KeyGen , PKE2 . Enc , PKE2 . Dec) . The description is as follows:

• PKEET . Setup (λ) : It takes a security parameter λ as an input. Let G be a cyclic group of prime order p = p(λ) and g

be a generator of a group G . Let H 1 : { 0 , 1 } � 1 → { 0 , 1 } � 2 and H 2 : { 0 , 1 } ∗ → { 0 , 1 } � 3 be cryptographic hash functions for

integers � 1 = � 1 (λ) , � 2 = � 2 (λ) , and � 3 = � 3 (λ) . It outputs a public parameter pp = (G , g, H 1 , H 2) .

We remark that the plaintext space of our construction is { 0 , 1 } � 1 . We assume that the plaintext spaces of PKE1 and

PKE2 include { 0 , 1 } � 1 + � and { 0 , 1 } � 2 + � , respectively, where elements of G are represented in � bits.

• PKEET . KeyGen (pp) : It takes the public parameter pp as an input. Then, it performs PKE1 . KeyGen (λ) → (pk 1 , sk 1) and

PKE2 . KeyGen (λ) → (pk 2 , sk 2) . It selects a random element x from Z

∗
p and computes X = g x . It outputs a public key pk =

(pp, pk 1 , pk 2 , X) and a secret key sk = (pp, sk 1 , sk 2 , x) .

• PKEET . Enc (pk, m) : It takes the public key pk = (pp, pk 1 , pk 2 , X) and a message m ∈ { 0 , 1 } � 1 as inputs and performs as

follows:

1. Select a random element r from Z

∗
p .

2. Run PKE1 . Enc (pk 1 , m ‖ g r) → C 1 and PKE2 . Enc (pk 2 , H 1 (m) ‖ g r) → C 2 .

3. Compute C 3 = H 2 (C 1 , C 2 , X
r) .

4. Output C = (C 1 , C 2 , C 3) .

• PKEET . Dec (sk, C) : It takes the secret key sk = (pp, sk 1 , sk 2 , x) and a ciphertext C = (C 1 , C 2 , C 3) as inputs and performs

as follows:

1. Run PKE1 . Dec (sk 1 , C 1) → m

′ ‖ R ′ and PKE2 . Dec (sk 2 , C 2) → h ′ ‖ R ′′ .
2. Check whether h ′ = H 1 (m

′) , R ′ = R ′′ , and C 3 = H 2 (C 1 , C 2 , (R ′) x) .
3. If all of them hold, output m

′ . Otherwise, output ⊥ .

We denote a public key and a secret key of a user i by pk i = (pp, pk i, 1 , pk i, 2 , X i) and sk i = (pp, sk i, 1 , sk i, 2 , x i) , respectively.

C i = (C i, 1 , C i, 2 , C i, 3) denotes a user i ’s ciphertext.

• PKEET . Trap do or (sk i) : It takes the secret key sk i = (pp, sk i, 1 , sk i, 2 , x i) as an input and outputs td i = sk i, 2 .

• PKEET . Test (td i , C i , td j , C j) : It takes a user i ’s ciphertext C i = (C i, 1 , C i, 2 , C i, 3) with his/her trapdoor td i = sk i, 2 and a user

j ’s ciphertext C j = (C j, 1 , C j, 2 , C j, 3) with his/her trapdoor td j = sk j, 2 as inputs. Then, it performs as follows:

1. Run PKE2 . Dec (td i , C i, 2) → h ′
i
‖ R ′′

i
and PKE2 . Dec (td j , C j, 2) → h ′

j
‖ R ′′

j
.

2. Check whether h ′
i
= h ′

j
. If it holds, output 1. Otherwise, output 0.

Correctness . The following theorem demonstrates the correctness of our construction.

Theorem 1. Our construction in Section 3.1 is correct according to Definition 2 under assuming that the exploited PKE1 and

PKE2 schemes are correct and H 1 is a collision-resistant hash function.

Proof. Let C i = (C i, 1 , C i, 2 , C i, 3) be a valid ciphertext generated by running PKEET . Enc (pk i , m i) where pk i is a user i ’s public

key. Because PKE1 and PKE2 are correct, PKE1 . Dec (sk i, 1 , C i, 1) → m i ‖ g r and PKE2 . Dec (sk i, 2 , C i, 2) → H 1 (m i) ‖ g r for some r ∈
Z

∗
p . Furthermore, since X r = (g r) x , H 2 (C i, 1 , C i, 2 , (g r) x) is the same as C i, 3 = H 2 (C i, 1 , C i, 2 , X

r) . Hence, the first condition for

the correctness holds.

Let pk j be a user j ’s public key and C j = (C j, 1 , C j, 2 , C j, 3) be a valid ciphertext obtained by running PKEET . Enc (pk j , m j) .

For the PKEET . Test algorithm, when the trapdoors td i and td j for users i and j are given, if m i = m j , then the algorithm

outputs 1 because PKE2 . Dec (td i , C i, 2) → H 1 (m i) ‖ R i , PKE2 . Dec (td j , C j, 2) → H 1 (m j) ‖ R j , and H 1 (m i) = H 1 (m j) . Otherwise,

H 1 (m i) is different from H 1 (m j) with overwhelming probability since H 1 is a collision-resistant function. Hence, both the

second and third conditions for the correctness hold. �

Remark 3. We have provided a description of our semi-generic construction by exploiting two PKE schemes, PKE1 and

PKE2 . On the other hand, according to our security analysis in the next section, our proposed construction satisfies the re-

quirements for PKEET if both PKE1 and PKE2 are IND-CCA2 secure. Hence, we may employ the same PKE scheme for PKE1

and PKE2 if the exploited PKE scheme is IND-CCA2 secure. We note that in that case, the size of the system parameter pp

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 427

could be slightly reduced up to a small constant factor, but the complexity of all algorithms in our construction will not be

reduced.

3.2. Interpretation of Tang’s PKEET scheme as our semi-generic construction

Now, we attempt to interpret Tang’s all-or-nothing PKEET scheme [18] , which coincides with our PKEET system model.

The encryption algorithm of his construction is

C = PKEET . Enc (pk, m) = (c 1 , c 2 , c 3 , c 4 , c 5)

= (g u , g v , H 3 ((g x) u) � m ‖ u, g H 4 ((g y) v)+ m , H 2 (c 1 ‖ c 2 ‖ c 3 ‖ c 4 ‖ m ‖ u)) ,

where g is a generator of a cyclic group G of prime order p , (g x , g y) is a public key, u and v are randomly chosen elements

from Z

∗
p by the encryption algorithm, and H 2 , H 3 , and H 4 are cryptographic hash functions. Here, (x , y) is a secret key and

y is a trapdoor issued to the tester for equality test. Then, the tester can check the equality by obtaining g m using y by

computing c 4 /g H 4 (c
y
2
) .

We can regard his algorithm as

C 1 = PKE1 (pk 1 , m) = (c 1 , c 3) = (g u , H 3 ((g x) u) � m ‖ u) ,

C 2 = PKE2 (pk 2 , g
m) = (c 2 , c 4) = (g v , g H 4 ((g y) v) · g m) ,

C 3 = c 5 = H 2 (c 1 ‖ c 2 ‖ c 3 ‖ c 4 ‖ m ‖ u) ,

where pk 1 = g x and pk 2 = g y . Once we define a hash function H 1 (m) by g m , C 2 can be regarded as PKE2 (pk 2 , H 1 (m)) and

it is very similar to ours. The only main difference between them is that his scheme prevents the attack by inserting m and

u to the inputs of the hash function H 2 , whereas ours relies on the CDH assumption by inserting the CDH instance in the

encryption phase.

4. Security analysis of our PKEET construction

In this section, we demonstrate that our PKEET construction is OW-CCA2 secure against PPT Type-I adversaries and

IND-CCA2 secure against PPT Type-II adversaries.

4.1. OW-CCA2 security against type-I adversaries

We first look into the OW-CCA2 security of our construction against Type-I adversaries.

Theorem 2. Our construction in Section 3.1 is OW-CCA2 secure against PPT Type-I adversaries, under assuming that the ex-

ploited encryption scheme PKE1 is IND-CCA2 secure, the CDH assumption on G holds, and H 1 and H 2 are modelled as random

oracles.

Proof. Let A be a PPT Type-I adversary who breaks the OW-CCA2 security of our construction with advantage εA . Then,

we can construct a PPT algorithm B who breaks the IND-CCA2 security of the PKE1 scheme using A as follows:

1. On receiving a public key pk ∗ from the challenger C of the IND-CCA2 security game of the PKE1 scheme, B performs as

follows:

(a) Run PKE1 . KeyGen (λ) → (pk i, 1 , sk i, 1) for 1 ≤ i ≤ N , i � = t , and set pk t, 1 = pk ∗.

(b) Run PKE2 . KeyGen (λ) → (pk i, 2 , sk i, 2) for 1 ≤ i ≤ N .

(c) Generate a cyclic group G of prime order p with a generator g . Select a random element x i from Z

∗
p and compute

X i = g x i for 1 ≤ i ≤ N .

(d) Send all pk i = (pp, pk i, 1 , pk i, 2 , X i) ’s for 1 ≤ i ≤ N to A .

2. For A ’s oracle queries, B responds as follows:

• O

H 1 query: On input m , it returns h 1 if (m , h 1) has previously been stored in the hash list L H 1 , which was originally

initiated as an empty set. Otherwise, it randomly selects h 1 from { 0 , 1 } � 2 , adds (m , h 1) to the hash list L H 1 , and

returns h 1 .

• O

H 2 query: On input (C 1 , C 2 , R) , it returns h 2 if (C 1 , C 2 , R, h 2) has previously been stored in the hash list L H 2 , which

was originally initiated as an empty set. Otherwise, it randomly selects h 2 from { 0 , 1 } � 3 , adds (C 1 , C 2 , R, h 2) to the

hash list L H 2 , and returns h 2 .

• O

sk query: On input i � = t , it outputs sk i = (pp, sk i, 1 , sk i, 2 , x i) .

• O

td query: On input i , it runs PKEET . Trap do or (sk i) → td i and returns td i . We note that because B knows sk t, 2 , it can

respond to queries on an input t without the whole secret key sk t .

• O

Dec query: On input a pair of an index and a ciphertext (i , C i) for C i = (C i, 1 , C i, 2 , C i, 3) ,

– if i � = t , it runs PKEET . Dec (sk , C) → m

′ and returns m

′ ;
i i

428 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

– otherwise, B queries C t, 1 to the decryption oracle of the IND-CCA2 security game of the PKE1 scheme. Once

returning m

′ ‖ R ′ , B runs PKE2 . Dec (sk t, 2 , C t, 2) → h ′ ‖ R ′′ and checks whether h ′ = H 1 (m

′) , R ′ = R ′′ , and C t, 3 =
H 2 (C t, 1 , C t, 2 , (R ′) x t) . If all of them hold, it returns m

′ . Otherwise, it returns ⊥ .

3. B selects two random messages m 0 , m 1 from { 0 , 1 } � 1 and r from Z

∗
p , and sends m 0 ‖ g r , m 1 ‖ g r to C . Then, C may select a

random bit β ∈ {0, 1}, run

PKE1 . Enc (pk t, 1 , m β‖ g r) → C

∗
t, 1 ,

and send it to B.

4. Once B receives the challenge ciphertext C

∗
t, 1

, he selects a random element h ′
1

∈ { 0 , 1 } � 2 , runs

PKE2 . Enc (pk t, 2 , h

′
1 ‖ g r) → C

∗
t, 2 ,

and C

∗
t, 3

= H 2 (C

∗
t, 1

, C

∗
t, 2

, X r t) . B sends C ∗t = (C

∗
t, 1

, C

∗
t, 2

, C

∗
t, 3

) to A as a challenge ciphertext.

5. B responds to A ’s oracle queries as the same as in Step 2, except for the decryption oracle queries on ciphertexts of form

(C

∗
t, 1 , C t, 2 , C t, 3) . For the decryption oracle queries on ciphertexts of form (C

∗
t, 1 , C t, 2 , C t, 3) , B outputs ⊥ .

6. A outputs m

′ . If m

′ = m b for b = 0 , 1 , B outputs β ′ = b. Otherwise, it outputs a random bit β ′ ∈ {0, 1}.

Let us evaluate the advantage of B. First, we note that the simulation of B may fail in the following two cases:

• Let F 1 be the event that a ciphertext (C

∗
t, 1

, C t, 2 , C t, 3) queried to the decryption oracle in Step 5, is valid. In this case, we

assume that the decryption oracle returns ⊥ in the above simulation. However, in case when PKE2 . Enc (pk t, 2 , ̄h 1 ‖ g r) →
C t, 2 and C t, 3 = H 2 (C

∗
t, 1

, C t, 2 , X
r
t) for some h̄ 1 ∈ { 0 , 1 } � 2 , this ciphertext becomes valid. To generate such a ciphertext, the

adversary A must query to the oracle O

H 2 on an input (C

∗
t, 1

, C t, 2 , X
r
t) . Here, we can assume that if the adversary detects

such a wrong simulation, then he can solve the CDH problem on the instance (g, g r , g x t) , because he generates X r t = (g x t) r

with only (g, g r , g x t) . However, because we assume that the CDH assumption on G holds, Pr [F 1] ≤ Adv
CDH
A , G is negligible

in the security parameter.

• Let F 2 be the event that m 0 or m 1 are queried to the oracle O

H 1 . If m 0 or m 1 are queried and the outputs of the oracle

queries on m 0 or m 1 are not h ′ 1 , then the challenge ciphertext for the adversary A may be invalid. Since both m 0 and

m 1 are completely hidden from the viewpoint of A , the probability that F 2 occurs is

Pr [F 2] = 1 −
(

2

� 1 − 2

q H 1

)/(
2

� 1

q H 1

)
= 1 −

(
1 − q H 1

2

� 1

)(
1 − q H 1

2

� 1 − 1

)
≤ 2 q H 1

2

� 1 − 1

,

where q H 1
is the number of different inputs to be queried to the O

H 1 oracle. Whereas the size of the plaintext space is

exponential in the security parameter, q H 1
is polynomial in the security parameter, and hence Pr [F 2] is negligible in the

security parameter.

We denote the event that F 1 or F 2 occur by F , i.e., F = F 1 ∨ F 2 . In the above simulation, B outputs β ′ = β in the

following two cases:

• E A , 1 : the event that A correctly outputs m β . In this case, B correctly answers with probability 1. If the event F does not

occur, then our simulation is correct and the event E A , 1 directly implies the success of A , so that we can utilize A for

our purpose. However, if the event F occurs, then we cannot expect the adversarial behaviour from our simulation, but

in that case the adversarial success probability is bounded by 1 at most. Therefore, we have the following bound for the

adversarial success probability εA .

Pr [E A , 1 ∧ ¬F] ≤ εA ≤ Pr [E A , 1 ∧ ¬F] + Pr [F] (1)

• E A , 2 : the event that A outputs neither m β nor m 1 −β . In this case, B correctly answers with probability 1
2 . With the

similar argument to the above, we have the following bound for probability 1 − εA − 1

2 � 1
, which is that A outputs neither

m β nor m 1 −β, not in the simulation, but in the real game.

Pr [E A , 2 ∧ ¬F] ≤ 1 − εA − 1

2

� 1
≤ Pr [E A , 2 ∧ ¬F] + Pr [F] (2)

Hence,

Adv
IND-CCA2
B = Pr [β = β ′] − 1

2

≥ Pr [β = β ′ ∧ ¬F] − 1

2

= 1 · Pr [E A , 1 ∧ ¬F] +

1

2

· Pr [E A , 2 ∧ ¬F] − 1

2

≥ εA − Pr [F] +

1

2

(
1 − εA − 1

2

� 1
− Pr [F]

)
− 1

2

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 429

=

1

2

+

εA
2

− 1

2

� 1 +1
− 3

2

Pr [F] − 1

2

≥ 1

2

+

εA
2

− 1

2

� 1 +1
− 3

2

(Adv
CDH
A , G +

2 q H 1

2

� 1 − 1

) − 1

2

=

εA
2

− 3

2

Adv
CDH
A , G − negl (λ) (3)

and therefore

εA = Adv
OW-CCA2
OURS

≤ 2 Adv
IND-CCA2
PKE1 + 3 Adv

CDH
G

+ negl (λ) .

Since we assume that the PKE1 scheme is IND-CCA2 secure and the CDH assumption on G holds, our construction is

OW-CCA2 secure. �

4.2. IND-CCA2 security against type-II adversaries

Now, we look into the IND-CCA2 security of our construction against Type-II adversaries.

Theorem 3. Our construction in Section 3.1 is IND-CCA2 secure against PPT Type-II adversaries under assuming that the ex-

ploited encryption schemes PKE1 and PKE2 are IND-CCA2 secure, the CDH assumption on G holds, and H 1 and H 2 are modelled

as random oracles.

Proof. We first define an original IND-CCA2 security game of our construction and its modification. Then, we will demon-

strate that the advantages of any PPT adversaries of those games are negligible in the security parameter by showing that

the sum and difference of the advantages of adversaries of those games are negligible in the security parameter.

Game 0. This game is the same as the original IND-CCA2 security game in Definition 4 .

1. The challenger C takes a security parameter λ as an input, runs PKEET . Setup (λ) → pp, and sends the public parame-

ter pp to the adversary A . Then, he runs PKEET . KeyGen (pp) → (pk i , sk i) for 1 ≤ i ≤ N and sends all pk i ’s to the adver-

sary A .

2. For A ’s queries to the oracles O

H 1 , O

H 2 , O

sk , and O

td , C responds as B in Step 2 of the security game in the proof of

Theorem 2 . We note that the trapdoor query to the oracle O

td on input t is not allowed in this game. For queries to the

oracle O

Dec , C responds as follows:

• O

Dec query: On input a ciphertext C i = (C i, 1 , C i, 2 , C i, 3) under the public key pk i , it runs PKEET . Dec (sk i , C i) → m

′ and

returns m

′ .
3. A selects two messages m 0 , m 1 ∈ { 0 , 1 } � 1 and sends C them. C selects a random bit b ∈ {0, 1}, runs

PKEET . Enc (pk t , m b) → C ∗
t,b

= (C

∗
t,b, 1

, C

∗
t,b, 2

, C

∗
t,b, 3

) and sends C ∗
t,b

to A .

4. For A ’s oracle queries, C responds as in Step 2. The constraints are that

(a) the index t does not appear as an input in the O

sk and O

td oracle queries;

(b) a pair of the index t and the ciphertext C ∗
t,b

does not appear as an input in the O

Dec oracle queries.

5. A outputs b ′ ∈ {0, 1}.

Game 1. This game is almost the same as Game 0, except for the challenge ciphertext. In the challenge phase, once C receives

two messages m 0 , m 1 from A , C selects a random bit b ∈ {0, 1}, and generates a challenge ciphertext as the followings:

1. Select a random element r from Z

∗
p .

2. Run PKE1 . Enc (pk t, 1 , m b ‖ g r) → C

∗
t,b, 1

.

3. Run PKE2 . Enc (pk t, 2 , H 1 (m 1 −b) ‖ g r) → C

∗
t, 1 −b, 2

.

4. Compute C

∗
t,b, 3

= H 2 (C

∗
t,b, 1

, C

∗
t, 1 −b, 2

, X r t) .

and send C ∗
t,b

= (C

∗
t,b, 1

, C

∗
t, 1 −b, 2

, C

∗
t,b, 3

) to A .

Let ε i be the advantage of A in Game i , i.e., εi = Pr [A outputs b] − 1
2 . We remark that the probability ε1 is related to the

event that the adversary A in Game 1 outputs the index b of the first component C

∗
t,b, 1

of the challenge ciphertext C ∗
t,b

, not

the second component C

∗
t, 1 −b, 2

.

The following lemmas will demonstrate that ε0 + ε1 and ε0 − ε1 are negligible in the security parameter under assuming

that the exploited PKE1 and PKE2 schemes are IND-CCA2 secure, respectively, the CDH assumption on G holds, and H 1

and H 2 are modelled as random oracles. As a result, we conclude that the advantage ε0 of any adversaries in the original

security game Game 0, is negligible in the security parameter.

Lemma 1. Assuming that the employed PKE1 is IND-CCA2 secure, the CDH assumption on G holds, and H 1 and H 2 are mod-

elled as random oracles, ε + ε is negligible in the security parameter.
0 1

430 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

Proof. Let A 1 be a PPT adversary who breaks the IND-CCA2 security of our construction. Then, we can construct a PPT

algorithm B 1 who breaks the IND-CCA2 security of the PKE1 scheme using A 1 as follows:

1. On receiving a public key pk ∗ from the challenger C 1 of the IND-CCA2 security game of the PKE1 scheme, B 1 runs as B
in the proof of Theorem 2 .

2. For A 1 ’s queries to the oracles, B 1 responds as B in the proof of Theorem 2 with decryption oracle queries of C 1 if

needed. The only difference between this step and that of the proof of Theorem 2 is that t does not appear as an input

in the O

td oracle queries in this game.

3. On receiving two messages m 0 , m 1 ∈ { 0 , 1 } � 1 from A 1 , B 1 randomly selects r from Z

∗
p and forwards m 0 ‖ g r and m 1 ‖ g r to

C 1 . Then, C 1 may select a random bit β ∈ {0, 1}, run PKE1 . Enc (pk ∗, m β‖ g r) → C

∗
β
, and send C

∗
β

to B 1 .

4. On receiving C

∗
β

from C 1 , B 1 selects a random bit b ∈ {0, 1}, sets C

∗
t,b, 1

= C

∗
β
, runs PKE2 . Enc (pk t, 2 , H 1 (m b) ‖ g r) → C

∗
t,b, 2

,

and computes C

∗
t,b, 3

= H 2 (C

∗
t,b, 1

, C

∗
t,b, 2

, X r t) . Then, B 1 returns C ∗
t,b

= (C

∗
t,b, 1

, C

∗
t,b, 2

, C

∗
t,b, 3

) to A 1 .

5. B 1 responds to A 1 ’s oracle queries as in Step 2 of this game, except for the decryption oracle queries on ciphertexts of

the form (C

∗
t, 1

, C t, 2 , C t, 3) . For the decryption oracle queries on ciphertexts of form (C

∗
t, 1

, C t, 2 , C t, 3) , it outputs ⊥ .

6. On receiving A 1 ’s output b ′ , B 1 outputs β ′ = b ′ .

We note that the above simulation may fail when the event F 1 defined in the proof of Theorem 2 occurs. As the analysis

in the proof of Theorem 2 , Pr [F 1] ≤ Adv
CDH
A 1 , G and it is negligible in the security parameter because we assume that the CDH

assumption on G holds.

Now, let us evaluate the advantage of B 1 . Because b is randomly chosen by B 1 , Pr [β = b] = Pr [β � = b] =

1
2 . Further, if B 1

correctly guesses β , i.e., β = b, then the challenge ciphertext C ∗t for A 1 has the form of

C ∗t,b = (C

∗
t,b, 1 , C

∗
t,b, 2 , C

∗
t,b, 3)

= (PKE1 . Enc (pk ∗, m β‖ g r) , PKE2 . Enc (pk t, 2 , H 1 (m β) ‖ g r) , C

∗
t,b, 3) ,

which has the same form of the challenge ciphertext in Game 0. Hence, when A 1 correctly answers so that b ′ = b, B

′
outputs the correct answer β ′ = b ′ = b = β .

If B 1 does not correctly guess β , i.e., β � = b , then the challenge ciphertext C ∗t has the form of

C ∗t,b = (C

∗
t,b, 1 , C

∗
t,b, 2 , C

∗
t,b, 3)

= (PKE1 . Enc (pk ∗, m β‖ g r) , PKE2 . Enc (pk t, 2 , H 1 (m 1 −β) ‖ g r) , C

∗
t,b, 3) ,

which has the same form of the challenge ciphertext in Game 1. Hence, when A 1 outputs the index related to the first

component of the challenge ciphertext in Game 1, β ′ is the same as β . Hence,

Adv
IND-CCA2
PKE1 , B 1

= Pr [β = β ′] − 1

2

≥ Pr [β = β ′ |¬F 1] Pr [¬F 1] − 1

2

=

(
Pr [A outputs β in Game 0 |¬F 1 ∧ β = b] Pr [β = b]

+ Pr [A outputs β in Game 1 |¬F 1 ∧ β � = b] Pr [β � = b]

)
Pr [¬F 1] − 1

2

≥
((

1

2

+ ε0 − Pr [F 1]

)
1

2

+

(
1

2

+ ε1 − Pr [F 1]

)
1

2

)
(1 − Pr [F 1]) − 1

2

≥
(

1 − Adv
CDH
A 1 , G

)
ε0 + ε1

2

− 3 Adv
CDH
A 1 , G

2

+ negl (λ) . (4)

Since the PKE1 scheme is IND-CCA2 secure, the advantage of B 1 is negligible in the security parameter. Therefore, ε0 + ε1

is also negligible in the security parameter. �

Lemma 2. Assuming that the exploited PKE2 is IND-CCA2 secure, the CDH assumption on G holds, and H 1 and H 2 are modelled

as random oracles, ε0 − ε1 is negligible in the security parameter.

Proof. The proof of this lemma is very similar to that of Lemma 1 . Let A 2 be a PPT adversary who breaks the IND-CCA2 se-

curity of our construction. Then, we can construct a PPT algorithm B 2 who breaks the IND-CCA2 security of the PKE2

scheme using A 2 as follows:

1. On receiving a public key pk ∗ from the challenger C 2 of the IND-CCA2 security game of the PKE2 scheme, B 2 performs

as follows:

(a) Run PKE1 . KeyGen (λ) → (pk i, 1 , sk i, 1) for 1 ≤ i ≤ N .

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 431

(b) Run PKE2 . KeyGen (λ) → (pk i, 2 , sk i, 2) for 1 ≤ i ≤ N , i � = t , and set pk t, 2 = pk ∗.

(c) Generate a cyclic group G of prime order p with a generator g . Select a random element x i from Z

∗
p and compute

X i = g x i for 1 ≤ i ≤ N .

(d) Send all pk i = (pp, pk i, 1 , pk i, 2 , X i) ’s for 1 ≤ i ≤ N to A .

2. For A 2 ’s queries to the oracles O

H 1 , O

H 2 , O

sk , and O

td , B 2 responds as B 1 in Step 2 of Lemma 1 . For queries to O

Dec ,

B 2 responds as follows:

• O

Dec query: On input a pair of an index and a ciphertext (i , C i) for C i = (C i, 1 , C i, 2 , C i, 3) ,

– if i � = t , it runs PKEET . Dec (sk i , C i) → m

′ and returns m

′ ;
– otherwise, B 2 queries C t, 2 to the decryption oracle of the IND-CCA2 security game of the PKE2 scheme. Once

returning h ′ ‖ R ′ ′ , B 2 runs PKE1 . Dec (sk t, 1 , C t, 1) → m

′ ‖ R ′ and checks whether h ′ = H 1 (m

′) , R ′ = R ′′ , and C t, 3 =
H 2 (C t, 1 , C t, 2 , (R ′) x t) . If all of them hold, it returns m

′ to A 2 . Otherwise, it returns ⊥ .

3. On receiving two messages m 0 , m 1 ∈ { 0 , 1 } � 1 from A 2 , B 2 randomly selects r from Z

∗
p and forwards H 1 (m 0) ‖ g r ,

H 1 (m 1) ‖ g r to C 2 . Then, C 2 may select a random bit β ∈ {0, 1}, run PKE2 . Enc (pk ∗, H 1 (m β) ‖ g r) → C

∗
β
, and send C

∗
β

to B 2 .

4. On receiving C

∗
β

from C 2 , B 2 selects a random bit b ∈ {0, 1}, sets C

∗
t,b, 2

= C

∗
β
, runs PKE1 . Enc (pk t, 1 , m b ‖ g r) → C

∗
t,b, 1

, and

computes C

∗
t,b, 3

= H 2 (C

∗
t,b, 1

, C

∗
t,b, 2

, X r t) . Then, B 2 returns C ∗
t,b

= (C

∗
t,b, 1

, C

∗
t,b, 2

, C

∗
t,b, 3

) to A 2 .

5. B 2 responds to A 2 ’s oracle queries as in Step 2 of this game, except for the decryption oracle queries on ciphertexts of

the form (C t, 1 , C

∗
t, 2

, C t, 3) . For the decryption oracle queries on ciphertexts of form (C t, 1 , C

∗
t, 2

, C t, 3) , it outputs ⊥ .

6. On receiving A 2 ’s output b ′ , B 2 outputs β ′ = b ′ .

As the similar reason in the proof of Lemma 1 , the above simulation may fail when the event F 1 defined in the proof of

Theorem 2 occurs and Pr [F 1] ≤ Adv
CDH
A 2 , G .

Because b is randomly chosen by B 2 , Pr [β = b] = Pr [β � = b] =

1
2 . Further, if B 2 correctly guesses β , i.e., β = b, then the

challenge ciphertext C ∗t for A 2 has the form of

C ∗t,b = (C

∗
t,b, 1 , C

∗
t,b, 2 , C

∗
t,b, 3)

= (PKE1 . Enc (pk ∗, m β‖ g r) , PKE2 . Enc (pk t, 2 , H 1 (m β) ‖ g r) , C

∗
t,b, 3) ,

which has the same form of the challenge ciphertext in Game 0. Hence, when A 1 correctly answers so that b ′ = b, B

′
outputs the correct answer β ′ = b ′ = b = β .

If B 2 does not correctly guess β , i.e., β � = b , then the challenge ciphertext C ∗t has the form of

C ∗t,b = (C

∗
t,b, 1 , C

∗
t,b, 2 , C

∗
t,b, 3)

= (PKE1 . Enc (pk ∗, m 1 −β‖ g r) , PKE2 . Enc (pk t, 2 , H 1 (m β) ‖ g r) , C

∗
t,b, 3) ,

which has the same form of the challenge ciphertext in Game 1. Hence, when A 1 outputs the index related to the second

component of the challenge ciphertext in Game 1, β ′ is the same as β . The probability of such the event is 1
2 − ε1 because

we define ε1 by Pr [A outputs 1 − β] − 1
2 . Hence,

Adv
IND-CCA2
PKE2 , B 2

= Pr [β = β ′] − 1

2

≥ Pr [β = β ′ |¬F 1] Pr [¬F 1] − 1

2

=

(
Pr [A outputs β in Game 0 |¬ F 1 ∧ β = b] Pr [β = b]

+ Pr [A outputs β in Game 1 |¬F 1 ∧ β � = b] Pr [β � = b]

)
Pr [¬F 1] − 1

2

≥
((

1

2

+ ε0 − Pr [F 1]

)
1

2

+

(
1

2

− ε1 − Pr [F 1]

)
1

2

)
(1 − Pr [F 1]) − 1

2

≥
(

1 − Adv
CDH
A 2 , G

)
ε0 − ε1

2

− 3 Adv
CDH
A 2 , G

2

+ negl (λ) . (5)

Since we assume that the PKE2 scheme is IND-CCA2 secure, the advantage of B 2 is negligible in the security parameter.

Therefore, ε0 − ε1 is also negligible in the security parameter. �

432 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

From Lemma 1 and 2 , both ε0 + ε1 and ε0 − ε1 are negligible in the security parameter. Hence, ε0 should be negligible

in the security parameter. More precisely, from the relations (4) and (5) ,

ε0 = Adv
IND-CCA2
OURS

≤
(

1

1 − Adv
CDH
G

)(
Adv

IND-CCA2
PKE1 + Adv

IND-CCA2
PKE2 + 3 Adv

CDH
G

)
+ negl (λ) .

Since we assume that the exploited PKE1 and PKE2 schemes are IND-CCA2 secure and the CDH assumption on G holds,

our construction is IND-CCA2 secure. �

5. Our semi-generic construction of IBE with equality test

In this section, we present our semi-generic IBEET construction that exploits traditional IBE schemes. Then, we show that

our construction is OW-ID-CCA2 secure against Type-I adversaries and IND-ID-CCA2 secure against Type-II adversaries in

the random oracle model.

5.1. Our semi-generic IBEET construction

Now, we provide our semi-generic IBEET construction by exploiting two traditional IBE schemes, IBE1 =
(IBE1 . Setup , IBE1 . Extract , IBE1 . Enc , IBE1 . Dec) and IBE2 = (IBE2 . Setup , IBE2 . Extract , IBE2 . Enc , IBE2 . Dec) . We note that one

may employ the same IBE scheme for IBE1 and IBE2 as in our PKEET constructions. The description is as follows:

• IBEET . Setup (λ) : It takes a security parameter λ as an input and runs IBE1 . Setup (λ) → (pp 1 , msk 1) and IBE2 . Setup (λ) →
(pp 2 , msk 2) . Let G and G T be cyclic groups of prime order p = p(λ) . Let e : G × G → G T be a bilinear map and g be a

generator of the group G . It randomly selects a random element s from Z

∗
p and set g 1 = g s . Let H 1 : { 0 , 1 } � 1 → { 0 , 1 } � 2 ,

H 2 : { 0 , 1 } ∗ → { 0 , 1 } � 3 , and H 3 : { 0 , 1 } ∗ → G be cryptographic hash functions for integers � 1 = � 1 (λ) , � 2 = � 2 (λ) , and � 3 =
� 3 (λ) . It outputs a public parameter pp and a master secret key msk ,

pp = (pp 1 , pp 2 , G , G T , e, g, g 1 , H 1 , H 2 , H 3) ,

msk = (msk 1 , msk 2 , s) .

• IBEET . Extract (pp, msk, ID) : It takes the public parameter pp , the master secret key msk , and an identity ID ∈ { 0 , 1 } ∗ as

inputs, and performs as follows:

1. Run IBE1 . Extract (pp 1 , msk 1 , ID) → d ID , 1 .

2. Run IBE2 . Extract (pp 2 , msk 2 , ID) → d ID , 2 .

3. Compute d ID , 3 = h s ID where h ID = H 3 (ID) .

4. Output d ID = (d ID , 1 , d ID , 2 , d ID , 3) .

• IBEET . Enc (pp, ID , m) : It takes the public parameter pp , an identity ID , and a message m ∈ { 0 , 1 } � 1 as inputs, and per-

forms as follows:

1. Select a random element r from Z

∗
p .

2. Run IBE1 . Enc (pp 1 , ID , m ‖ g r) → C 1 .

3. Run IBE2 . Enc (pp 2 , ID , H 1 (m) ‖ g r) → C 2 .

4. Compute C 3 = H 2 (C 1 , C 2 , e (h ID , g 1)
r) and output C = (C 1 , C 2 , C 3) .

• IBEET . Dec (pp, d ID , C) : It takes the public parameter pp , the secret key d ID = (d ID , 1 , d ID , 2 , d ID , 3) of the identity ID , and a

ciphertext C = (C 1 , C 2 , C 3) as inputs, and performs as follows:

1. Run IBE1 . Dec (pp 1 , d ID , 1 , C 1) → m

′ ‖ R ′ .
2. Run IBE2 . Dec (pp 2 , d ID , 2 , C 2) → h ′ ‖ R ′′ .
3. Check whether h ′ = H 1 (m

′) , R ′ = R ′′ , and C 3 = H 2 (C 1 , C 2 , e (d ID , 3 , R
′)) .

4. If all of them hold, it outputs m

′ . Otherwise, output ⊥ .

• IBEET . Trap do or (d ID) : It takes the secret key d ID = (d ID , 1 , d ID , 2 , d ID , 3) of the identity ID as an input and outputs a trap-

door td ID = d ID , 2 for the identity ID .

• IBEET . Test (td ID i , C ID i , td ID j , C ID j) : It takes a ciphertext C ID i = (C ID i , 1
, C ID i , 2

, C ID i , 3
) of a user ID i with his/her trapdoor td ID i

and a ciphertext C ID j = (C ID j , 1
, C ID j , 2

, C ID j , 3
) of a user ID j with his/her trapdoor td ID j as inputs. It performs as follows:

1. Run IBE2 . Dec (pp 2 , td ID i , C ID i , 2
) → h ′ ‖ R ′ .

2. Run IBE2 . Dec (pp 2 , td ID j , C ID j , 2
) → h ′′ ‖ R ′′ .

3. If h ′ = h ′′ , then output 1. Otherwise, output 0.

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 433

Correctness . The following theorem demonstrates the correctness of our semi-generic IBEET construction.

Theorem 4. Our construction in Section 5.1 is correct according to Definition 6 under assuming the exploited IBE1 and IBE2

schemes are correct and H 1 is a collision-resistant hash function.

Proof. Let C ID i = (C ID i , 1
, C ID i , 2

, C ID i , 3
) be a valid ciphertext generated by running IBEET . Enc (pp, ID i , m i) . Then,

IBE1 . Dec (pp 1 , d ID i , 1 , C ID i , 1
) → m i ‖ g r and IBE2 . Dec (pp 2 , d ID i , 2 , C ID i , 2

) → H 1 (m i) ‖ g r for some r ∈ Z

∗
p , because IBE1 and IBE2

are correct. Moreover, since e (h ID i , g 1)
r = e (h s ID i

, g r) = e (d ID i , 3 , g
r) , H 2 (C ID i , 1

, C ID i , 2
, e (d ID i , 3 , g

r)) is the same as C ID i , 3
=

H 2 (C ID i , 1
, C ID i , 2

, e (h ID i , g 1)
r) . Hence, the first condition for the correctness holds.

Let C ID j = (C ID j , 1
, C ID j , 2

, C ID j , 3
) be a valid ciphertext generated by running IBEET . Enc (pp, ID j , m j) . For the IBEET . Test

algorithm, when the trapdoors td ID i and td ID j for users ID i and ID j are given, if m i = m j , then it outputs 1

since IBE2 . Dec (pp 2 , td ID i , C ID i , 2
) → H 1 (m i) ‖ R i , IBE2 . Dec (pp 2 , td ID j , C ID j , 2

) → H 1 (m j) ‖ R j , and H 1 (m i) = H 1 (m j) . Otherwise,

H 1 (m i) is different from H 1 (m j) with overwhelming probability since H 1 is a collision-resistant hash function. Therefore,

both the second and third conditions for the correctness hold. �

5.2. Security analysis of our IBEET construction

In this subsection, we explore the security of our IBEET construction. The following theorem demonstrates that our IBEET

construction is OW-ID-CCA2 secure against Type-I adversaries.

Theorem 5. Our construction in Section 5.1 is OW-ID-CCA2 secure against PPT Type-I adversaries, under assuming that the

exploited IBE1 scheme is IND-ID-CCA2 secure, the BDH assumption holds, and H 1 , H 2 , and H 3 are modelled as random oracles.

Sketch of Proof . The proof of this theorem is very similar to that of Theorem 2 . As in the proof of Theorem 2 , we suppose

that there exists a PPT Type-I adversary A who breaks the OW-ID-CCA2 security of our IBEET construction. Then, we

construct a PPT algorithm B who breaks the IND-ID-CCA2 security of the IBE1 scheme using A . The main differences are

as follows:

• While O

sk oracle queries are controlled by B itself in the proof of Theorem 2 , the key extraction queries O

Ext are served

with the aid of the key extraction oracle of the IND-ID-CCA2 security game of the IBE1 scheme, to extract the secret

key of the IBE1 scheme in this proof.

• For O

Dec queries, while B in the proof of Theorem 2 queries to the decryption oracle on ciphertexts only under the public

key pk t , B in this proof queries to it on all ciphertexts.

• Additionally, O

H 3 oracle queries are offered as follows: At the initial step, it selects a random element x from Z

∗
p and sets

ḡ = g x . On input an identity ID , it returns h ID if (ID , r ID , h ID) has previously been stored in the hash list L H 3 , which was

originally initiated as an empty set. Otherwise, it randomly selects r ID from Z

∗
p , computes h ID = ḡ r ID , adds (ID , r ID , h ID)

to the hash list L H 3 , and returns h ID .

• Similarly to the event denoted by F 1 in the proof of Theorem 2 , we denote by G 1 the event that a ciphertext of the form

(C

∗
ID ∗, 1

, C ID ∗, 2 , C ID ∗, 3) queried to the decryption oracle, is valid where the challenge ciphertext is (C

∗
ID ∗, 1

, C

∗
ID ∗, 2

, C

∗
ID ∗, 3

) .

Then, we can assume that if A detects a wrong simulation, then A can solve the BDH problem on the instance (g , g x , g r ,

g s) by computing (e (h ID ∗ , g 1)
r) r

−1
ID ∗ where h ID ∗ = ḡ r ID ∗ = (g x) r ID ∗ . Hence, we can assume that Pr [G 1] ≤ Adv

BDH
A is negligible

in the security parameter.

Then, we complete the proof of this theorem by following the similar step to that of the proof of Theorem 2 . The full

proof of Theorem 5 is given in Appendix A . �

Next, we demonstrate that our IBEET construction also achieves the IND-ID-CCA2 security against Type-II adversaries.

Theorem 6. Our construction in Section 5.1 is IND-ID-CCA2 secure against PPT Type-II adversaries, under assuming that the

exploited IBE1 and IBE2 schemes are IND-ID-CCA2 secure, the BDH assumption holds, and H 1 , H 2 , and H 3 are modelled as

random oracles.

Sketch of Proof . The proof of this theorem is very similar with that of Theorem 3 , which demonstrates the IND-CCA2 se-

curity of our PKEET scheme. Similarly to the proof of Theorem 3 , we can prove by defining an original IND-ID-CCA2 security

game of our IBEET construction and its slight modification, and then demonstrating that the advantages of any PPT adver-

saries of those games are negligible in the security parameter. We can easily obtain the full proof of this theorem from

properly combining the proofs of Theorem 3 and Theorem 5 by considering the identity-based setting. We provide the full

proof of this theorem in Appendix B . �

434 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

Table 1

Comparison of Our PKEET with existing schemes.

[19] [18] [12] † Ours

Comp of Enc 3Exp 5Exp 6Exp 6 Exp + 2 SE

Dec 3Exp 2Exp 5Exp 3 Exp + 2 SE

Test 2Pairing 4Exp 2 Pairing + 2 Exp 2 Exp + 2 SE

Size of PK | G | 2 | G | 3 | G | 3 | G |
CT 3 | G | + | Z p | 4 | G | + | Z p | + 2 λ 5 | G | + | Z p | 2 | G | + 10 λ

TD - | Z p | | Z p | | Z p |
Security Type-I OW-CCA2 OW-CCA2 OW-CCA2 OW-CCA2

Type-II - IND-CCA2 IND-CCA2 IND-CCA2

Assumptions CDH CDH CDH CDH

† The scheme in [12] originally supports four types of authorization policies for equality tests,

but we consider Type-1 authorization only for the above comparison, which has the same

functionality with ours. Legends: Comp: computational complexity, Enc: encryption algo-

rithm, Dec: decryption algorithm, Test: test algorithm, PK: public key, CT: ciphertext, TD:

trapdoor, Exp: cost for an exponentiation, Pairing: cost for a pairing computation, SE: cost

for symmetric encryption (or decryption), λ: security parameter, CDH: computational Diffie-

Hellman assumption.

6. Comparisons

In this section, we provide comparisons of our PKEET and IBEET constructions with existing other related works.

6.1. Comparison with previous PKEET schemes

We first present a comparison of our PKEET construction with previous PKEET schemes which support the same func-

tionality with ours. For PKE schemes in our PKEET construction, we exploit the outcome of the Fujisaki and Okamoto (FO)

conversion [6] by employing the hashed ElGamal encryption scheme [7] as an asymmetric encryption scheme and AES [5] as

a symmetric encryption scheme. The hashed ElGamal encryption scheme requires two exponentiations for encryption and

one exponentiation for decryption

2 , and its ciphertext consists of one group element and one string whose size is the same

as a hash output. In addition to those of the hashed ElGamal encryption, the outcome of the FO conversion using the hashed

ElGamal encryption and AES requires costs of the AES encryption and decryption algorithms for encryption and decryption,

respectively. A ciphertext of the FO conversion just adds a ciphertext of AES to a ciphertext of the hashed ElGamal encryp-

tion. We note that the hashed ElGamal encryption scheme is indistinguishable against chosen plaintext attacks (IND-CPA)

under CDH assumptions in the random oracle model and so the outcome of the FO conversion is IND-CCA2 secure if CDH

assumptions hold and AES is one-way.

Table 1 provides a comparison between our construction and other related ones. The second, third, fourth, and last

columns describe the features of Yang et al.’s PKEET [19] , Tang’s all-or-nothing PKEET [18] , Ma et al.’s PKEET [12] , and ours,

respectively. We set the size of hash values and the ciphertext size of AES to 2 λ, respectively, for the security parameter λ.

The table shows that the performance of our construction is slightly worse than the previous best result [18] . This seems to

be because our construction is semi-generic and so its performance relies heavily on those of the underlying PKE schemes.

Hence, we believe that it could be further improved if a more efficient IND-CCA2 secure PKE scheme is provided.

6.2. Comparison with previous IBEET schemes

Now, we provide a comparison of our IBEET construction with an IBEKS scheme and the existing IBEET scheme [11] .

For IBEKS, we consider Abdalla et al.’s generic transformation [1] by exploiting Park and Lee’s anonymous hierarchical IBE

scheme [14] as in [11] . For our IBEET construction, we exploit Boneh and Franklin’s IND-ID-CCA2 secure IBE scheme [4] ,

which requires two exponentiations for encryption, and one pairing computation and one exponentiation for decryption. 3

Table 2 gives a comparison between our and other related constructions. The second, third, and fourth columns describe

the features of an IBEKS scheme exploiting Park and Lee’s anonymous hierarchical IBE, Ma’s IBEET scheme, and our scheme

exploiting Boneh-Franklin’s IBE, respectively. In terms of computational complexity, the table shows that our decryption

algorithm is slightly slower than the one given by Ma. However, the test algorithm is made faster by considering that in

general a pairing computation is more expensive than an exponentiation. We also confirm that the size of our public key,

ciphertext, and trapdoor are comparable to those used in Ma’s scheme. Finally, we remark that our construction is the only

IBEET scheme that achieves the IND-ID-CCA2 security against Type-II adversaries.
2 We ignore the cost of the hash computation, because in general it is much cheaper than exponentiation.
3 We ignore the cost of the hash computation, because in general it is much cheaper than exponentiation and pairing operations.

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 435

Table 2

Comparison of IBEKS and IBEETs.

IBEKS IBEET Ours

([1] + [14]) ([11]) (with BF-IBE [4])

Comp of Enc 7Exp 6Exp 6Exp

Dec - 2Pairing+2Exp 3Pairing+2Exp

Test 4Pairing 4Pairing 2Pairing+2Exp

Size of PK 15 G 2 G 4 G

CT 4 G + G T 4 G + Z p 2 G +5 |H|
TD 12 G G G

Fun KS Yes Yes Yes

ET No Yes Yes

Security IND-ID-CPA OW-ID-CCA2 IND-ID-CCA2

ROM No Yes Yes

Assumption � -DBDHE & aug � -DL BDH BDH

Legends: IBEKS: identity-based encryption with keyword search, IBEET: identity-

based encryption with equality test, BF-IBE: Boneh and Franklin’s identity-based en-

cryption, Comp: computational complexity, Fun: Functionality, ROM: random oracle

model, Enc: encryption algorithm, Dec: decryption algorithm, Test: test algorithm,

PK: public key, CT: ciphertext, TD: trapdoor, KS: keyword search, ET: equality test,

Exp: Exponentiation, Pairing: Pairing, G , G T : two cyclic group of order p for a pair-

ing e : G × G → G T , H: hash function, � -DBDHE: decisional � -bilinear Diffie-Hellman

exponent assumption, aug � -DL: augmented Decisional linear assumption, BDH: bi-

linear Diffie-Hellman assumption.

7. Conclusion

In this paper, we have provided a semi-generic construction of public key encryption with equality test by exploiting

traditional public key encryption schemes. Our construction is OW-CCA2 secure against Type-I adversaries who have the

trapdoor for equality test, and IND-CCA2 secure against Type-II adversaries who do not have this information. This is shown

assuming that the exploited public key encryption schemes are IND-CCA2 secure and the CDH assumption holds in the

random oracle model.

We have also provided an identity-based version of our construction by replacing public key encryption schemes and the

CDH assumption with identity-based schemes and the BDH assumption, respectively. As a result, we have obtained the first

identity-based encryption scheme with equality test that achieves both OW-ID-CCA2 security against Type-I adversaries

and IND-ID-CCA2 security against Type-II adversaries.

In future research, we may consider developing more generic constructions which do not require the CDH or BDH as-

sumptions. It may also be interesting to design generic constructions of public key encryption and identity-based encryption

with equality test that support flexible authorization, as done for the scheme in [12] .

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments. Hyung Tae Lee, San Ling, and

Huaxiong Wang were supported by Research Grant TL-9014101684-01 and the Singapore Ministry of Education under Re-

search Grant MOE2013-T2-1-041. Huaxiong Wang was also supported by NTU under Tier 1 grant RG143/14. Jae Hong Seo

was supported by ETRI R&D program (15ZS1500).

Appendix A. Proof of Theorem 5

The proof of Theorem 5 is very similar as that of Theorem 2 . Let A be a PPT Type-I adversary who breaks the OW-

ID-CCA2 security of our IBEET construction with advantage εA . Then, we can construct a PPT algorithm B who breaks the

IND-ID-CCA2 security of the IBE1 scheme using A as follows:

1. On receiving a public parameter pp 1 from the challenger C of the IND-ID-CCA2 security game of the IBE1 scheme, B
performs as follows:

(a) Run IBE2 . Setup (λ) → (pp 2 , msk 2) .

(b) Generate cyclic groups G and G T of prime order p . Let e : G × G → G T be a bilinear map. Select a generator g of the

group G . Choose a random element s from Z

∗
p and set g 1 = g s .

(c) Send pp = (pp 1 , pp 2 , G , G T , e, g, g 1) to A .

2. For A ’s oracle queries, B responds as follows:

• O

H 1 , O

H 2 queries: These are the same with those in the proof of Theorem 2 , which proves the OW-CCA2 security of

our PKEET construction.

436 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

• O

H 3 query: At the initial step, it selects a random element x from Z

∗
p and sets ḡ = g x . On input an identity ID , it

returns h ID if (ID , r ID , h ID) has previously been stored in the hash list L H 3 , which was originally initiated as an empty

set. Otherwise, it randomly selects r ID from Z

∗
p , computes h ID = ḡ r ID , adds (ID , r ID , h ID) to the hash list L H 3 , and re-

turns h ID .

• O

Ext query: On input an identity ID ,

(a) B queries ID to the key extraction oracle of the IND-ID-CCA2 security game of the IBE1 scheme and then receives

d ID , 1 .

(b) B runs IBE2 . Extract (pp 2 , msk 2 , ID) → d ID , 2 .

(c) B computes d ID , 3 = h s ID where h ID = H 3 (ID) (obtained by O

H 3 queries).

(d) B sends d ID = (d ID , 1 , d ID , 2 , d ID , 3) to A .

• O

td query: On input an identity ID , it runs IBEET . Trap do or (d ID) → td ID and returns td ID .

• O

Dec query: On input a pair of an identity and a ciphertext (ID , C ID) for C ID = (C ID , 1 , C ID , 2 , C ID , 3) ,

(a) B queries C ID , 1 to the decryption oracle of the IND-ID-CCA2 security game of the IBE1 scheme and then receives

m

′ ‖ R ′ .
(b) B runs IBE2 . Dec (pp 2 , d ID , 2 , C ID , 2) → h ′

1
‖ R ′′ and check whether h ′

1
= H 1 (m

′) , R ′ = R ′′ , and C ID , 3 =
H 2 (C ID , 1 , C ID , 2 , e (d ID , 3 , R

′)) . If all of them hold, it returns m

′ . Otherwise, it returns ⊥ .

3. Once receiving the challenge identity ID

∗ from A , B selects two random messages m 0 , m 1 from { 0 , 1 } � 1 and r from Z

∗
p ,

and sends ID

∗, m 0 ‖ g r , and m 1 ‖ g r to C. Then, C may select a random bit β ∈ {0, 1}, run

IBE1 . Enc (pp 1 , ID

∗, m β‖ g r) → C

∗
ID ∗, 1 ,

and send it to B.

4. Once B receives the challenge ciphertext C

∗
ID ∗, 1

, he selects a random element h ∗
1

∈ { 0 , 1 } � 2 , runs

IBE2 . Enc (pp 2 , ID

∗, h

∗
1 ‖ g r) → C

∗
ID ∗, 2 ,

and computes C

∗
ID ∗, 3

= H 2 (C

∗
ID ∗, 1

, C

∗
ID ∗, 2

, e (h ID ∗ , g 1)
r) . B sends C ∗

ID ∗ = (C

∗
ID ∗, 1

, C

∗
ID ∗, 2

, C

∗
ID ∗, 3

) to A as the challenge cipher-

text.

5. B responds to A ’s oracle queries as the same as in Step 2, except for the decryption oracle queries on ciphertexts of form

(C

∗
ID ∗, 1

, C ID ∗, 2 , C ID ∗, 3) . For the decryption oracle queries on ciphertexts of form (C

∗
ID ∗, 1

, C ID ∗, 2 , C ID ∗, 3) , B outputs ⊥ .

We note that the key extraction query on the challenge identity ID

∗ and the decryption query on the pair of the challenge

identity ID

∗ and the challenge ciphertext C ∗
ID ∗ , are not allowed by the definition of the security game.

6. A outputs m

′ . If m

′ = m b for b = 0 , 1 , B outputs β ′ = b. Otherwise, it outputs a random bit β ′ ∈ {0, 1}.

Let us evaluate B’s advantage. We first note that B’s simulation may fail in the following two cases:

• Let G 1 be the event that a ciphertext of the form (C

∗
ID ∗, 1

, C ID ∗, 2 , C ID ∗, 3) queried to the decryption oracle in Step 5, is

valid. In this case, we assume that the decryption oracle returns ⊥ in the above simulation. However, in case when

IBE2 . Enc (pp 2 , ID

∗, ̄h 1 ‖ g r) → C ID ∗, 2 and C ID ∗, 3 = H 2 (C

∗
ID ∗, 1

, C ID ∗, 2 , e (h ID ∗ , g 1)
r)) for some h̄ 1 ∈ { 0 , 1 } � 2 , this ciphertext be-

comes valid. To generate such a ciphertext, A must query to the oracle O

H 2 on an input (C

∗
ID ∗, 1

, C ID ∗, 2 , e (h ID ∗ , g 1)
r) . Here,

we can assume that if A detects such a wrong simulation, then he can solve a BDH problem on an instance (g , g x , g r , g s)

by computing (e (h ID ∗ , g 1)
r) r

−1
ID ∗ , because

(e (h ID ∗ , g 1)
r) r

−1
ID ∗ = (e (g xr ID ∗ , g s) r) r

−1
ID ∗ = e (g, g) xsr .

Since we assume that the BDH assumption holds, Pr [G 1] ≤ Adv
BDH
A is negligible in the security parameter.

• Let G 2 be the event that m 0 or m 1 are queried to the oracle O

H 1 . If m 0 or m 1 are queried and the outputs of the oracle

queries on m 0 or m 1 are not h̄ 1 , then the challenge ciphertext for A may not be valid. We note that the probability that

G 2 occurs is

Pr [G 2] = 1 −
(

2

� 1 − 2

q H 1

)/(
2

� 1

q H 1

)
= 1 −

(
1 − q H 1

2

� 1

)(
1 − q H 1

2

� 1 − 1

)
≤ 2 q H 1

2

� 1 − 1

,

where q H 1
is the number of different inputs to be queried to the O

H 1 oracle. Whereas the size of the plaintext space is

exponential in the security parameter, q H 1
is polynomial in the security parameter, and hence Pr [G 2] is negligible in the

security parameter.

We denote the event that G 1 or G 2 occur by G, i.e., G = G 1 ∨ G 2 . In the above simulation, B outputs β ′ = β in the following

two cases:

• E A , 1 : the event that A correctly outputs m β . In this case, B correctly answers with probability 1 and it holds that

Pr [E A , 1 ∧ ¬G] ≥ εA − Pr [G] .

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 437

• E A , 2 : the event that A outputs neither m β nor m 1 −β . In this case, B correctly answers with probability 1
2 and it holds

that

Pr [E A , 2 ∧ ¬G] ≤ 1 − εA − 1

2

� 2
≤ Pr [E A , 2 ∧ ¬G] + Pr [G] .

Here, both the above two bounds are obtained by the same argument in Eqs. (1) and (2) . Then, the remaining analysis is

exactly the same as in the proof of Theorem 2 . That is, we have

Adv
IND-ID-CCA2
IBE1 , B ≥ εA

2

− 3

2

Adv
BDH
A − negl (λ)

and therefore

εA = Adv
OW-ID-CCA2
OURS , A

≤ 2 Adv
IND-ID-CCA2
IBE1 + 3 Adv

BDH
A + negl (λ) .

Since we assume that the IBE1 scheme is IND-ID-CCA2 secure and the BDH assumption holds, our construction is OW-ID-

CCA2 secure. �

Appendix B. Proof of Theorem 6

The proof of this theorem is very similar with that of Theorem 3 . Similarly to the proof of Theorem 3 , we will first

define an original IND-ID-CCA2 security game of our construction and its slight modification. Then, we will demonstrate

that the advantages of any PPT adversaries of those games are negligible in the security parameters. The original game and

its modification are defined as follows:

Game 0. This game is the same as the original IND-ID-CCA2 security game in Definition 8 .

1. The challenger C takes a security parameter λ as an input, runs IBEET . Setup (λ) → (pp, msk) , sends the public parameter

pp to the adversary A , and keeps the master secret key msk private.

2. For A ’s queries to the oracles O

H 1 , O

H 2 , O

H 3 , and O

td , the challenger C responds as B in Step 2 of the security game in

the proof of Theorem 5 . For queries to the oracles O

Ext and O

Dec , C responds as follows:

• O

Ext query: On input an identity ID , it runs IBEET . Extract (pp, msk, ID) → d ID and returns d ID .

• O

Dec query: On input a ciphertext C ID = (C ID , 1 , C ID , 2 , C ID , 3) of a user ID , it runs IBEET . Dec (pp, d ID , C ID) → m

′ and

returns m

′ .
3. A selects an identity ID

∗, which was never queried to the O

Ext oracle and O

td oracle in Step 2, and two messages m 0

and m 1 , and sends them to C . C selects a random bit b ∈ {0, 1}, runs IBEET . Enc (pp, ID

∗, m b) → C ∗
ID ∗,b

, and sends C ∗
ID ∗,b

to A .

4. For A ’s oracle queries, C responds as in Step 2. The constraints are that

(a) the identity ID

∗ does not appear as an input in the O

Ext and O

td oracle queries;

(b) a pair of the identity ID

∗ and the ciphertext C ∗
ID ∗,b

does not appear as an input in the O

Dec oracle queries.

5. A outputs b ∈ {0, 1}.

Game 1. This game is almost the same as Game 0, except for the challenge ciphertext. In the challenge phase, once C
receives the identity ID

∗ and two messages m 0 , m 1 from A , he selects a random bit b ∈ {0, 1}, and generates a challenge

ciphertext as follows:

1. Select a random element r from Z

∗
p .

2. Run IBE1 . Enc (pp 1 , ID

∗, m b ‖ g r) → C

∗
ID ∗,b, 1

.

3. Run IBE2 . Enc (pp 2 , ID

∗, H 1 (m 1 −b) ‖ g r) → C

∗
ID ∗, 1 −b, 2

.

4. Compute C

∗
ID ∗,b, 3

= H 2 (C

∗
ID ∗,b, 1

, C

∗
ID ∗, 1 −b, 2

, e (h ID ∗ , g 1)
r) ,

and sends C ∗
ID ∗,b

= (C

∗
ID ∗,b, 1

, C

∗
ID ∗, 1 −b, 2

, C

∗
ID ∗,b, 3

) to A .

Let ε i be the advantage of A in Game i , i.e., εi = Pr [A outputs b] − 1
2 . We remark that the probability ε1 is related to the

event that A in Game 1 outputs the index b of the first component C

∗
ID ∗,b, 1

of the challenge ciphertext C ∗
ID ∗,b

, not that of the

second component C

∗
ID ∗, 1 −b, 2

.

The following lemmas will demonstrate that ε0 + ε1 and ε0 − ε1 are negligible in the security parameter under assuming

that the exploited IBE1 and IBE2 schemes are IND-ID-CCA2 secure, respectively, the BDH assumption holds, and H 1 , H 2 ,

and H 3 are modelled as random oracles. As a result, we conclude that the advantage ε0 of any adversaries in the original

security game Game 0, is negligible in the security parameter.

Lemma 3. Assuming that the exploited IBE1 is IND-ID-CCA2 secure, the BDH assumption holds, and H 1 , H 2 , and H 3 are

modelled as random oracles, ε + ε is negligible in the security parameter.
0 1

438 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

Proof. Let A 1 be a PPT adversary who breaks the IND-ID-CCA2 security of our construction. Then, we can construct a PPT

algorithm B 1 who breaks the IND-ID-CCA2 security of the IBE1 scheme using A 1 as follows:

1. On receiving the public parameter pp 1 from the challenger C 1 of the IND-ID-CCA2 security game of the IBE1 scheme,

B 1 runs as B in the proof of Theorem 5 .

2. For A 1 ’s queries to the oracles, B 1 responds as B in the proof of Theorem 5 with the key extraction and the decryption

oracle queries of C 1 if needed.

3. On receiving the challenge identity ID

∗ and two messages m 0 , m 1 ∈ { 0 , 1 } � 1 from A 1 , B 1 randomly selects r from

Z

∗
p and forwards ID

∗, m 0 ‖ g r and m 1 ‖ g r to C 1 . Subsequently, C 1 may select a random bit β ∈ {0, 1}, run

IBE1 . Enc (pp 1 , ID

∗, m β‖ g r) → C

∗
β
, and send C

∗
β

to B 1 .

4. On receiving C

∗
β

from C 1 , B 1 selects a random bit b ∈ {0, 1}, sets C

∗
ID ∗,b, 1

= C

∗
β
, runs IBE2 . Enc (pp 2 , ID

∗, H 1 (m b) ‖ g r) →
C

∗
ID ∗,b, 2

, and computes C

∗
ID ∗,b, 3

= H 2 (C

∗
ID ∗,b, 1

, C

∗
ID ∗,b, 2

, e (h ID ∗ , g 1)
r) . B 1 returns C ∗

ID ∗,b
= (C

∗
ID ,b, 1

, C

∗
ID ,b, 2

, C

∗
ID ,b, 3

) to A 1 .

5. B 1 responds to A 1 ’s oracle queries as in Step 2 of this game, except for the decryption oracle queries on ciphertexts of

the form (C

∗
ID ∗,b, 1

, C ID ∗,b, 2 , C ID ∗,b, 3) . For the decryption oracle queries on ciphertexts of form (C

∗
ID ∗,b, 1

, C ID ∗,b, 2 , C ID ∗,b, 3) , it

outputs ⊥ .

6. On receiving A 1 ’s output b ′ , B 1 outputs β ′ = b ′ .

We note that the above simulation may fail when the event G 1 defined in the proof of Theorem 5 occurs. As the analysis

in the proof of Theorem 5 , Pr [G 1] = Adv
BDH
A 1 and it is negligible in the security parameter because we assume that the BDH

assumption holds.

Now, let us evaluate the advantage of B 1 . Because b is randomly chosen by B 1 , Pr [β = b] = Pr [β � = b] =

1
2 . Further, if B 1

correctly guesses β , i.e., β = b, then the challenge ciphertext C ∗
ID ∗,b

for A 1 has the form of

C ∗ID ∗,b = (C

∗
ID ∗,b, 1 , C

∗
ID ∗,b, 2 , C

∗
ID ∗,b, 3)

= (IBE1 . Enc (pp 1 , ID

∗, m β‖ g r) , IBE2 . Enc (pp 2 , ID

∗, H 1 (m β) ‖ g r) , C

∗
ID ∗,b, 3) ,

which has the same form of the challenge ciphertext in Game 0. Hence, when A 1 correctly answers so that b ′ = b, B

′
outputs the correct answer β ′ = b ′ = b = β .

If B 1 does not correctly guess β , i.e., β � = b , then the challenge ciphertext C ∗
ID ∗,b

has the form of

C ∗ID ∗,b = (C

∗
ID ∗,b, 1 , C

∗
ID ∗, 1 −b, 2 , C

∗
ID ∗,b, 3)

= (IBE1 . Enc (pp 1 , ID

∗, m β‖ g r) , IBE2 . Enc (pp 2 , ID

∗, H 1 (m 1 −β) ‖ g r) , C

∗
ID ∗,b, 3) ,

which has the same form of the challenge ciphertext in Game 1. Hence, when A 1 outputs the index related to the first

component of the challenge ciphertext in Game 1, β ′ is the same as β . Hence,

Adv
IND-ID-CCA2
B 1

= Pr [β = β ′] − 1

2

≥ Pr [β = β ′ |¬G 1] Pr [¬G 1] − 1

2

=

(
Pr [A outputs β in Game 0 |¬G 1 ∧ β = b] Pr [β = b]

+ Pr [A outputs β in Game 1 |¬G 1 ∧ β � = b] Pr [β � = b]

)
Pr [¬G 1] − 1

2

≥
((

1

2

+ ε0 − Pr [G 1]
)

1

2

+

(
1

2

+ ε1 − Pr [G 1]
)

1

2

)
(1 − Pr [G 1]) − 1

2

≥
(

1 − Adv
BDH
A 1

)
ε0 + ε1

2

− 3 Adv
BDH
A 1

2

+ negl (λ) . (B.1)

Since the IBE1 scheme is IND-ID-CCA2 secure, the advantage of B 1 is negligible in the security parameter. Therefore, ε0 + ε1

is also negligible in the security parameter. �

Lemma 4. Assuming that the exploited IBE2 is IND-ID-CCA2 secure, the BDH assumption holds, and H 1 , H 2 , and H 3 are

modelled as random oracles, ε0 − ε1 is negligible in the security parameter.

Proof. The proof of this lemma is very similar to that of Lemma 3 . Let A 2 be a PPT adversary who breaks the IND-ID-

CCA2 security of our construction. Then, we can construct a PPT algorithm B 2 who breaks the IND-ID-CCA2 security of the

IBE2 scheme using A 2 as follows:

1. On receiving a public parameter pp 2 from the challenger C 2 of the IND-ID-CCA2 security game of the IBE2 scheme, B 2

performs as follows:

H.T. Lee et al. / Information Sciences 373 (2016) 419–440 439

(a) Run IBE1 . Setup (λ) → (pp 1 , msk 1) .

(b) Generate cyclic groups G and G T of prime order p . Let e : G × G → G T be a bilinear map. Select a generator g of the

group G . Choose a random element s from Z

∗
p and set g 1 = g s .

(c) Send pp = (pp 1 , pp 2 , G , G T , e, g, g 1) to A 2 .

2. For A 2 ’s queries to the oracles O

H 1 , O

H 2 , and O

H 3 , B 2 responds as B 1 in Step 2 B 1 ’s behaviors in the proof of Lemma 3 .

For queries to O

Ext , O

td , and O

Dec , B 2 responds as follows:

• O

Ext query: On input an identity ID ,

(a) B 2 queries ID to the key extraction oracle of the IND-ID-CCA2 security game of the IBE2 scheme and then re-

ceives d ID , 2 .

(b) B 2 runs IBE1 . Extract (pp 1 , msk 1 , ID) → d ID , 1 .

(c) B 2 computes d ID , 3 = h s ID where h ID = H 3 (ID) (obtained by O

H 3 queries).

(d) B 2 sends d ID = (d ID , 1 , d ID , 2 , d ID , 3) to A 2 .

• O

td query: On input an identity ID , it queries ID to the decryption oracle of the IBE2 scheme. Once receiving d ID , 2 , it

returns td ID = d ID , 2 to A 2 .

• O

Dec query: On input a pair of an identity and a ciphertext (ID , C ID) for C ID = (C ID , 1 , C ID , 2 , C ID , 3) ,

(a) B 2 queries C ID , 2 to the decryption oracle of the IND-ID-CCA2 security game of the IBE2 scheme and then receives

h ′
1
‖ R ′′ .

(b) B 2 runs IBE1 . Dec (pp 1 , d ID , 1 , C ID , 1) → m

′ ‖ R ′ and check whether h ′
1

= H 1 (m

′) , R ′ = R ′′ , and C ID , 3 =
H 2 (C ID , 1 , C ID , 2 , e (d ID , 3 , R

′)) . If all of them hold, it returns m

′ . Otherwise, it returns ⊥ .

3. On receiving the challenge identity ID

∗ and two messages m 0 , m 1 ∈ { 0 , 1 } � 1 from A 2 , B 2 randomly selects r from

Z

∗
p and forwards ID

∗, H 1 (m 0) ‖ g r , and H 1 (m 1) ‖ g r to C 2 . Then, C 2 may select a random bit β ∈ {0, 1}, run

IBE2 . Enc (pp 2 , ID

∗, H 1 (m β) ‖ g r) → C

∗
ID ∗,β

, and send C

∗
ID ∗,β

to B 2 .

4. On receiving C

∗
ID ∗,β

from C 2 , B 2 selects a random bit b ∈ {0, 1}, sets C

∗
ID ∗,b, 2

= C

∗
β
, runs IBE1 . Enc (pp 1 , ID

∗, m b ‖ g r) →
C

∗
ID ∗,b, 1

, and computes C

∗
ID ∗,b, 3

= H 2 (C

∗
ID ∗,b, 1

, C

∗
ID ∗,b, 2

, e (h ID ∗ , g 1)
r) . Then, B 2 returns C ∗

ID ∗,b
= (C

∗
ID ∗,b, 1

, C

∗
ID ∗,b, 2

, C

∗
ID ∗,b, 3

) to

A 2 .

5. B 2 responds to A 2 ’s oracle queries as in Step 2 of this game, except for the decryption oracle queries on ciphertexts

of form (C ID ∗,b, 1 , C

∗
ID ∗,b, 2

, C ID ∗,b, 3) . For the decryption oracle queries on ciphertexts of form (C ID ∗,b, 1 , C

∗
ID ∗,b, 2

, C ID ∗,b, 3) , it

outputs ⊥ .

6. On receiving A 2 ’s output b ′ , B 2 outputs β ′ = b ′ .

As the similar reason in the proof of Lemma 3 , the above simulation may fail when the event G 1 defined in the proof of

Theorem 5 occurs and Pr [G 1] = Adv
BDH
A 2 .

Because b is randomly chosen by B 2 , Pr [β = b] = Pr [β � = b] =

1
2 . Further, if B 2 correctly guesses β , i.e., β = b, then the

challenge ciphertext C ∗
ID ∗,b

for the adversary A 2 has the form of

C ∗ID ∗,b = (C

∗
ID ∗,b, 1 , C

∗
ID ∗,b, 2 , C

∗
ID ∗,b, 3)

= (IBE1 . Enc (pp 1 , ID

∗, m β‖ g r) , IBE2 . Enc (pp 2 , ID

∗, H 1 (m β) ‖ g r) , C

∗
ID ∗,b, 3) ,

which has the same form of the challenge ciphertext in Game 0. Hence, when A 1 correctly answers so that b ′ = b, B

′
outputs the correct answer β ′ = b ′ = b = β .

If B 2 does not correctly guess β , i.e., β � = b , then the challenge ciphertext C ∗
ID ∗,b

has the form of

C ∗ID ∗,b = (C

∗
ID ∗,b, 1 , C

∗
ID ∗,b, 2 , C

∗
ID ∗,b, 3)

= (IBE1 . Enc (pp 1 , ID

∗, m 1 −β‖ g r) , IBE2 . Enc (pp 2 , ID

∗, H 1 (m β) ‖ g r) , C

∗
ID ∗,b, 3) ,

which has the same form of the challenge ciphertext in Game 1. Hence, when A 1 outputs the index related to the second

component of the challenge ciphertext in Game 1, β ′ is the same as β . The probability of such the event is 1
2 − ε1 because

we define ε1 by Pr [A outputs 1 − β] − 1
2 . Hence,

Adv
IND-ID-CCA2
IBE2 , B 2

= Pr [β = β ′] − 1

2

≥ Pr [β = β ′ |¬G 1] Pr [¬G 1] − 1

2

=

(
Pr [A outputs β in Game 0 |¬G 1 ∧ β = b] Pr [β = b]

+ Pr [A outputs β in Game 1 |¬G 1 ∧ β � = b] Pr [β � = b]

)
Pr [¬G 1] − 1

2

≥
((

1

2

+ ε0 − Pr [G 1]
)

1

2

+

(
1

2

− ε1 − Pr [G 1]
)

1

2

)
(1 − Pr [G 1]) − 1

2

440 H.T. Lee et al. / Information Sciences 373 (2016) 419–440

≥
(

1 − Adv
BDH
A 2

)
ε0 − ε1

2

− 3 Adv
BDH
A 2

2

+ negl (λ) . (B.2)

Since we assume that the IBE2 scheme is IND-ID-CCA2 secure, the advantage of B 2 is negligible in the security parameter.

Therefore, ε0 − ε1 is also negligible in the security parameter. �

From Lemma 3 and 4 , both ε0 + ε1 and ε0 − ε1 are negligible in the security parameter. Hence, ε0 should be negligible

in the security parameter. More precisely, from the relations (B.1) and (B.2) ,

ε0 = Adv
IND-ID-CCA2
OURS

≤
(

1

1 − Adv
BDH

)(
Adv

IND-ID-CCA2
IBE1 + Adv

IND-ID-CCA2
IBE2 + 3 Adv

BDH
)

+ negl (λ) .

Since we assume that the exploited IBE1 and IBE2 schemes are IND-ID-CCA2 secure and the BDH assumption holds, our

construction is IND-ID-CCA2 secure. �

References

[1] M. Abdalla , M. Bellare , D. Catalano , E. Kiltz , T. Kohno , T. Lange , J. Malone-Lee , G. Neven , P. Paillier , H. Shi , Searchable encryption revisited: Consistency
properties, relation to anonymous ibe, and extensions, J. Cryptology 21 (3) (2008) 350–391 .

[2] M. Bellare , A. Boldyreva , A. O’Neill , Deterministic and efficiently searchable encryption, in: A. Menezes (Ed.), Advances in Cryptology - CRYPTO 2007,

LNCS, 4622, Springer, 2007, pp. 535–552 .
[3] D. Boneh , G.D. Crescenzo , R. Ostrovsky , G. Persiano , Public key encryption with keyword search, in: C. Cachin, J. Camenisch (Eds.), Advances in Cryp-

tology - EUROCRYPT 2004, LNCS, 3027, Springer, 2004, pp. 506–522 .
[4] D. Boneh , M.K. Franklin , Identity-based encryption from the weil pairing, in: J. Kilian (Ed.), Advances in Cryptology - CRYPTO 2001, LNCS, 2139, Springer,

2001, pp. 213–229 .
[5] J. Daemen, V. Rijmen, The Design of Rijndael: AES - the Advanced Encryption Standard, Information Security and Cryptography, Springer, 2002, doi: 10.

1007/978- 3- 662- 04722- 4 .

[6] E. Fujisaki , T. Okamoto , Secure integration of asymmetric and symmetric encryption schemes, J. Cryptol. 26 (1) (2013) 80–101 .
[7] T.E. Gamal , A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theor. 31 (4) (1985) 469–472 .

[8] C. Gentry , Fully homomorphic encryption using ideal lattices, in: M. Mitzenmacher (Ed.), ACM Symposium on Theory of Computing (STOC) 2009, ACM,
2009, pp. 169–178 .

[9] K. Huang , R. Tso , Y. Chen , S.M.M. Rahman , A. Almogren , A. Alamri , PKE-AET: public key encryption with authorized equality test, Comput. J. 58 (10)
(2015) 2686–2697 .

[10] X.-J. Lin , H. Qu , X. Zhang , Public key encryption supporting equality test and flexible authorization without bilinear pairings, IACR Cryptol. ePrint
Archive 2016 (2016) 277 .

[11] S. Ma , Identity-based encryption with outsourced equality test in cloud computing, Inf. Sci. 328 (2016) 389–402 .

[12] S. Ma , Q. Huang , M. Zhang , B. Yang , Efficient public key encryption with equality test supporting flexible authorization, IEEE Trans. Inf. Forensics Secur.
10 (3) (2015) 458–470 .

[13] S. Ma , M. Zhang , Q. Huang , B. Yang , Public key encryption with delegated equality test in a multi-user setting, Comput. J. 58 (4) (2015) 986–1002 .
[14] J.H. Park , D.H. Lee , Anonymous HIBE: compact construction over prime-order groups, IEEE Trans. Inf. Theor. 59 (4) (2013) 2531–2541 .

[15] D.F. Sittig , Personal health records on the internet: a snapshot of the pioneers at the end of the 20th century, I. J. Med. Inf. 65 (1) (2002) 1–6 .
[16] Q. Tang , Towards public key encryption scheme supporting equality test with fine-grained authorization, in: U. Parampalli, P. Hawkes (Eds.), ACISP

2011, LNCS, 6812, Springer, 2011, pp. 389–406 .

[17] Q. Tang , Public key encryption schemes supporting equality test with authorisation of different granularity, IJACT 2 (4) (2012a) 304–321 .
[18] Q. Tang , Public key encryption supporting plaintext equality test and user-specified authorization, Security Commun. Netw. 5 (12) (2012b) 1351–1362 .

[19] G. Yang , C.H. Tan , Q. Huang , D.S. Wong , Probabilistic public key encryption with equality test, in: J. Pieprzyk (Ed.), Topics in Cryptology - CT-RSA 2010,
LNCS, 5985, Springer, 2010, pp. 119–131 .

http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0004
http://dx.doi.org/10.1007/978-3-662-04722-4
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30765-4/sbref0019

	Semi-generic construction of public key encryption and identity-based encryption with equality test
	1 Introduction
	1.1 Our contribution
	1.2 Related works
	1.3 Organization of the paper

	2 Basic definitions
	2.1 Public key encryption with equality test
	2.2 Identity-based encryption with equality test
	2.3 Cryptographic assumptions

	3 Our semi-generic construction of PKE with equality test
	3.1 Our construction
	3.2 Interpretation of Tang’s PKEET scheme as our semi-generic construction

	4 Security analysis of our PKEET construction
	4.1 OW-CCA2 security against type-I adversaries
	4.2 IND-CCA2 security against type-II adversaries

	5 Our semi-generic construction of IBE with equality test
	5.1 Our semi-generic IBEET construction
	5.2 Security analysis of our IBEET construction

	6 Comparisons
	6.1 Comparison with previous PKEET schemes
	6.2 Comparison with previous IBEET schemes

	7 Conclusion
	 Acknowledgements
	Appendix A Proof of Theorem5
	Appendix B Proof of Theorem6
	 References

