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Abstract. We solve an open question in code-based cryptography by
introducing the first provably secure group signature scheme from code-
based assumptions. Specifically, the scheme satisfies the CPA-anonymity
and traceability requirements in the random oracle model, assuming the
hardness of the McEliece problem, the Learning Parity with Noise prob-
lem, and a variant of the Syndrome Decoding problem. Our construction
produces smaller key and signature sizes than the existing post-quantum
group signature schemes from lattices, as long as the cardinality of the
underlying group does not exceed the population of the Netherlands
(=2%* users). The feasibility of the scheme is supported by implementa-
tion results. Additionally, the techniques introduced in this work might
be of independent interest: a new verifiable encryption protocol for the
randomized McEliece encryption and a new approach to design formal
security reductions from the Syndrome Decoding problem.

1 Introduction

1.1 Background and Motivation

Group signature [CvH91] is a fundamental cryptographic primitive with two
intriguing features: On the one hand, it allows users of a group to anonymously
sign documents on behalf of the whole group (anonymity); On the other hand,
there is a tracing authority that can tie a given signature to the signer’s identity
should the need arise (traceability). These two properties make group signatures
highly useful in various real-life scenarios such as controlled anonymous print-
ing services, digital right management systems, e-bidding and e-voting schemes.
Theoretically, designing secure and efficient group signature schemes is of deep
interest since doing so typically requires a sophisticated combination of care-
fully chosen cryptographic ingredients. Numerous constructions of group signa-
tures have been proposed, most of which are based on classical number-theoretic
assumptions (e.g., [CS97,ACJT00,BBS04,BW06,LPY12]).

While number-theoretic-based group signatures could be very efficient (e.g.,
[ACJT00,BBS04]), such schemes would become insecure once the era of scal-
able quantum computing arrives [Sho97]. The search for post-quantum group
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signatures, as a preparation for the future, has been quite active recently,
with 6 published schemes [GKV10,CNR12,LLLS13, LLNW14,LNW15,NZZ15],
all of which are based on computational assumptions from lattices. Despite their
theoretical interest, those schemes involve significantly large key and signature
sizes, and no implementation result has been given. Our evaluation shows that
the lattice-based schemes listed above are indeed very far from being practical
(see Sect. 1.2). This somewhat unsatisfactory situation highlights two interesting
challenges: First, making post-quantum group signatures one step closer to prac-
tice; Second, bringing in more diversity with a scheme from another candidate for
post-quantum cryptography (e.g., code-based, hash-based, multivariate-based).
For instance, an easy-to-implement and competitively efficient code-based group
signature scheme would be highly desirable.

A code-based group signature, in the strongest security model for static
groups [BMWO03], would typically require the following 3 cryptographic layers:

1. The first layer requires a secure (standard) signature scheme to sign mes-
sages'. We observe that the existing code-based signatures fall into two cat-
egories.

The “hash-and-sign” category consists of the CFS signature [CFS01] and
its modified versions [Dal08,Fin10,MVR12]. The known security proofs
for schemes in this category, however, should be viewed with skepti-
cism: the assumption used in [Dal08] was invalidated by distinguishing
attacks [FGUO+13], while the new assumption proposed in [MVRI12] lies
on a rather fragile ground.

The “Fiat-Shamir” category consists of schemes derived from Stern’s identi-
fication protocol [Ste96] and its variant [Vér96, CVA10,MGS11] via the Fiat-
Shamir transformation [FS86]. Although these schemes produce relatively
large signatures (as the underlying protocol has to be repeated many times
to make the soundness error negligibly small), their provable security (in the
random oracle model) is well-understood.

2. The second layer demands a semantically secure encryption scheme to enable
the tracing feature: the signer is constrained to encrypt its identifying infor-
mation and to send the ciphertext as part of the group signature, so that
the tracing authority can decrypt if and when necessary. This ingredient is
also available in code-based cryptography, thanks to various CPA-secure and
CCA-secure variants of the McEliece [McE78] and the Niederreiter [Nie86]
cryptosystems (e.g., [NIKMO08, DDMN12, Per12, MVVR12]).

3. The third layer, which is essentially bottleneck in realizing secure code-based
group signatures, requires a zero-knowledge (ZK) protocol that connects the
first two layers. Specifically, the protocol should demonstrate that a given sig-
nature is generated by a certain certified group user who honestly encrypts
its identifying information. Constructing such a protocol is quite challeng-
ing. There have been ZK protocols involving the CFS and Stern’s signatures,

! In most schemes in the [BMWO03] model, a standard signature is also employed
to issue users’ secret keys. However, this is not necessarily the case: the scheme
constructed in this paper is an illustrative example.
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which yield identity-based identification schemes [CGGO7,ACM11,YTM+14]
and threshold ring signatures [MCGO08, MCGL11]. There also have been ZK
proofs of plaintext knowledge for the McEliece and the Niederreiter cryp-
tosystems [HMT13]. Yet we are not aware of any efficient ZK protocol that
stmultaneously deals with both code-based signature and encryption schemes
in the above sense.

Designing a provably secure group signature scheme, thus, is a long-standing
open question in code-based cryptography (see, e.g., [CM10]).

1.2 Owur Contributions

In this work, we construct a group signature scheme which is provably secure
under code-based assumptions. Specifically, the scheme achieves the anonymity
and traceability requirements ([BMWO03,BBS04]) in the random oracle model,
assuming the hardness of the McEliece problem, the Learning Parity with Noise
problem, and a variant of the Syndrome Decoding problem.

Contributions to Code-Based Cryptography. By introducing the first
provably secure code-based group signature scheme, we solve the open problem
discussed earlier. Along the way, we introduce two new techniques for code-based
cryptography, which might be of independent interest:

1. We design a ZK protocol for the randomized McEliece encryption scheme,
that allows the prover to convince the verifier that a given ciphertext is well-
formed, and that the hidden plaintext satisfies an additional condition. Such
protocols, called wverifiable encryption protocols, are useful not only in con-
structing group signatures, but also in much broader contexts [CS03]. It is
worth noting that, prior to our work, verifiable encryption protocols for code-
based cryptosystems only exist in the very basic form [HMT13] (where the
plaintext is publicly given), which seem to have restricted applications.

2. In our security proof of the traceability property, to obtain a reduction from
the hardness of the Syndrome Decoding (SD) problem, we come up with an
approach that, as far as we know, has not been considered in the literature
before. Recall that the (average-case) SD problem with parameters m,r,w
is as follows: given a uniformly random matrix H € Fy*™ and a uniformly
random syndrome y € F5, the problem asks to find a vector s € Fy* that
has Hamming weight w (denoted by s € B(m,w)) such that H-s™ = yT.
In our scheme, the key generation algorithm produces public key containing
matrix H € F5*™ and syndromes y; € F3, while users are given secret keys
of the form s; € B(m,w) such that H - s;'— = y;'—. In the security proof,

since we would like to embed an SD challenge instance (H,y) into the public
key without being noticed with non-negligible probability by the adversary,
we have to require that H and the y;’s produced by the key generation are
indistinguishable from uniform.
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One method to generate these keys is to employ the “hash-and-sign”
technique from the CFS signature [CFS01]. Unfortunately, while the syn-
dromes y;’s could be made uniformly random (as the outputs of the ran-
dom oracle), the assumption that the CFS matrix H is computationally
close to uniform (for practical parameters) is invalidated by distinguishing
attacks [FGUO+13].

Another method, pioneered by Stern [Ste96], is to pick H and the s;’s
uniformly at random. The corresponding syndromes y;’s could be made com-
putationally close to uniform if the parameters are set such that w is slightly
smaller than the value wy given by the Gilbert-Varshamov bound?, i.e., wq
such that (Z;) =~ 2". However, for these parameters, it is not guaranteed with
high probability that a uniformly random SD instance (ﬁ, ¥) has solutions,
which would affect the success probability of the reduction algorithm.

In this work, we consider the case when w is moderately larger than wy, so
that two conditions hold: First, the uniform distribution over the set B(m,w)
has sufficient min-entropy to apply the left-over hash lemma [GKPV10]; Sec-
ond, the SD problem with parameters (m,r,w) admits solutions with high
probability, yet remains intractable® against the best known attacks [FS09,
BJMM12]. This gives us a new method to generate uniformly random vectors
s; € B(m,w) and matrix H € F5*™ so that the syndromes y;’s corresponding
to the s;’s are statistically close to uniform. This approach, which somewhat
resembles the technique used in [GPV08] for the Inhomogeneous Small Integer
Solution problem, is helpful in our security proof (and generally, in designing
formal security reductions from the SD problem).

Contributions to Post-Quantum Group Signatures. Our construction
provides the first non-lattice-based alternative to provably secure post-quantum
group signatures. The scheme features public key and signature sizes linear
in the number of group users N, which is asymptotically not as efficient as
the recently published lattice-based counterparts ([LLLS13,LLNW14,LNW15,
NZZ15]). However, when instantiating with practical parameters, our scheme
behaves much more efficiently than the scheme proposed in [NZZ15] (which is
arguably the current most efficient lattice-based group signature in the asymp-
totic sense). Indeed, our estimation shows that our scheme gives public key and
signature sizes that are 2300 times and 540 times smaller, respectively, for an
average-size group of N = 28 users. As N grows, the advantage lessens, but our
scheme remains more efficient even for a huge group of N = 224 users (which
is comparable to the whole population of the Netherlands). The details of our
estimation are given in Table 1.

Furthermore, we give implementation results - the first ones for post-quantum
group signatures - to support the feasibility of our scheme (see Sect.5). Our

% In this case, the function fu(s;) = H-s; acts as a pseudorandom generator [FS96].

3 The variant of the SD problem considered in this work are not widely believed to
be the hardest one [Ste96,Meul3], but suitable parameters can be chosen (e.g., see
Sect. 5) such that the best known attacks run in exponential time.
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Table 1. Efficiency comparison between our scheme and [NZZ15].

N Public key size Signature size®
Our scheme | 2° | 5.13 x 10%bits | (642KB) |8.57 x 10°bits | (1.07 MB)
2'6 14.10 x 107 bits | (5.13MB) |1.77 x 107 bits | (2.21 MB)
2**19.23 x 10? bits | (1.16 GB) | 2.36 x 10° bits | (294 MB)
[NZZ15]* | <2%*1.18 x 10" bits | (1.48 GB) | 4.63 x 10° bits | (579 MB)
#The parameters of our scheme are set as in Sect. 5. For the [NZZ15] scheme,
we choose the commonly used lattice dimension n = 28, and set parameters
m = 22 x 150 and q = 2'°° so that the requirements given in [NZZ15, Section 5.1]
are satisfied. Both schemes achieve the CPA-anonymity notion [BBS04] and
soundness error 275,
®In our implementations presented in Sect. 5, the actual signature sizes could be
reduced thanks to an additional technique.

results, while not yielding a truly practical scheme, would certainly help to bring
post-quantum group signatures one step closer to practice.

1.3 Overview of Our Techniques

Let m,r,w,n, k,t and £ be positive integers. We consider a group of size N = 2¢,
where each user is indexed by an integer j € [0, N — 1]. The secret signing key
of user j is a vector s; chosen uniformly at random from the set B(m,w). A
uniformly random matrix H € F5*™ and N syndromes yo,...,yn—1 € F5, such
that H- SjT = ij, for all j, are made public. Let us now explain the development
of the 3 ingredients used in our scheme.

The Signature Layer. User j can run Stern’s ZK protocol [Ste96] to prove the
possession of a vector s € B(m,w) such that H-s™ =y, where the constraint s €
B(m,w) is proved in ZK by randomly permuting the entries of s and showing that
the permuted vector belongs to B(m,w). The protocol is then transformed into
a Fiat-Shamir signature [FS86]. However, such a signature is publicly verifiable
only if the index j is given to the verifier.

The user can further hide its index j to achieve unconditional anonymity
among all N users (which yields a ring signature [RSTO1] on the way, a
la [BS13]), as follows. Let A = [y |- |y;'— e lyAa] € F7*Y and let x = oy
- the N-dimensional unit vector with entry 1 at the j-th position. Observe that
A-xT = y;r, and thus, the equation H-sT = y;'— can be written as

Hs oA -x"=0, (1)

where @ denotes addition modulo 2. Stern’s framework allows the user to prove in
ZK the possession of (s,x) satisfying this equation, where the condition x = (5J1-V
can be justified using a random permutation.

The Encryption Layer. To enable the tracing capability of the scheme, we
let user j encrypt the binary representation of j via the randomized McEliece
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encryption scheme [NIKMOS]. Specifically, we represent j as vector 12B(j) =
(jo,---,je—1) € {0,1}*, where Zf;é §;i2t717% = j. Given a public encrypting key
G € FE*™  a ciphertext of 12B(j) is of the form:

c=(u]2B(j)) -G @ecFy, 2)

where (u, e) is the encryption randomness, with u € Fg_f, and e € B(n,t) (i.e.,
e is a vector in F%, that has weight ¢).

Connecting the Signature and Encryption Layers. User j must demon-
strate that it does not cheat (e.g., by encrypting some string that does not point
to j) without revealing j. Thus, we need a ZK protocol that allows the user to
prove that the vector x = 6% used in (1) and the plaintext hidden in (2) both
correspond to the same secret j € [0, N — 1]. The crucial challenge is to estab-
lish a connection (which is verifiable in ZK) between the “index representation”

oM and the binary representation 12B(j). This challenge is well-handled by the
following technique.

Instead of working with 12B(j) = (jo,...,je—1), we consider an extension of
12B(j), defined as Encode(5) = (1 — jo, jo,---» 1 — Jis Jir- -y 1 — Jo_1,je—1) € F2E.

We then suitably insert ¢ zero-rows into matrix G to obtain matrix G € FékH) n

such that (u|Encode(j)) - G = (u|/I2B(j)) - G. Let f = Encode(j), then
equation (2) can be rewritten as:

c=(ul|f) - GoecFs. (3)

Now, let B2l : {0,1}* — [0, N —1] be the inverse function of I12B(-). For every
b € {0, 1}‘Z , we carefully design two classes of permutations T, : Fév — Fév and
T} : F3* — F3*, such that for any j € [0, N — 1], the following hold:

x=6; <= To(x) = 0B eb);
f = Encode(j) <= Ty,(f) = Encode(B2I(12B(j) & b)).

Given these equivalences, in the protocol, the user samples a uniformly ran-
dom vector b € {0,1}¢, and sends b; = 12B(j) @ b. The verifier, seeing that
Th(x) = éé\gl(bl) and Ty (f) = Encode(B2I(b)), should be convinced that x
and f correspond to the same j € [0, N — 1], yet the value of j is completely
hidden from its view, because vector b essentially acts as a “one-time pad”.

The technique extending 12B(j) into Encode(j) and then permuting Encode()
in a “one-time pad” fashion is inspired by a method originally proposed by
Langlois et al. [LLNW14] in a seemingly unrelated context, where the goal is to
prove that the message being signed under the Bonsai tree signature [CHKP10)]
is of the form [2B(j), for some j € [0, N — 1]. Here, we adapt and develop their
method to simultaneously prove two facts: the plaintext being encrypted under
the randomized McEliece encryption is of the form [2B(5), and the unit vector
X = (55\[ is used in the signature layer.

By embedding the above technique into Stern’s framework, we obtain an
interactive ZK argument system, in which, given the public input (H, A, G), the
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user is able to prove the possession of a secret tuple (4, s, x, u, f, e) satisfying (1)
and (3). The protocol is repeated many times to achieve negligible soundness
error, and then made non-interactive, resulting in a non-interactive ZK argument
of knowledge IT. The final group signature is of the form (c, IT), where c is the
ciphertext. In the random oracle model, the anonymity of the scheme relies
on the zero-knowledge property of IT and the CPA-security of the randomized
McEliece encryption scheme, while its traceability is based on the hardness of
the variant of the SD problem discussed earlier.

1.4 Related Works and Open Questions

A group signature scheme based on the security of the ElGamal signature scheme
and the hardness of decoding of linear codes was given in [MCKO1]. In a con-
current and independent work, Alamélou et al. [ABCG15] also propose a code-
based group signature scheme. These two works have yet to provide a provably
secure group signature scheme based solely on code-based assumptions, which
we achieve in the present paper.

Our work constitutes a foundational step in code-based group signatures.
In the next steps, we will work towards improving the current construction in
terms of efficiency (e.g., making the signature size less dependent on the number
of group users), as well as functionality (e.g., achieving dynamic enrollment and
efficient revocation of users). Another interesting open question is to construct
a scheme achieving CCA-anonymity.

2 Preliminaries

NoTAaTIONS. We let A denote the security parameter and negl(\) denote a neg-

ligible function in A. We denote by a & Aif a is chosen uniformly at random
from the finite set A. The symmetric group of all permutations of k elements is
denoted by Si. We use bold capital letters, (e.g., A), to denote matrices, and
bold lowercase letters, (e.g., x), to denote row vectors. We use x| to denote
the transpose of x and wt(x) to denote the (Hamming) weight of x. We denote
by B(m,w) the set of all vectors x € FJ* such that wt(x) = w. Throughout
the paper, we define a function 12B which takes a non-negative integer a as an

input, and outputs the binary representation (ag, -+ ,as—1) € {0,1}¢ of a such
that @ = 320"} ;2717 and a function B2l which takes as an input the binary
representation (ag, - - - ,as_1) € {0,1} of a, and outputs a. All logarithms are of
base 2.

2.1 Background on Code-Based Cryptography

We first recall the Syndrome Decoding problem, which is well-known to be NP-
complete [BMvT78], and is widely believed to be intractable in the average case
for appropriate choice of parameters [Ste96, Meul3].
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Definition 1 (The Syndrome Decoding problem). The SD(m,r,w) prob-
lem is as follows: given a uniformly random matriz H € F3*™ and a uniformly
random syndrome 'y € F, find a vector s € B(m,w) such that H-s' =y .

When m = m(X),r =1(A\),w = w(A), we say that the SD(m,r,w) problem is
hard, if the success probability of any PPT algorithm in solving the problem is
at most negl(\).

In our security reduction, the following variant of the left-over hash lemma for
matrix multiplication over FFs is used.

Lemma 1 (Left-over hash lemma, adapted from [GKPV10]). Let D be a
distribution over F4* with min-entropy e. Fore > 0 andr < e—2log(1/e)—0O(1),

the statistical distance between the distribution of (H,H-s'), where H & Fox™
and s € FJ' is drawn from distribution D, and the uniform distribution over
F5*™ x F% is at most €.

In particular, if w < m is an integer such that r < log (::‘) —2X\=0(1) and D
is the uniform distribution over B(m,w) (i.e., D has min-entropy log (™)), then
the statistical distance between the distribution of (H,H -s') and the uniform
distribution over F5*™ x F% is at most 27

The Randomized McEliece Encryption Scheme. We employ a randomized
variant of the McEliece [McET78] encryption scheme, suggested in [NIKMOS],
where a uniformly random vector is concatenated to the plaintext. The scheme
is described as follows:

~ ME.Setup(1*): Select parameters n = n(\),k = k(\),t = t()\) for a binary
[n, k,2t + 1] Goppa code. Choose integers ki, ko such that k = ki + ko. Set
the plaintext space as F’;Q.

— ME.KeyGen(n, k,t): Perform the following steps:

1. Produce a generator matrix G’ € F5*™ of a randomly selected [n, k, 2t +1]
Goppa code. Choose a random invertible matrix S € F’;Xk and a random
permutation matrix P € F§*". Let G = SG'P € F;*".

2. Output encrypting key pkye = G and decrypting key skye = (S, G/, P).

— ME.Enc(pkme, m): To encrypt a message m € ]F’;Q, sample u & F’;l and

el B(n,t), then output the ciphertext ¢ = (u||m) - G @ e € F3.
— ME.Dec(skwmeg, ¢): Perform the following steps:
1. Compute ¢-P~1 = ((u|m)-G @e)-P~! and then m’ - S = Decodeg(c-
P~!) where Decode is an error-correcting algorithm with respect to G'.
If Decode fails, then return L.
2. Compute m’ = (m’S) - S~!, parse m’ = (ul|m), where u € F5' and
m € IFIS"’, and return m.

The scheme described above is CPA-secure in the standard model assuming
the hardness of the DMcE(n, k,t) problem and the DLPN(ky,n,B(n,t)) prob-
lem [NIKMO8,D6t14]. We now recall these two problems.
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Definition 2 (The Decisional McEliece problem). The DMcE(n, k, t) prob-
lem is as follows: given a matriz G € FSX", distinguish whether G is a uniformly
random matrix over IF';X" or it is generated by algorithm ME.KeyGen(n,k,t)
described above.

When n = n(\), k = k(\),t =t(\), we say that the DMcE(n, k,t) problem is
hard, if the success probability of any PPT distinguisher is at most 1/24negl(A).

Definition 3 (The Decisional Learning Parity with (fixed-weight)
Noise problem). The DLPN(k,n,B(n,t)) problem is as follows: given a pair
(A,v) € F’;X" x F%, distinguish whether (A, v) is a uniformly random pair over
FA*™ 5 B3 or it is obtained by choosing A & F5*" u & FX e & B(n,t) and
outputting (A,u- A de).

When k = k(A),n = n(\),t = t(\), we say that the DLPN(k, n, B(n,t))
problem is hard, if the success probability of any PPT distinguisher is at most
1/2 + negl()).

2.2 Group Signatures

We follow the definition of group signatures provided in [BMWO03] for the case
of static groups.

Definition 4. A group signature GS = (KeyGen, Sign, Verify, Open) is a tuple
of four polynomial-time algorithms:

~ KeyGen: This randomized algorithm takes as input (1*,1%), where N € N
is the number of group users, and outputs (gpk, gmsk, gsk), where gpk is
the group public key, gmsk is the group manager’s secret key, and gsk =
{gsk[j]}jef0,n—1) with gsk[j] being the secret key for the group user of index j.

— Sign: This randomized algorithm takes as input a secret signing key gsk|j] for
some j € [0, N —1] and a message M and returns a group signature X' on M.

— Verify: This deterministic algorithm takes as input the group public key gpk, a
message M, a signature X' on M, and returns either 1 (Accept) or 0 (Reject).

— Open: This deterministic algorithm takes as input the group manager’s secret
key gmsk, a message M, a signature 2 on M, and returns an index j €
[0, N — 1] associated with a particular user, or L, indicating failure.

Correctness. The correctness of a group signature scheme requires that for all
A\, N € N, all (gpk, gmsk, gsk) produced by KeyGen(1*,1V), all j € [0,N — 1],
and all messages M € {0,1}*,

Verify(gpk,M,Sign(gsk[j],M)) =1; Open (gmsk,M,Sign(gsk[j],M)) =7.

Security Notions. A secure group signature scheme must satisfy two security
notions:

— Traceability requires that all signatures, even those produced by a coalition of
group users and the group manager, can be traced back to a member of the
coalition.
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— Anonymity requires that, signatures generated by two distinct group users
are computationally indistinguishable to an adversary who knows all the user
secret keys. In Bellare et al.’s model [BMWO03], the anonymity adversary is
granted access to an opening oracle (CCA-anonymity). Boneh et al. [BBS04]
later proposed a relaxed notion, where the adversary cannot query the opening
oracle (CPA-anonymity).

Formal definitions of CPA-anonymity and traceability are as follows.

Definition 5. We say that a group signature GS = (KeyGen, Sign, Verify, Open)
is CPA-anonymous if for all polynomial N(-) and any PPT adversaries A, the
advantage of A in the following experiment is negligible in \:

1. Run (gpk, gmsk, gsk) « KeyGen(1*,1%) and send (gpk, gsk) to A.
2. A outputs two identities jo,j1 € [0, N — 1] with a message M. Choose a
random bit b and give Sign(gsk[js], M) to A. Then, A outputs a bit b'.

1
A succeeds if ¥’ = b, and the advantage of A is defined to |Pr[A succeeds| — 3|

Definition 6. We say that a group signature GS = (KeyGen, Sign, Verify, Open)
is traceable if for all polynomial N(-) and any PPT adversaries A, the success
probability of A in the following experiment is negligible in A:

1. Run (gpk, gmsk, gsk) « KeyGen(1*,1V) and send (gpk, gmsk) to A.
2. A may query the following oracles adaptively and in any order:
— A Ot oracle that on input j € [0, N — 1], outputs gsk[j].
~ A 05" oracle that on input j, a message M, returns Sign(gsk[j], M).
Let CU be the set of identities queried to (OCOTUPt,
8. Finally, A outputs a message M* and a signature X*.

A succeeds if (1) Verify(gpk, M*, X*) = 1 and (2) Sign(gsk[j], M*) was never
queried for j ¢ CU, yet (3) Open(gmsk, M*, X*) ¢ CU.

3 The Underlying Zero-Knowledge Argument System

Recall that a statistical zero-knowledge argument system is an interactive pro-
tocol where the soundness property holds for computationally bounded cheating
provers, while the zero-knowledge property holds against any cheating verifier.
In this section we present a statistical zero-knowledge argument system which
will serve as a building block in our group signature scheme in Sect. 4.

Before describing the protocol, we first introduce several supporting notations
and techniques. Let £ be a positive integer, and let N = 2¢.

1. For x = (zg,21,...,2x_1) € FY and for j € [0, N — 1], we denote by x = (5]1,\’
if x; =1 and x; = 0 for all ¢ # j.
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2. We define an encoding function Encode : [0, N — 1] — F3‘, that encodes
integer j € [0, N — 1], whose binary representation is 12B(j) = (jo, - - -, je—1),
as vector:

EnCOde(j) = (1 - jOajOa R _jiajia R _je—lmje—l)-

3. Given a vector b = (by,...,b;_1) € {0,1}, we define the following 2 permu-
tations:

(a) Ty : FY — FY that transforms x = (2o,...,2n-1) t0 (T(,...,2N_1),
where for each i € [0, N —1], we have z; = /., where i* = B2I(I2B(i)®b).
(b) T), : TF3* — TF3* that transforms f = (fo, f1,---, foi, f2is1,-- s
fae-1)s foe—1)+1) to (foor F1=bos -+ s S2itbis f2it(1=br)s -+ -5

Jate=1)4bo_ 1> fo(t—1)+(1—be_1))-

Observe that, for any j € [0, N — 1] and any b € {0, 1}, we have:

x =6 <= To(x) = Sop(j)em); (4)
f = Encode(j) <= T,(f) = Encode(B2I(12B(j) & b)). (5)

Example: Let N = 2% Let j = 6, then 12B(j) = (0,1,1,0) and Encode(j) =
(1,0,0,1,0,1,1,0). If b = (1,0, 1,0), then B2I(12B(j) @ b) = B2I(1,1,0,0) = 12,
and we have:

T, (6¢%) = 61S and Ty, (Encode(6)) = (0,1,0,1,1,0,1,0) = Encode(12).

3.1 The Interactive Protocol

We now present our interactive zero-knowledge argument of knowledge (ZKAoK).
Let n, k,t,m,r,w, £ be positive integers, and N = 2. The public input consists
of matrices G € F5*", H € F3*™; N syndromes yo, ...,yny_1 € F5; and a vector
c € . The protocol allows prover P to simultaneously convince verifier V in
zero-knowledge that P possesses a vector s € B(m,w) corresponding to certain
syndrome y; € {yo,...,y~n—1} with hidden index j, and that c is a correct
encryption of 12B(j) via the randomized McEliece encryption. Specifically, the
secret witness of P is a tuple (j,s,u,e) € [0, N — 1] x F* x Fs~¢ x F} satisfying:

{H-ST:ij A s € B(m,w); ()
(u|| I2B(j)) -Gde=c A ec€B(n,t).

Let A= [yd|-ly] |- lyha] € F3*Y and x = 6. We have A -x" =y,
and thus, the equation H-sT = y;'— can be written as H-s' @ A -x' = 0.

Let G € FékM)X“ be the matrix obtained from G € F5*™ by replacing its
last £ rows gk—¢+1,8k—0+2; - - -,k by 20 rows 0", gk _¢41, O"A,gk_g”, .0 g
We then observe that (u[[12B(j)) - G = (u]|Encode(j) ) - G.
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Let f = Encode(j), then (6) can be equivalently rewritten as:
H-s"oA x"=0 A x=06) A seB(m,w); )
(ulf)- G@e=c A f=Encode(j) A ecB(n,t).

To obtain a ZKAoK for relation (7) in Stern’s framework [Ste96], P proceeds as
follows:

— To prove that x = 6§V and f = Encode(j) while keeping j secret, prover P
samples a uniformly random vector b € {0,1}¢, sends b; = 12B(j) @ b, and
shows that:

Tp(x) = 05,y A Ty (F) = Encode(B2l(by)).

By the equivalences observed in (4) and (5), the verifier will be convinced
about the facts to prove. Furthermore, since b essentially acts as a “one-time
pad”, the secret j is perfectly hidden.

— To prove in zero-knowledge that s € B(m,w), P samples a uniformly random
permutation 7w € S,,,, and shows that w(s) € B(m,w). Similarly, to prove in
zero-knowledge that e € B(n,t), a uniformly random permutation o € S,, is
employed.

— Finally, to prove the linear equations in zero-knowledge, P samples uniformly
random “masking” vectors (rs, rx, Ty, s, Te), and shows that:

H (sor) @A - (x@ry) =H-r] © A-r]; (8)
(u@rqu@rf) .G (e@re) ®c= (ru||rf) .G Te.

Now let COM : {0,1}* — {0,1}* be a collision-resistant hash function,
to be modelled as a random oracle. Prover P and verifier V first perform the
preparation steps described above, and then interact as described in Fig. 1.

3.2 Analysis of the Protocol
The properties of our protocol are summarized in the following theorem.

Theorem 1. The interactive protocol described in Sect. 3.1 has perfect complete-
ness, and has communication cost bounded by 8 = (N + 3log N) + m(logm +
1) + n(logn + 1) + k + 5X bits. If COM is modelled as a random oracle, then
the protocol is statistical zero-knowledge. If COM is a collision-resistant hash
function, then the protocol is an argument of knowledge.

Completeness. It can be seen that the given interactive protocol is perfectly
complete, i.e., if P possesses a valid witness (j, s, u,e) and follows the protocol,
then V always outputs 1. Indeed, given (j, s, u,e) satisfying (6), P can always
obtain (j,s,x,u,f,e) satisfying (7). Then, as discussed above, the following are
true:

VYV €Syt w(s) € B(m,w); Yo €S, : o(e) € B(n,t);
Vb € {0,1}": Tp(x) :5‘]3\’2|(|2B(j)@b) =wy; T}, (f) = Encode(B2I(12B(j) & b)) = wg.
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1. Commitment: P samples the following uniformly random objects:
b & {0,135 7 S 0 &S p1ypa,ps & {0,117
s & F3'; rx & FY: ry & F';*Z; re & F2% re & F3.
It then sends the commitment CMT := (c1, ¢2, ¢3) to V, where
c1 =COl\/I(b7 m oo H-rd @ A-r], (ru ||rf) -G @ re; pl),
C2 = COM(ﬂ-(rS)va(rXL T{)(I'f), O'(I‘e); p2)7
c3 = COM(W(S Brs), To(x®rx), Th(f D re), o(e dre); pg).

2. Challenge: Receiving CMT, V sends a challenge Ch & {1,2,3} to P.
3. Response: P responds as follows:
— If Ch = 1: Reveal ¢z and c3. Let by = 12B(j) @ b,

{Vs =) To(ra), ve = Th(re), and {Ve = olre),

ws = m(8), we = o(e).

Send RSP := (b17 Vs, Ws, Vx, Vf, Ve, We; p27p3) to V.
— If Ch = 2: Reveal ¢; and c3. Let

{bzzb; Ty = T; 09 = 0}
Zs =SDOrs; Zx =XDrx; Zu=UBry; 2 =fDrs; 2e =€Dro.

Send RSP := (bz, T2, 02, Zs, Zx, Zu, Zf, Ze} p1,p3) to V.
— If Ch = 3: Reveal c; and c2. Let

bz =b; 1 =7 03 =0; ys =Ts] ¥x =TIx; Yu=Tu; ¥f =TIf; Ye = Te.

Send RSP := (b37 T3, 03, ¥s) Yx; Yu, Yf, Ye; PhpZ) to V.

Verification: Receiving RSP, V proceeds as follows:

— If Ch = 1: Let wx = 6yp,) € FY and we = Encode(B2l(b1)) € F3°. Check that
ws € B(m,w), we € B(n,t), and that:

{02 = COM(vs, Vx, Vi, Vo p2),
c3 = COM(VS P wWs, Vx D Wx, ViPDWg, Ve D We; pg).
— If Ch = 2: Check that
{cl = COM(b27 mo, 02, H-zl & A -2z}, (zu HZf) GO ze @ c; pl),
c3 = COM(TI’Q(ZS), To, (zx), T{,2 (Zf), 02(2e); pg).
— If Ch = 3: Check that
{01 =COM(bs, 73, o3, H-yl @ A-y], (yulyr) G @ ye: p1),
ca = COM(ma(ys), Toy(yx), Ty (ve), o3(ye); p2)-

In each case, V outputs 1 if and only if all the conditions hold. Otherwise, V outputs 0.

Fig. 1. The underlying zero-knowledge argument system of our group signature scheme.



A Provably Secure Group Signature Scheme from Code-Based Assumptions 273

As a result, P should always pass V’s checks in the case Ch = 1. In the case
Ch = 2, since the linear equations in (8) hold true, P should also pass the
verification. Finally, in the case Ch = 3, it suffices to note that V simply checks
for honest computations of ¢; and cs.

Communication Cost. The commitment CMT has bit-size 3\. If Ch = 1, then
the response RSP has bit-size 3¢+ N +2(m+mn+ ). In each of the cases Ch = 2
and Ch = 3, RSP has bit-size 2¢ + N + m(logm + 1) + n(logn + 1) + k + 2.
Therefore, the total communication cost (in bits) of the protocol is less than the
bound g specified in Theorem 1.

Zero-Knowledge Property. The following lemma says that our interactive
protocol is statistically zero-knowledge if COM is modelled as a random oracle.

Lemma 2. In the random oracle model, there exists an efficient simulator S
interacting with a (possibly cheating) verifier V, such that, given only the public
input of the protocol, S outputs with probability negligibly close to 2/3 a simulated
transcript that is statistically close to the one produced by the honest prover in
the real interaction.

Argument of Knowledge Property. The next lemma states that our protocol
satisfies the special soundness property of X-protocols, which implies that it is
an argument of knowledge [Gro04].

Lemma 3. Let COM be a collision-resistant hash function. Given the public
input of the protocol, a commitment CMT and 3 wvalid responses RSPy, RSP,
RSP3 to all 3 possible values of the challenge Ch, one can efficiently construct
a knowledge extractor € that outputs a tuple (j',s',u’,e’) € [0, N — 1] x FJ* x
FA=* x F3 such that:

H s = jT, A s € B(m,w);
(u'[[12B(j")) -G @ € =c A € €B(n,t).

The proofs of Lemmas2 and 3 employ the standard simulation and extrac-
tion techniques for Stern-type protocols (e.g., [Ste96, KTX08, LNSW13]). These
proofs are omitted here due to space constraints. They can be found in the full
version of this paper [ELL+15].

4 Our Code-Based Group Signature Scheme

4.1 Description of the Scheme
Our group signature scheme is described as follows:

KeyGen(1*,1%): On input a security parameter A\ and an expected number of
group users N = 2¢ € poly()\), for some positive integer ¢, this algorithm
first selects the following:
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—Parameters n = n(A), k = k(\),t = t(\) for a binary [n, k, 2t + 1] Goppa
code.

—Parameters m = m(\),r = r(\),w = w(A) for the Syndrome Decoding
problem, such that

r < log (Z) — 22— 0O(1). 9)

— Two collision-resistant hash functions, to be modelled as random oracles:
1. COM : {0,1}* — {0,1}*, to be used for generating zero-knowledge
arguments.
2. H : {0,1}* — {1,2,3}" (where k = w(logA)), to be used in the
Fiat-Shamir transformation.
The algorithm then performs the following steps:
1. Run ME.KeyGen(n, k,t) to obtain a key pair (pkME =Ge ]ngn : skME)
for the randomized McEliece encryption scheme with respect to a binary
[n, k, 2t + 1] Goppa code. The plaintext space is F5.

2. Choose a matrix H < Fox™.

3. Foreach j € [0, N-1], pick s, & B(m,w), and let y; € 5 be its syndrome,
ie., y;'— =H- s;r
Remark 1. We note that, for parameters m, r,w satisfying condition (9),
the distribution of syndrome y;, for all j € [0, N —1], is statistically close
to the uniform distribution over F% (by Lemmal).

4. Output

(gpk = (G, H,yo,...,yn-1), gmsk = skme, gsk = (so,...,sn—1)).(10)

Sign(gsk[j], M): To sign a message M € {0,1}* under gpk, the group user of
index j, who possesses secret key s = gsk[j], performs the following steps:

1. Encrypt the binary representation of j, i.e., vector 12B(j) € F%, under

the randomized McEliece encrypting key G. This is done by sampling

(u & it e & B(n,t)) and outputting the ciphertext:
c=(ul2B(j)) - Gd®ecFs.

2. Generate a NIZKAoK II to simultaneously prove in zero-knowledge the
possession of a vector s € B(m,w) corresponding to a certain syndrome
v € {yo,...,y~—1} with hidden index j, and that c is a correct McEliece
encryption of 12B(j). This is done by employing the interactive argument
system in Sect. 3 with public input (G,H,yo,...,yn-1,¢), and prover’s
witness (j,s,u,e) that satisfies:

H-s"=y] A seB(m,uw); (1)
(ul[12B(j)) - Gde=c A ecB(n,t).
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The protocol is repeated x = w(log A) times to achieve negligible sound-
ness error, and then made non-interactive using the Fiat-Shamir heuristic.
Namely, we have

I = (CMTW . eMT®); (ch® L ch); RSPM L. RSP(™)) (12)

where (Ch™,...,Ch™) = H(M;CMTY ... CMT™; gpk,c) €
{1,2,3}~.
3. Output the group signature X' = (c, IT).
Verify(gpk, M, X): Parse X as (c, II) and parse IT as in (12). Then proceed as
follows:
1. If (Ch(l), cey Ch(”)) # H(M; CMTW . CMT®): gpk, c), then return 0.
2. For i = 1 to k, run the verification step of the interactive protocol in
Sect. 3 with public input (G,H,yq,...,¥y~n-1,¢) to check the validity of
RSP with respect to CMT® and Ch¥. If any of the verification condi-
tions does not hold, then return 0.
3. Return 1.
Open(gmsk, M, X): Parse X' as (c,II) and run ME.Dec(gmsk, c) to decrypt c.
If decryption fails, then return L. If decryption outputs g € F%, then return
j=B2l(g) e [0,N —1].

The efficiency, correctness, and security aspects of the above group signature
scheme are summarized in the following theorem.

Theorem 2. The given group signature scheme is correct. The public key has
size nk+ (m+ N)r bits, and signatures have bit-size bounded by ((N +3log N)+
m(logm + 1) + n(logn + 1) + k + 5\)k + n. Furthermore, in the random oracle
model:

— If the Decisional McEliece problem DMcE(n, k,t) and the Decisional Learning
Parity with fived-weight Noise problem DLPN(k — ¢,n,B(n,t)) are hard, then
the scheme is CPA-anonymous.

— If the Syndrome Decoding problem SD(m,r,w) is hard, then the scheme is
traceable.

4.2 Efficiency and Correctness

Efficiency. It is clear from (10) that gpk has bit-size nk 4+ (m + N)r. The
length of the NIZKAoK IT is k times the communication cost of the underlying
interactive protocol. Thus, by Theorem 1, X' = (c, IT) has bit-size bounded by
(N + 3log N) + m(logm + 1) + n(logn + 1) + k + 5\) K + n.

Correctness. To see that the given group signature scheme is correct, first
observe that the honest user with index j, for any j € [0, N—1], can always obtain
a tuple (j, s, u, e) satisfying (11). Then, since the underlying interactive protocol
is perfectly complete, IT is a valid NIZKAoK and algorithm Verify(gpk, M, X))
always outputs 1, for any message M € {0,1}*.
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Regarding the correctness of algorithm Open, it suffices to note that, if the
ciphertext c is of the form ¢ = (u|[12B(j)) - G @ e, where e € B(n,t), then,
by the correctness of the randomized McEliece encryption scheme, algorithm
ME.Dec(gmsk, ¢) will output 12B(j).

4.3 Anonymity

Let A be any PPT adversary attacking the CPA-anonymity of the scheme with
advantage e. We will prove that e = negl(\) based on the ZK property of the
underlying argument system, and the assumed hardness of the DMcE(n, k, t)
and the DLPN(k — ¢,n,B(n,t)) problems. Specifically, we consider the following

sequence of hybrid experiments G(()b)7 G:(Lb), Géb), ng) and Gjy.

Experiment Géb). This is the real CPA-anonymity game. The challenger runs
KeyGen(1*,1V) to obtain

(gpk = (G’ HaYOa v ayN—1)7 ngk = SkMEa gSk = (gSk[O]) cee 7gSk[N - 1]) )7

and then gives gpk and {gsk[j]} c[o,n—1] to A. In the challenge phase, A outputs
a message M* together with two indices jo,71 € [0, N — 1]. The challenger
sends back a challenge signature X* = (c*,II*) < Sign(gpk, gsk[js]), where
c* = (ul12B(j)) - G @ e, with u & F5~* and e & B(n,t). The adversary then
outputs b with probability 1/2 + e.

Experiment G:(lb). In this experiment, we introduce the following modification
in the challenge phase: instead of faithfully generating the NIZKAoK IT*, the
challenger simulates it as follows:

1. Compute c* € Fy as in experiment Géb).

2. Run the simulator of the underlying interactive protocol in Sect. 3 t = w(log \)
times on input (G,H,yo,...,yn-1,¢"), and then program the random ora-
cle H accordingly.

3. Output the simulated NIZKAoK IT*.

Since the underlying argument system is statistically zero-knowledge, IT* is
statistically close to the real NIZKAoK. As a result, the simulated signature
X = (c*, I *) is statistically close to the one in experiment Géb). It then follows

that Géb) and ng) are indistinguishable from A’s view.

Experiment ng). In this experiment, we make the following change with
respect to ng): the encrypting key G obtained from ME.KeyGen(n,k,t) is
replaced by a uniformly random matrix G & Fg *" We will demonstrate in

Lemma4 that experiments ng) and G(Qb) are computationally indistinguishable
based on the assumed hardness of the DMcE(n, k, t) problem.

Lemma 4. If A can distinguish experiments ng) and Géb) with probability non-
negligibly larger than 1/2, then there exists an efficient distinguisher Dy solving
the DMcE(n, k,t) problem with the same probability.
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Proof. An instance of the DMcE(n, k, ) problem is a matrix G* € F5*" which
can either be uniformly random, or be generated by ME.KeyGen(n, k, t). Distin-
guisher D; receives a challenge instance G* and uses A to distinguish between
the two. It interacts with A as follows.

— Setup. Generate (H,yq,...,yn—1) and (gsk[0],...,gsk[IN — 1]) as in the real
scheme. Then, send the following to A:

(gpk" = (G*,H,yo,...,yn-1), gsk = (gsk[0],...,gsk[N —1])).

— Challenge. Receiving the challenge (M™*, jo, j1), D1 proceeds as follows:
1. Pick b & {0,1}, and compute c* = (u||12B(j,) )-G* ®e, where u & Fh=*

$
and e «— B(n,t).
2. Simulate the NIZKAoK IT* on input (G*,H,yy,...,yn-1,¢*), and out-
put L* = (c*,H*).

We observe that if G* is generated by ME.KeyGen(n, k,t) then the view of A in
the interaction with D; is statistically close to its view in experiment ng) with
the challenger. On the other hand, if G* is uniformly random, then A’s view
is statistically close to its view in experiment Géb). Therefore, if A can guess
whether it is interacting with the challenger in ng) or Géb) with probability
non-negligibly larger than 1/2, then D; can use A’s guess to solve the challenge
instance G* of the DMcE(n, k, t) problem, with the same probability. O

Experiment ng). Recall that in experiment ng), we have
cr = (uH I2B(jb)) Gohe=(u-Gide)®I2B(j) - Go,
where G, € ngf@xn, G, € F™ such that {%ﬂ = G; and u & FA=* e &
B(n,t).
In experiment Géb), the generation of ¢* is modified as follows: we instead
let ¢c* = v & 12B(j,) - Ga, where v & F35. Experiments Géb) and ng)

are computationally indistinguishable based on the assumed hardness of the
DLPN(k — ¢,n,B(n,t)) problem, as shown in Lemma 5.

Lemma 5. If A can distinguish experiments Géb) and Géb) with probability non-
negligibly larger than 1/2, then there exists an efficient distinguisher Dy solving
the DLPN(k — ¢,n,B(n,t)) problem with the same probability.

Proof. An instance of the DLPN(k — ¢,n,B(n,t)) problem is a pair (B,v) €
Fékff)xn

or of the form v = u-B ® e, for (u & FA=* e & B(n,t)). Distinguisher Dy
receives a challenge instance (B, v) and uses A to distinguish between the two.
It interacts with A as follows.

x [y, where B is uniformly random, and v is either uniformly random



278 M.F. Ezerman et al.

— Setup. Pick Go S ]ngn and let G* = [c%] Generate (H,yq,...,yn—1) and
(gsk[0], ..., gsk[N — 1]) as in the real scheme, and send the following to A:

(gpk* = (G*,H,yo,...,yn-1), gsk = (gsk[0],...,gsk[N —1])).

— Challenge. Receiving the challenge (M*, jo, j1), D2 proceeds as follows:
1. Pick b & {0,1}, and let ¢* = v @ 12B(j) - G2, where v comes from the
challenge DLPN instance.
2. Simulate the NIZKAoK IT* on input (G*,H,yq,...,ynN—_1,c*), and out-
put X* = (c*,H*).

We observe that if Dy’s input pair (B,v) is of the form (B,v = u-B @ e),
where u <& F5~* and e & B(n,t), then the view of A in the interaction with Dy

is statistically close to its view in experiment Géb) with the challenger. On the

other hand, if the pair (B, v) is uniformly random, then A’s view is statistically

close to its view in experiment Géb)

. Therefore, if A can guess whether it is
interacting with the challenger in ng) or ng) with probability non-negligibly
larger than 1/2, then Ds can use A’s guess to solve the challenge instance of the

DLPN(k — ¢,B(n,t)) problem with the same probability. O

Experiment G4. In this experiment, we employ the following modification with
respect to ng): the ciphertext c* is now set as ¢ = r S Fy. Clearly, the
distributions of ¢* in experiments ng) and Gy are identical. As a result, G4 and
G:(,,b) are statistically indistinguishable. We note that G4 no longer depends on
the challenger’s bit b, and thus, A’s advantage in this experiment is 0.

The above discussion shows that experiments G(()b),ng),Géb),ng),G4 are
indistinguishable, and that Adv 4(G4) = 0. It then follows that the advantage

of A in attacking the CPA-anonymity of the scheme, i.e., in experiment G(()b), is
negligible. This concludes the proof of the CPA-anonymity property.

4.4 Traceability

Let A be a PPT traceability adversary against our group signature scheme,
that has success probability e. We construct a PPT algorithm F that solves the
SD(m, r,w) problem with success probability polynomially related to e.

Algorithm F receives a challenge SD(m, r,w) instance, that is, a uniformly
random matrix-syndrome pair (ﬁ,y) € F3*™ x F%. The goal of F is to find a
vector s € B(m, w) such that H-s' =y . It then proceeds as follows:

1. Pick a guess j* & [0, N —1] and set y;- =y.

2. Set H = H. For each j € [0, N — 1] such that j # j*, sample s; & B(m,w)
and set y; € Fy be its syndrome, i.e., ij =H- sz.

3. Run ME.KeyGen(n, k,t) to obtain a key pair (pkME =Ge IFSX” ; skME).

4. Send gpk = (G,H,yo, . ,yN,l) and gmsk = skye to A.



A Provably Secure Group Signature Scheme from Code-Based Assumptions 279

We note that, since the parameters m,r,w were chosen such that r < log (Zf) —
2A—0O(1), by Lemma 1, the distribution of syndrome y;, for all j # j*, is statisti-
cally close to the uniform distribution over IF5. In addition, the syndrome y;« =y
is truly uniform over Fj. It then follows that the distribution of (yg,...,yn-1)
is statistically close to that in the real scheme (see Remark 1). As a result, the
distribution of (gpk, gmsk) is statistically close to the distribution expected by .A.

The forger F then initializes a set CU = ) and handles the queries from A
as follows:

— Queries to the random oracle H are handled by consistently returning uni-
formly random values in {1,2,3}". Suppose that .4 makes @y queries, then
for each 7 < @, we let 7, denote the answer to the n-th query.

— OCermupt(5) for any j € [0, N —1]: If j # j*, then F sets CU := CU U {j} and
gives s; to A; If j = j*, then F aborts.

~ O5&"(4, M), for any j € [0, N — 1] and any message M:
o If j # 5%, then F honestly computes a signature, since it has the secret
key s;.
e If j = j* then F returns a simulated signature X* computed as in
Sect. 4.3 (see Experiment G gb) in the proof of anonymity).

At some point, A outputs a forged group signature X* on some message M*,
where

= (e, (CMTW, ., eMTW; ch®, L. ch®); RSPW), . RSP(™)).

By the requirements of the traceability experiment, one has Verify(gpk, M*,
Y*) =1, and for all j € CU, signatures of user j on M* were never queried. Now
F uses skye to open X*, and aborts if the opening algorithm does not output j*.
It can be checked that F aborts with probability at most (N —1)/N + (2/3)",
because the choice of j* € [0, N — 1] is completely hidden from A’s view,
and A can violate the soundness of the argument system with probability at
most (2/3)%. Thus, with probability at least 1/N — (2/3)", it holds that

Verify(gpk, M*, X*) =1 A Open(skme, M*, X*) = j*. (13)

Suppose that (13) holds. Algorithm F then exploits the forgery as follows. Denote
by A the tuple (M*; CMT(l), cee CMT(“); G H,yo,...,yn—1, c*). Observe that
if A has never queried the random oracle H on input A, then
Pr[(Ch™), ... Ch™)) = H(A)] <37".

Therefore, with probability at least € — 37", there exists certain * < @ such
that A was the input of the n*-th query. Next, F picks n* as the target forking
point and replays 4 many times with the same random tape and input as in
the original run. In each rerun, for the first n* — 1 queries, A is given the same
answers 71,...,7Ty«—1 as in the initial run, but from the n*-th query onwards,
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’

F replies with fresh random values r,.,... ,T;H & {1,2,3}"*. The Improved
Forking Lemma of Pointcheval and Vaudenay [PV97, Lemma 7] implies that,
with probability larger than 1/2 and within less than 32-Q /(e —3") executions
of A, algorithm F can obtain a 3-fork involving the tuple A. Now, let the answers
of F with respect to the 3-fork branches be

e = (ChEY, L Ch)s rg e = (CREY, L ChE™); rg e = (ChSY, ... CR(™).
Then, by a simple calculation, one has:
Pr[3ie{1,...,x}: {Ch{" Ch) Ch{} = {1,2,3}] = 1 — (7/9)".

Conditioned on the existence of such index i, one parses the 3 forgeries cor-
responding to the fork branches to obtain (RSP?), RSPS), RSP:(;)). They turn
out to be 3 walid responses with respect to 3 different challenges for the same
commitment CMT®), Then, by using the knowledge extractor of the underlying
interactive argument system (see Lemma 3), one can efficiently extract a tuple
(j',8',u',€) € [0, N — 1] x F§* x FA=* x F} such that:

H s = jT, A s € B(m,w);
(u'[[12B(j")) -G @ € =c* A € €B(n,t).

Since the given group signature scheme is correct, the equation (u’|[[12B(j’)) -
G @ € = c* implies that Open(skyg, M*, X*) = j'. On the other hand, we
have Open(skyg, M*, X*) = 5%, which leads to j* = j*. Therefore, it holds that
HsT=HsT = ij* =y, and that s’ € B(m,w). In other words, s’ is a valid
solution to the challenge SD(m,r, w) instance (ﬁ, y)-

Finally, the above analysis shows that, if .4 has success probability € and
running time 7T in attacking the traceability of our group signature scheme, then
F has success probability at least 1/2(1/N — (2/3)%)(1 — (7/9)*) and running
time at most 32T - Q3 /(e —37") + poly(A, N). This concludes the proof of the
traceability property.

5 Implementation Results

This section presents our basic implementation results of the proposed code-
based group signature to demonstrate its feasibility. The testing platform was
a modern PC running at 3.5 GHz CPU with 16 GB RAM. We employed the
NTL library [NTL] and the gf2x library [GF2] for efficient polynomial operations
over a field of characteristic 2. To decode binary Goppa codes, the Paterson
algorithm [Pat75] was used in our implementation of the McEliece encryption.
We employed SHA-3 with various output sizes to realize several hash functions.
To achieve 80-bit security, we chose the parameters as follows:
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— The McEliece parameters were set to (n,k,t) = (2!1,1696, 32), as in [BS08].
— The parameters for Syndrome Decoding were set to (m,r,w) = (2756,
550,121) so that the distribution of yq,...,yn_1 is 27%0-close to the uni-
form distribution over F% (by Lemmal), and that the SD(m,r,w) problem
is intractable with respect to the best known attacks. In particular, these
parameters ensure that:
1. The Information Set Decoding algorithm proposed in [BJMM12] has work
factor more than 280, (See also [Sen14, Slide 3] for an evaluation formula.)
2. The birthday attacks presented in [FS09] have work factors more than 289.
— The number of protocol repetitions x was set to 140 to obtain soundness
1—2780,

Table 2. Implementation results and sizes

Average
N PK size | signature size | Message | KeyGen | Sign | Verify | Open
2t 1B 0.045| 0.034
625 KB 111KB | | 14.020 0.155
(=16) 1GB 5.473| 5.450
28 1B 0.046 | 0.036
642 KB 114KB | | 14.128 0.155
(=256) 1GB 5.459 | 5.450
212 1B 0.059 | 0.044
906 KB 159KB | | 14.255 0.155
(=4,096) 1GB 5.474 | 5.462
216 1B 0.269 | 0.193
5.13MB 876KB || 16.302 0.161
(=65,536) 1GB 5.704| 5.630
220 1B 3.734| 2.605
728MB| 124MB | | 52,084 0.155
(=1,048,576) 1GB 9.196 | 8.055
224 1B 58.535 | 40.801
1.16 GB 196MB | 1636.511 0.154
(=16,777,216) 1GB 64.047 | 46.402

Unit for time: second

Table 2 shows our implementation results, together with the public key and
signature sizes with respect to various numbers of group users and different
message sizes. To reduce the signature size, in the underlying zero-knowledge
protocol, we sent a random seed instead of permutations when Ch = 2. Simi-
larly, we sent a random seed instead of the whole response RSP when Ch = 3.
Using this technique, the average signature sizes were reduced to about 159 KB
for 4,096 users and 876 KB for 65,536 users, respectively. Our public key and
signature sizes are linear in the number of group users IV, but it does not come
to the front while N is less than 2'2? due to the size of parameters G and H.

Our implementation took about 0.27 and 0.20 seconds for 1 B message and
about 5.70 and 5.60 seconds for 1 GB message, respectively, to sign a message and
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to verify a generated signature for a group of 65,536 users. In our experiments,
it takes about 5.40 seconds to hash 1 GB message and it leads to the differences
of signing and verifying times between 1B and 1 GB messages.

As far as we know, the implementation results presented here are the first
ones for post-quantum group signatures. Our results, while not yielding a truly
practical scheme, would certainly help to bring post-quantum group signatures
one step closer to practice.
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