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It is a well-known result that homomorphic encryption is not secure against adaptive 
chosen ciphertext attacks (CCA2) because of its malleable property. Very recently, however, 
Gong et al. proposed a construction asserted to be a CCA2-secure additively homomorphic 
encryption (AHE) scheme; in their construction, the adversary is not able to obtain a 
correct answer when querying the decryption oracle on a ciphertext obtained by modifying 
the challenge ciphertext (Theoretical Computer Science, 2016). Because their construction 
is very similar to Paillier’s AHE, it appeared to support an additively homomorphic 
property, though they did not specify an evaluation algorithm for the scheme in their 
paper.
In this paper, we present a simple CCA2 attack on their construction by re-randomizing 
the challenge ciphertext. Furthermore, we look into an additively homomorphic property 
of their construction. To do this, we first consider a typical candidate for an addition 
algorithm on ciphertexts, as provided for previous AHE constructions, and establish that it 
does not function correctly. Subsequently, we provide plausible evidence for the hardness 
of achieving an additively homomorphic property with their construction. According to 
our analysis, it seems hard to preserve an additively homomorphic property of their 
construction without any modification.
In addition, as a minor contribution, we point out a flaw in the decryption algorithm of 
their construction and present a rectified algorithm for correct decryption.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Because homomorphic encryption allows computations on encrypted data, it has various applications, e.g., secure multi-
party computation [1,2], cloud computing [3], and electronic voting [4]. The security of such applications is directly affected 
by that of the homomorphic encryption employed, which has led to the question of what level of security homomorphic 
encryption can achieve. There have been several studies [5–7] demonstrating that encryption schemes with supporting ho-
momorphic operations can be secure against non-adaptive chosen ciphertext attacks (CCA1), i.e., lunch time attack. On the 
other hand, Bellare et al. [8] have demonstrated that no homomorphic encryption scheme can be secure against adaptive 
chosen ciphertext attacks (CCA2) because of its malleable property.

Very recently, Gong et al. [9] presented quite a surprising result when they proposed a construction asserted to be 
an additively homomorphic encryption (AHE) scheme secure against CCA2. In seeking to achieve CCA2 security, they con-
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structed an encryption scheme such that a message is located in the exponent to the base gab , where g is a generator of 
the underlying group, a is a fixed integer chosen by the key generation algorithm, and b is a random integer chosen by 
the encryption algorithm. They maintained that a polynomial-time adversary could not know the exact value of gab for the 
challenge ciphertext and therefore could not generate a suitable ciphertext that contributes to guessing the message corre-
sponding to the challenge ciphertext. Hence, their construction seems secure against CCA2. Furthermore, their construction 
is very similar to Paillier’s AHE scheme [10], so it seems to allow additions on encrypted data, though they did not specify 
an evaluation algorithm in their paper.

In this paper, however, we present a simple CCA2 attack on their construction. Our attack is designed as follows: Assume 
that the challenge ciphertext C = (C1, C2, C) of a hidden message m is given. Then, C has the form gab(m+a) · A for a 
generator g of the underlying group G, some element A ∈ G, and integers a and b. The adversary chooses a random 
integer s (�= 0, 1) and computes Cs = (C s

1, C
s
2, C

s). Then, C s can be transformed into the form gabs(m+a) · As , and so Cs is 
still a valid ciphertext of the message m. Hence, when the adversary queries the decryption oracle on Cs , it returns the 
message m.

Furthermore, we investigate an additively homomorphic property of their construction. To this end, we first present a 
typical candidate for an evaluation algorithm on ciphertexts, which is defined by component-wise group operations between 
ciphertexts. That is, for given ciphertexts Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č), an evaluated ciphertext is defined as C =
(Ĉ1 · Č1, Ĉ2 · Č2, Ĉ · Č). Then, we establish that this computation does not preserve the additively homomorphic property.

Subsequently, we provide plausible evidence that it is impossible to provide an addition algorithm for Gong et al.’s 
construction. To this end, we first simplify the problem of providing an addition algorithm for it with Paillier’s AHE scheme 
P.Enc. As a result, we obtain the following problem: Denote a ciphertext of Paillier’s scheme of a message m by P.Enc(m). 
For any hidden integers m̂, m̌, α, and β , and a fixed hidden value a, when P.Enc(α), P.Enc(α(m̂ + a)), P.Enc(β), and 
P.Enc(β(m̌ + a)) are given, generate P.Enc(γ (m̂ + m̌ + a)) and P.Enc(γ ) for some nonzero scalar γ .

By using the additively homomorphic property of Paillier’s scheme, we can generate ciphertexts of the form

P.Enc(αX1(m̂ + a) + αX2 + βY1(m̌ + a) + βY2 + Z)

for some scalars X1, X2, Y1, Y2, and Z . In order that the above ciphertext has the form P.Enc(γ (m̂ + m̌ + a)), an evaluation 
algorithm should find a solution of the following system of equations:{

αX1 = βY1 �= 0

aαX1 + αX2 + βY2 + Z = 0.

However, because a, α, and β are hidden values, it is impossible to find a pair (X1, X2, Y1, Y2, Z) satisfying the above system 
of equations except with a negligible probability. Therefore, it seems hard to provide an addition algorithm for Gong et al.’s 
construction.

As a minor contribution, we also point out a flaw in the decryption algorithm of their original construction and provide 
a rectified algorithm for correct decryption.

Organization of the paper. In Section 2, we provide Paillier’s AHE scheme and Gong et al.’s recent construction. In Section 3, 
we demonstrate that the decryption algorithm of Gong et al.’s construction does not work correctly and provide a corrected 
version to accomplish the decryption. Section 4 presents our CCA2 attack on Gong et al.’s scheme. Finally, we discuss about 
an additively homomorphic property of their construction in Section 5.

2. Gong et al.’s proposed CCA2-secure additively homomorphic encryption

In this section, we present some basic definitions related to public-key encryption. Then, we introduce Paillier’s AHE 
scheme, which is the key foundation of Gong et al.’s construction and will be utilized in our discussion about an additively 
homomorphic property of their construction in Section 5. We also provide the description of Gong et al.’s scheme.

2.1. Public key encryption and CCA2 security

A public key encryption scheme consists of the following three algorithms:

• KeyGen(κ): This takes a security parameter κ as an input and outputs a public key pk and a secret key sk.
• Enc(pk, m): This takes the public key pk and a message m as inputs and outputs a ciphertext C .
• Dec(sk, C): This takes the secret key sk and a ciphertext C as inputs and outputs a message m′ .

We say that a public key encryption scheme is correct if for all messages m and security parameters κ ,

Dec(sk,Enc(pk,m)) = m,

where pk and sk are outputs of the algorithm KeyGen(κ).
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The security of a public key encryption scheme is defined by the following game between a challenger and an adversary:

• Setup: The challenger obtains the public key pk and the secret key sk by running KeyGen(κ) for the security parame-
ter κ and sends pk to the adversary.

• Phase 1: The adversary generates ciphertexts and sends them as queries to the decryption oracle, which outputs the 
plaintext message corresponding to the input ciphertext.

• Challenge: The adversary sends two messages m0 and m1 of equal length. The challenger randomly selects β from 
{0, 1} and sends the adversary Cβ obtained by running Enc(pk, mβ).

• Phase 2: The adversary generates ciphertexts and sends them as queries to the decryption oracle. Note that he cannot 
send the challenge ciphertext Cβ as a query.

• Guess: The adversary outputs β ′ ∈ {0, 1}.

The advantage of the adversary in the above game is defined to be | Pr[β = β ′] − 1
2 |. We say that a public key encryption 

scheme is CCA2-secure if there is no polynomial-time adversary whose advantage in the above game is non-negligible in 
the security parameter κ .

2.2. Paillier’s additively homomorphic encryption

In 1999, Paillier [10] proposed three public key encryption schemes based on a new assumption, called the Decisional 
Composite Residuosity (DCR) assumption. These schemes have been widely utilized in various applications because they are 
very efficient and allow additions on encrypted data.

Here we provide a description of the first scheme among them.

• P.KeyGen(κ): This takes a security parameter κ as an input and performs as follows:
1. Select η(κ)-bit random primes p and q, and set n = pq.
2. Compute λ = lcm(p − 1, q − 1).
3. Select an element g of order n in the multiplicative group Z∗

n2 .
4. Output the public key pk = (n, g) and keep the secret key sk = λ private.

• P.Enc(pk, m): Given the public key pk and a message m ∈ Zn , this performs as follows:
1. Select a random integer r from Z∗

n .
2. Compute C = gmrn mod n2 and output C .

• P.Dec(sk, C): Given the secret key sk and a ciphertext C , this computes

m = L(Cλ mod n2)

L(gλ mod n2)
mod n,

where L is a function defined by L(y) = y − 1

n
for y < n2. Then, it outputs m.

2.3. Gong et al.’s scheme

Based on Paillier’s encryption scheme, Gong et al. [9] proposed a construction asserted to be a CCA2-secure AHE scheme. 
The description of their construction is as follows:

• G.KeyGen(κ): This takes a security parameter κ as an input and performs as follows:
1. Select η(κ)-bit random primes p and q, and set n = pq.
2. Compute λ = lcm(p − 1, q − 1).
3. Compute a nontrivial factor t of λ and λ/t .
4. Select random numbers a, k, z1, and z2 from Z∗

n .

5. Compute g = 1 + kn, y = ga mod n2, y′ = za
1 ga2

mod n2, and y′′ = za
1ztn

2 mod n2. We note that g has order n in the 
multiplicative group Z∗

n2 .
6. Output the public key pk = (y, y′, y′′, z1, n) and keep the secret key sk = (a, t, λ/t, λ) private.

• G.Enc(pk, m): Given the public key pk and a message m ∈ Zn , this performs as follows:
1. Select random numbers r, r1, and b from Z∗

n .

2. Compute Bx = yb mod n2, B ′
x = (y′)b mod n2, C1 = zb(r+1)

1 mod n2, C2 = ybrn
1 mod n2, and C = Bm

x B ′
x(y′′)br mod n2.

3. Output a ciphertext C = (C1, C2, C).
• G.Dec(sk, C): Given the secret key sk and a ciphertext C ,

1. Parse C as (C1, C2, C).
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2. Compute

m =
(

L((C · Ctn−a
1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n, (1)

where L is a function defined by L(y) = y − 1

n
for y < n2.

3. Output m.

In an effort to achieve CCA2 security, Gong et al. attempted to prevent the adversary from launching CCA2 by not 
enabling him to obtain a correct answer when he queries the decryption oracle on a ciphertext obtained by modifying 
the challenge ciphertext. More precisely, in their construction, a message m is defined in the exponent to the base gab , 
where a is chosen by the key generation algorithm and b is chosen by the encryption algorithm. Here, an independently 
random b is chosen for each ciphertext, and they claimed that the adversary cannot succeed in CCA2 unless he finds gab

corresponding to the challenge ciphertext, which is infeasible in polynomial time. However, this feature not only prevents 
their construction from supporting an additively homomorphic property, but is also insufficient for achieving CCA2 security. 
We will present our CCA2 attack on their construction in Section 4 and discuss its additively homomorphic property in 
Section 5.

Before moving on to the next section, we remark on relationships between ciphertexts in Paillier’s AHE scheme and 
those in Gong et al.’s construction to facilitate the reader’s understanding. In fact, parts of a ciphertext in Gong et al.’s 
construction can be interpreted as ciphertexts in Paillier’s encryption scheme with the public key pk = (n, g = 1 + kn). For a 
valid ciphertext C = (C1, C2, C) in Gong et al.’s encryption,

C2 = ybrn
1 = gabrn

1 mod n2.

Hence, C2 can be regarded as a ciphertext P.Enc(pk, ab) when r1 is a random element chosen by Paillier’s encryption 
algorithm. Furthermore,

C = Bm
x B ′

x(y′′)br mod n2

= (yb)m(y′)b(y′′)br mod n2

= (gab)m(za
1 ga2

)b(za
1ztn

2 )br mod n2

=
(

gab(m+a)(zbrt
2 )n

)
· zab+abr

1 mod n2, (2)

and hence C can be regarded as a multiplication of ciphertext P.Enc(pk, ab(m +a)) and zab+abr
1 , where zbrt

2 is a corresponding 
random element to generate a ciphertext P.Enc(pk, ab(m + a)). That is,

C = P.Enc(pk,ab(m + a)) · zab+abr
1 mod n2

when zbrt
2 is a randomly chosen element by the Paillier encryption algorithm. We will use these relationships in Section 5

to look into the impossibility of achieving an additively homomorphic property of Gong et al.’s construction.

3. Correction to the decryption algorithm of Gong et al.’s scheme

In this section, we show that the decryption algorithm of Gong et al.’s construction does not function correctly and 
provide a rectified algorithm for correct decryption. Then, we present a toy example of Gong et al.’s construction with our 
rectified decryption algorithm.

3.1. Our modification of Gong et al.’s scheme for correct decryption

Incorrect decryption of Gong et al.’s scheme. We first demonstrate that Gong et al.’s decryption algorithm works incorrectly. 
Let C = (C1, C2, C) be a valid ciphertext. Then, we can represent the components as

C1 = zb(r+1)
1 mod n2, C2 = ybrn

1 mod n2, and C = Bm
x B ′

x(y′′)br mod n2,

where Bx = yb mod n2, B ′
x = (y′)b mod n2, and b, r, and r1 are integers randomly chosen from Z∗

n in the encryption phase. 
Furthermore, the public keys satisfy y = ga mod n2, y′ = za

1 ga2
mod n2, and y′′ = za

1ztn
2 mod n2, where g = 1 + kn for some 

k ∈ Z
∗
n , and a, z1, and z2 are randomly chosen integers from Z∗

n . Let t be a nontrivial factor of λ in the secret key. Then,
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(C · C (tn−a)
1 )λ/t =

(
Bm

x B ′
x(y′′)br(zb(r+1)

1 )(tn−a)
)λ/t

mod n2

=
(
(yb)m(y′)b(y′′)br(zb(r+1)

1 )(tn−a)
)λ/t

mod n2

=
(
(gab)m(za

1 ga2
)b(za

1ztn
2 )br(zb(r+1)

1 )(tn−a)
)λ/t

mod n2

= (gab)(m+a)λ/t(zb(r+1)tn
1 ztnbr

2 )λ/t mod n2

= (gab)(m+a)λ/t(zb(r+1)
1 zbr

2 )nλ mod n2

= (gab)(m+a)λ/t mod n2

= (1 + kn)ab(m+a)λ/t mod n2

= 1 + kab(m + a)(λ/t)n mod n2 (3)

and

Cλ
2 = (ybrn

1)λ = gabλ = (1 + kn)abλ = 1 + kabλn mod n2. (4)

We note that the sixth equality in Equation (3) and the second equality in Equation (4) hold because the multiplicative 
order of each element in Z∗

n2 is a factor of nλ. Hence,(
L((C · Ctn−a

1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n =

(
L(1 + kab(m + a)(λ/t)n mod n2)

L(1 + kabλn mod n2)
mod n

)
− a mod n

=
(

kab(m + a)(λ/t)

kabλ
mod n

)
− a mod n

= t−1(m + a) mod n − a mod n.

Therefore, the decryption algorithm does not return the correct message corresponding to the ciphertext.

Modification for correct decryption. We can easily fix the decryption algorithm by multiplying the secret value t and the 
first term on the right side of Equation (1) as follows: For a ciphertext C = (C1, C2, C), define a decryption algorithm by

G.Dec′(sk,C) =
(

t · L((C · Ctn−a
1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n. (5)

Then, we obtain the correct message corresponding to the ciphertext, because(
t · L((C · Ctn−a

1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n = t(t−1(m + a)) mod n − a mod n

= ((m + a) − a) mod n

= m mod n.

3.2. Toy example of Gong et al.’s scheme with our modification

Now, we provide an example of Gong et al.’s construction with artificially small parameters.

Key generation. A user A chooses primes p = 113 and q = 71, and computes n = pq = 8023, n2 = 64368529, and λ =
lcm(p − 1, q − 1) = 560. A selects t = 7 and computes λ/t = 560/7 = 80. Then, A chooses a = 4942, k = 3090, z1 = 5391, 
and z2 = 7980, and computes

g = 1 + kn = 1 + 3090 · 8023 = 24791071,

y = ga mod n2 = 247910714942 mod 64368529 = 24157254,

y′ = za
1 ga2

mod n2 = 53914942 · 2479107149422
mod 64368529 = 3934277,

y′′ = za
1ztn

2 mod n2 = 53914942 · 78907·8023 mod 64368529 = 48494224.

A’s public key is the pair (y, y′, y′′, z1, n) = (24157254, 3934277, 48494224, 5391, 8023), while A’s secret key is (a, t, λ/t,
λ) = (4942, 7, 80, 560).
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Encryption. To encrypt a message m = 3513, a user B chooses r = 4163, r1 = 8013, and b = 4067, and computes

Bx = yb mod n2 = 241572544067 mod 64368529 = 21172698,

B ′
x = (y′)b mod n2 = 39342774067 mod 64368529 = 11136620,

C1 = zb(r+1)
1 mod n2 = 53914067(4163+1) mod 64368529 = 24863970,

C2 = ybrn
1 mod n2 = 241572544067 · 80138023 mod 64368529 = 13207654,

C = Bm
x B ′

x(y′′)br mod n2 = 211726983513 · 11136620 · 484942244067·4163 mod 64368529 = 17168130.

A ciphertext C is a pair (C1, C2, C) = (24863970, 13207654, 17168130) and B sends C to A.

Decryption. To decrypt C = (C1, C2, C) = (24863970, 13207654, 17168130), A computes(
t · L((C · Ctn−a

1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n

=
(

7 · L((17168130 · 248639707·8023−4942)80 mod 64368529)

L(13207654560 mod 64368529)
mod 8023

)
− 4942 mod 8023

=
(

7 · L(51339178)

L(12900985)

)
− 4942 mod 8023

=
(

7 · 6399

1608
mod 8023

)
− 4942 mod 8023

= (7 · 6399 · (1608−1 mod 8023) − 4942) mod 8023

= (7 · 6399 · 2360 − 4942) mod 8023 = 3513.

Remark 1. On the other hand, we note that Gong et al.’s original decryption algorithm outputs(
L((C · Ctn−a

1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n = 6399 · (1608−1 mod 8023) − 4942 mod 8023

= (6399 · 2360 − 4942) mod 8023 = 5435 �= 3513

for the ciphertext C = (C1, C2, C) = (24863970, 13207654, 17168130). This illustrates that their decryption algorithm is in-
correct.

4. Adaptive chosen ciphertext attack on Gong et al.’s scheme

In this section, we provide our CCA2 attack on Gong et al.’s construction and give an example of our attack with small 
parameters.

4.1. Our CCA2 attack

We present our CCA2 attack on Gong et al.’s construction. Our attack is very straightforward and consists of a simple 
re-randomization by computing an exponentiation of the challenge ciphertext using an exponent that is a randomly chosen 
element in a set Zn\{0, 1}. The result of this re-randomization is still a valid ciphertext of the same message as the challenge 
ciphertext. Therefore, the adversary can recover the exact message of the challenge ciphertext by querying the decryption 
oracle on the re-randomized ciphertext.

Let us explain our CCA2 attack more precisely. After the challenge phase of the CCA2 security game in Section 2.1, assume 
that the adversary receives the challenge ciphertext C = (C1, C2, C) from the challenger. Then, the challenge ciphertext of 
the message mβ for β ∈ {0, 1} can be represented as

C1 = zb(r+1)
1 mod n2, C2 = ybrn

1 mod n2, and C = (yb)mβ (y′)b(y′′)br mod n2, (6)

where b, r, and r1 are integers randomly chosen from Z∗
n by the encryption algorithm.

At this point, the adversary randomly selects an element s from Zn\{0, 1} and computes Cs := (C s
1, C

s
2, C

s). Then,

C s
1 = z(bs)(r+1)

1 mod n2, C s
2 = y(bs)(rs

1)
n mod n2, and C s = (y(bs))mβ (y′)(bs)(y′′)(bs)r mod n2.

Hence, we can see that Cs is obtained by substituting b and r1 with bs and rs
1 in Equations (6), respectively. Thus, Cs is also 

a valid ciphertext of the message mβ , and the adversary can obtain the challenge message mβ by querying the decryption 
oracle on Cs in Phase 2 of the security game. Therefore, by our attack, Gong et al.’s construction is not CCA2-secure.
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4.2. Toy example of our attack

Now, we describe an example of our CCA2 attack against Gong et al.’s construction. For convenience, we exploit the same 
parameters of Gong et al.’s scheme in Section 3.2. In the CCA2 security game, the adversary performs as follows:

• Setup: The challenger generates the public parameter pk = (y, y′, y′′, z1, n) = (24157254, 3934277, 48494224, 5391,

8023) and the secret parameter sk = (a, t, λ/t, λ) = (4942, 7, 80, 560), and passes pk to the adversary. We note that 
n2 = 64368529.

• Phase 1: This step is not necessary for our attack.
• Challenge: The adversary sends two messages m0 = 3512 and m1 = 3513 to the challenger. We assume that the chal-

lenger selects m1 = 3513 and generates the challenge ciphertext

C = (C1, C2, C3) = (24863970,13207654,17168130)

by selecting r = 4163, r1 = 8013, and b = 4067 as in Section 3.2. The challenger forwards C to the adversary.
• Phase 2: This phase is a main part of our attack. Once the adversary receives C , he takes s = 2, computes

C s
1 = C2

1 mod n2 = 248639702 mod 64368529 = 23819165,

C s
2 = C2

2 mod n2 = 132076542 mod 64368529 = 63430208,

C s = C2 mod n2 = 171681302 mod 64368529 = 34772378,

and queries C2 = (C2
1, C2

2, C2) to the decryption oracle. Then, the decryption oracle may return 3513 to the adversary, 
because(

t · L(((C2) · (C2
1)(tn−a))λ/t mod n2)

L((C2
2)λ mod n2)

mod n

)
− a mod n

=
(

7 · L((34772378 · 238191657·8023−4942)80 mod 64368529)

L(63430208560 mod 64368529)
mod 8023

)
− 4942 mod 8023

=
(

7 · L(38309826)

L(25801969)

)
− 4942 mod 8023

=
(

7 · 4775

3216
mod 8023

)
− 4942 mod 8023

= (7 · 6399 · (3216−1 mod 8023) − 4942) mod 8023

= (7 · 6399 · 1180 − 4942) mod 8023 = 3513.

• Guess: The adversary outputs 1 using the above result.

Because the message of the challenge ciphertext is m1 = 3513, our CCA2 attack succeeds.

5. On the additively homomorphic property of Gong et al.’s scheme

In this section, we look into Gong et al.’s assertion of an additively homomorphic property for their scheme. In their 
original paper [9], the authors did not provide an addition algorithm on ciphertexts. Hence, we first present a typical 
candidate for an addition algorithm by considering existing AHE schemes defined over multiplicative groups and show that 
it does not preserve an additively homomorphic property. Thereafter, we provide plausible evidence for the impossibility 
that their construction preserves an additively homomorphic property.

Throughout this section, we assume that two valid ciphertexts Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č) under the same public 
key are given and that they satisfy the following relationships: Let pk be (y, y′, y′′, z1, n), where g = 1 + kn, y = ga mod n2, 
y′ = za

1 ga2
mod n2, and y′′ = za

1ztn
2 mod n2 for integers a, k, z1, z2 ∈ Z

∗
n . Then, there exist b̂, b̌, r̂, ř, r̂1, and ř1 in Z∗

n such that

Ĉ1 = zb̂(r̂+1)
1 mod n2, Ĉ2 = yb̂r̂n

1 mod n2, Ĉ = (yb̂)m̂(y′)b̂(y′′)b̂r̂ mod n2

and

Č1 = zb̌(ř+1)
1 mod n2, Č2 = yb̌řn

1 mod n2, Č = (yb̌)m̌(y′)b̌(y′′)b̌ř mod n2.

Typical candidate for an addition algorithm. A typical candidate for an addition algorithm on ciphertexts of AHE defined 
over multiplicative groups is to multiply ciphertexts component-wise. Let us define C = (C1, C2, C) as a component-wise 
multiplication between two ciphertexts Ĉ and Č . That is,
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C1 = Ĉ1 · Č1, C2 = Ĉ2 · Č2, and C = Ĉ · Č .

Then,

C · Ctn−a
1 = (Ĉ · Č) · (Ĉ1 · Č1)

tn−a mod n2

=
(
(yb̂m̂+b̌m̌)(y′)b̂+b̌(y′′)b̂r̂+b̌ř

)
·
(

zb̂(r̂+1)+b̌(ř+1)
1

)tn−a

mod n2

=
(
(ga(b̂m̂+b̌m̌))(za

1 ga2
)b̂+b̌(za

1ztn
2 )b̂r̂+b̌ř

)
·
(

zb̂(r̂+1)+b̌(ř+1)
1

)tn−a

mod n2

=
(
(ga(b̂m̂+b̌m̌)) · ga2(b̂+b̌)

)
·
(

zb̂(r̂+1)+b̌(ř+1)
1 zb̂r̂+b̌ř

2

)tn

mod n2

=
(

ga(b̂m̂+b̌m̌)+a2(b̂+b̌)
)

·
(

zb̂(r̂+1)+b̌(ř+1)
1 zb̂r̂+b̌ř

2

)tn

mod n2

and hence

L((C · Ctn−a
1 )λ/t mod n2) = L(((1 + kn)a(b̂m̂+b̌m̌)+a2(b̂+b̌))λ/t mod n2)

= 1 + k(a(b̂m̂ + b̌m̌) + a2(b̂ + b̌))(λ/t)n − 1

n

= k
(

a(b̂m̂ + b̌m̌) + a2(b̂ + b̌)
)

(λ/t) mod n.

The first equality in the above equation holds because the multiplicative order of each element in Z∗
n2 is a factor of nλ. 

Moreover, the following holds:

L(Cλ
2 mod n2) = L(((yb̂)r̂n

1(yb̌)řn
1)λ mod n2)

= L(((y)b̂+b̌(r̂1ř1)
n)λ mod n2)

= L(((g)a(b̂+b̌)(r̂1ř1)
n)λ mod n2)

= L((1 + kn)(a(b̂+b̌))λ mod n2)

= 1 + ka(b̂ + b̌)λn − 1

n

= ka(b̂ + b̌)λ mod n.

Therefore, our modified decryption algorithm in Equation (5) outputs 
b̂m̂ + b̌m̌

b̂ + b̌
mod n, not m̂+m̌ mod n, by the following 

computation:

G.Dec′(sk,C) =
(

t
L((C · Ctn−a

1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n

= t
k
(

a(b̂m̂ + b̌m̌) + a2(b̂ + b̌)
)

(λ/t)

ka(b̂ + b̌)λ
mod n − a mod n

= b̂m̂ + b̌m̌

b̂ + b̌
mod n. (7)

Here, the receiver who decrypts ciphertexts cannot know a meaningful relation between b̂ and b̌, because they are 

randomly chosen by the encryption algorithm. Hence, the receiver cannot recover m̂ + m̌ mod n from 
b̂m̂ + b̌m̌

b̂ + b̌
mod n. 

Therefore, an additively homomorphic property of Gong et al.’s construction cannot be preserved by using this typical 
candidate.

Discussion on the impossibility of preserving additively homomorphic property in Gong et al.’s scheme. Now, we provide 
plausible evidence for the impossibility of providing an addition algorithm for Gong et al.’s construction. To do this, we 
will first simplify the problem of providing an addition algorithm for their construction by replacing their ciphertexts with 
Paillier’s and then examine the hardness of this simplified problem.
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As seen in Section 2.3, parts of the ciphertexts in Gong et al.’s scheme can be regarded as ciphertexts in the Paillier 
encryption. Hence, we can replace Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č) with

(Ĉ1,P.Enc(pk,ab̂),P.Enc(pk,ab̂(m̂ + a)) · zab̂+ab̂r̂
1 mod n2) (8)

and

(Č1,P.Enc(pk,ab̌),P.Enc(pk,ab̌(m̌ + a)) · zab̌+ab̌ř
1 mod n2), (9)

respectively, where pk is (n, g = 1 + kn). Here, the role of C1 in a ciphertext C = (C1, C2, C), where C = (
gab(m+a)(zbrt

2 )n
) ·

zab+abr
1 mod n2 in Equation (2), is to remove zab+abr

1 from the value of C for correct decryption. Hence, we can regard C1 as 
having no effect on the message in the case of a valid ciphertext, and we may ignore the C1 component and zab+abr

1 in the 
C component for constructing an evaluation algorithm.

Since an evaluation algorithm should take only public parameters and ciphertexts as inputs, by replacing ab̂ and ab̌
with α and β in Equations (8) and (9), respectively, we can define the problem of providing an addition algorithm for 
Gong et al.’s construction as follows: Let P.Enc be Paillier’s encryption algorithm. For any hidden m̂, m̌, α, β ∈ Zn and a fixed 
value a ∈ Z

∗
n , when P.Enc(pk, α), P.Enc(pk, β), P.Enc(pk, α(m̂+a)), and P.Enc(pk, β(m̌+a)) are given, generate P.Enc(pk, γ )

and P.Enc(pk, γ (m̂ + m̌ + a)) for some nonzero integer γ .
Because Paillier’s encryption supports only an additively homomorphic property, a solver of the above problem allows 

only scalar multiplications and additions on ciphertexts. Hence, he can only obtain ciphertexts of the form

P.Enc(pk,αX1(m̂ + a) + αX2 + βY1(m̌ + a) + βY2 + Z)

= P.Enc(pk,αX1(m̂ + a) + βY1(m̌ + a) + αX2 + βY2 + Z) (10)

by computing

P.Enc(pk,α(m̂ + a))X1 × P.Enc(pk,α)X2 × P.Enc(pk, β(m̌ + a))Y1 × P.Enc(pk, β)Y2 × P.Enc(pk, Z)

for some scalars X1, X2, Y1, Y2, and Z .
To generate a ciphertext of the form P.Enc(pk, γ (m̂ + m̌ + a)) from ciphertexts of the form (10) for any m̂ and m̌, a tuple 

of scalars (X1, X2, Y1, Y2, Z) should be a solution of the following system of equations:{
αX1 = βY1 = γ �= 0 mod nλ

aαX1 + αX2 + βY2 + Z = 0 mod nλ
(11)

where n is a part of the public key and λ is a part of the secret key. This is so because if the above is satisfied, then the 
following holds for any m̂ and m̌:

(10) = P.Enc(pk,αX1(m̂ + a) + βY1(m̌ + a) + αX2 + βY2 + Z)

= P.Enc(αX1(m̂ + m̌ + a) + aαX1 + αX2 + βY2 + Z)

= P.Enc(γ (m̂ + m̌ + a)).

However, it is infeasible to solve the above system of equations because a, α, and β are hidden. Therefore, it seems hard to 
provide an addition algorithm for Gong et al.’s construction without any modification.

On simple modification using a fixed b. One may think that Gong et al.’s scheme can preserve an additively homomorphic 

property in the case where b̂ = b̌ because the decryption algorithm with input given in Equation (7) outputs 
b̂m̂ + b̌m̌

b̂ + b̌
mod

n and it is equal to 
m̂ + m̌

2
mod n when b̂ = b̌. Hence, one may attempt to modify their scheme so that an encryption 

algorithm utilizes a fixed b (and so b̂ = b̌ always holds) by including it into the public key in the key generation algorithm.
Now, we discuss an additively homomorphic property of the modified scheme with a fixed b. First, consider the problem 

of providing an addition algorithm to Gong et al.’s scheme. We have to find a solution of the system of equations in (11). If 
b is fixed, then α = β = ab. Hence, the system can be transformed into{

X1 = Y1 = γ �= 0 mod nλ

aX1 + X2 + Y2 + ((ab)−1 mod nλ)Z = 0 mod nλ

where n is a part of the public key and λ is a part of the secret key. However, it is still infeasible to find a solution of the 
above system, because a, being a part of the secret key, is unknown. Therefore, it seems hard to provide a proper evaluation 
algorithm without some additional modification, even after fixing b in their encryption algorithm.
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Next, we attempt to modify Gong et al.’s scheme further to provide a proper addition algorithm. Consider a typical 
candidate for an evaluation algorithm and assume that three ciphertexts Ĉ1 = (Ĉ1, Ĉ2, Ĉ), Č = (Č1, Č2, Č), and C̄ = (C̄1, C̄2, C̄)

for messages m̂, m̌, and m̄, respectively, are given. Let C be a result of the typical evaluation algorithm for three ciphertexts, 

i.e., C = (C1, C2, C) = (Ĉ1 · Č1 · C̄1, Ĉ2 · Č2 · C̄2, Ĉ · Č · C̄). Then, the decryption algorithm, on input C , outputs 
m̂ + m̌ + m̄

3
mod n, 

since

G.Dec′(sk,C) =
(

t
L((C · Ctn−a

1 )λ/t mod n2)

L(Cλ
2 mod n2)

mod n

)
− a mod n

= t
k
(
ab(m̂ + m̌ + m̄) + 3a2b

)
(λ/t)

3kabλ
mod n − a mod n

= m̂ + m̌ + m̄

3
mod n.

More generally, let Ci be a ciphertext of a message mi for 1 ≤ i ≤ � and let C be the outcome of additions of all � cipher-

texts Ci ’s. Then, the decryption algorithm, on input C , outputs 
∑�

i=1 mi

�
mod n. Hence, we need to multiply by � to decrypt 

correctly. Thus, we need to know � to perform decryption correctly.
Considering the above facts, we modify Gong et al.’s construction. We first modify the encryption algorithm so that it 

outputs (C, �) with � = 1 in this case. Define an addition algorithm by

Add((C1, �1), (C2, �2)) = (C1 · C2, �1 + �2),

where C1 ·C2 is the ciphertext obtained by a component-wise multiplication between ciphertexts C1 and C2. We modify the 
decryption algorithm as follows:

G.Dec′′(sk, (C, �)) = � · G.Dec′(sk,C) mod n.

Then, we obtain an additively homomorphic encryption scheme.
It appears that the modified scheme is secure against chosen plaintext attacks under the DCR assumption, where the 

adversary is not allowed access to the decryption oracle in chosen plaintext attacks. However, further detailed analysis does 
not seem necessary since even though we may obtain a proper modification that preserves an additively homomorphic 
property as above, it has no advantage over Paillier’s AHE schemes in terms of both computational efficiency and parameter 
sizes. Paillier’s first scheme, for example, requires 2 exponentiations for both encryption and decryption and its ciphertext 
consists of one element in Zn2 . On the other hand, the above modification requires 6 and 3 exponentiations for encryption 
and decryption, respectively, and its ciphertext consists of 3 elements in Zn2 and one (small) integer.1 In addition, the 
achievable security level and the assumption needed are the same as those in Paillier’s AHE scheme. In conclusion, it may 
be difficult to exploit it as an alternative to Paillier’s scheme.

6. Conclusion

Very recently, Gong et al. proposed a construction asserted to be a CCA2-secure AHE scheme [9]. In this paper, we first 
identified that their decryption algorithm does not function correctly and provided the rectified algorithm for correct de-
cryption. Subsequently, we provided a simple CCA2 attack on their construction by re-randomizing the challenge ciphertext 
with a randomly chosen exponent in Zn\{0, 1}. We also pointed out that their construction seems hard to support an addi-
tively homomorphic property by considering a typical candidate for an addition algorithm and providing plausible evidence 
for achieving an additively homomorphic property with their construction. As a result, we conclude that their construction 
is in fact not a CCA2-secure homomorphic encryption scheme.
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