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Abstract Dark matter which is bound in the Galactic halo
might self-annihilate and produce a flux of stable final state
particles, e.g. high energy neutrinos. These neutrinos can be
detected with IceCube, a cubic-kilometer sized Cherenkov
detector. Given IceCube’s large field of view, a character-
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istic anisotropy of the additional neutrino flux is expected.
In this paper we describe a multipole method to search for
such a large-scale anisotropy in IceCube data. This method
uses the expansion coefficients of a multipole expansion of
neutrino arrival directions and incorporates signal-specific
weights for each expansion coefficient. We apply the tech-
nique to a high-purity muon neutrino sample from the North-
ern Hemisphere. The final result is compatible with the null-
hypothesis. As no signal was observed, we present limits on
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the self-annihilation cross-section averaged over the relative
velocity distribution (oA v) down to 1.9 x 10723 cm?s~! for
a dark matter particle mass of 700-1,000 GeV and direct
annihilation into vv. The resulting exclusion limits come
close to exclusion limits from y-ray experiments, that focus
on the outer Galactic halo, for high dark matter masses of a
few TeV and hard annihilation channels.

1 Introduction

There is compelling evidence for dark matter, e.g. from cos-
mic microwave background anisotropies, large-scale struc-
ture formation, galaxy rotation-curves, and other astrophysi-
cal observations [1-3]. Despite this evidence, DM can not be
(fully) explained by standard model particles, and its nature
remains unknown [3]. Many theories, e.g. supersymmetry or
extra dimensions, provide suitable candidates for dark mat-
ter [3]. The generic candidate for dark matter is a weakly
interacting massive particle (WIMP) with a mass of a few
GeV up to several hundred TeV [4,5]. Assuming that WIMPs
interact at the scale of the weak force and were produced in
the early universe in thermal equilibrium, the freeze-out of
WIMPs leads to an expected dark matter abundance that is
compatible with current estimates [2].

The density of WIMPs gravitationally trapped as dark
halos in galaxies can be high enough that their pair-wise
annihilation rate is not negligible. The final-state products
of the annihilations decay to stable standard model particles,
i.e., photons, protons, electrons or neutrinos, and, therefore,
an observable flux of these particles could provide indirect
evidence for dark matter. While charged cosmic rays are
deflected by magnetic fields and photons have a large astro-
physical foreground, astrophysical neutrinos from dark mat-
ter annihilation do not interact with inter-stellar matter and
would point back to their origin. In certain models, neutrinos
can also be produced directly [6], giving a monochromatic
neutrino signal that would be a golden channel for neutrino
telescopes.

Observations of an excess in the positron to electron ratio
by PAMELA [7], that was confirmed by FERMI [8] and
AMS-02 [9,10], may hint to dark matter in the GeV-TeV
region. The nature of the positron signal is extremely diffi-
cult to interpret due to the complex propagation of electrons
and positrons in the Galactic magnetic fields. The observa-
tion can also be explained by nearby astrophysical sources
like pulsars [11] or supernova remnants [12]. However, if
the positron excess is interpreted as originating from dark
matter, leptophilic dark matter [13,14] is favored, with cross-
sections in the range 1072*~1072! cm? s~!, partly within the
sensitivity reach of the analysis presented here.

As mentioned above, the annihilation rate is significantly
enhanced in regions where DM might have been gravita-

tionally accumulated, since the annihilation rate scales with
the square of the density. In particular, massive bodies like
the Sun [15], the Earth [16], the Galactic Center [17,18] or
dwarf galaxies and galaxy clusters [19], are good candi-
dates to search for a neutrino flux from DM annihilations.
Furthermore, and due to the expected shape of the dark halo
around the Milky Way, annihilations in the halo would pro-
duce a diffuse flux of neutrinos with a characteristic large-
scale structure [20], depending on the assumed DM density
distribution. While searches for a neutrino flux from the anni-
hilation of DM captured in massive bodies are sensitive to
the spin-dependent and spin-independent DM-nucleon cross-
section, the Galactic and extra-galactic flux depends on the
self-annihilation cross section [3].

In this paper we present a multipole method to search for a
characteristic anisotropic flux of neutrinos from dark matter
annihilation in the Galactic halo. The method is based on a
multipole expansion of the sky map of arrival directions and
an optimized test statistic using the expansion coefficients.
This method provides the opportunity to reduce the influence
of systematic uncertainties in the result, which arise from sys-
tematic uncertainties on the zenith dependent acceptance and
zenith dependent atmospheric neutrino flux. A large-scale
anisotropy as seen by [21-24] in cosmic-rays, is expected
in the atmospheric neutrino flux. However this anisotropy is
very small so that it is just an effect of few percent compared
to our sensitivity on neutrinos from dark matter annihilations.

This paper is organized as follows: In Sect. 2 the IceCube
Neutrino Observatory is introduced. Section 3 gives the theo-
retical expected flux from dark matter annihilation with neu-
trinos as final state. Section 4 gives a short overview of the
data sample used and the simulation of pseudo-experiments.
In Sect. 5 the multipole analysis technique is introduced.
The sensitivity of this analysis is given in Sect. 6. Sec-
tion 7 addresses systematic uncertainties. In Sects. 8 and 9
the experimental result is presented and discussed, while in
Sect. 10 we present our conclusions.

2 The IceCube Neutrino Observatory

IceCube is a cubic-kilometer Cherenkov neutrino detector
located at the geographic South Pole [25]. When a neutrino
interacts with the clear Antarctic ice, secondary leptons and
hadrons are produced. These relativistic secondary particles
produce Cherenkov light which is detected by Digital Opti-
cal Modules (DOMs) that contain a photomultiplier tube.
The IceCube array consists of 86 strings, each instrumented
with 60 DOMSs, which are located at depths from 1.45 to
2.45 km below the surface. The strings are arranged in a
hexagonal pattern with an inter-string spacing of about 125 m
and a DOM-to-DOM distance along each string of 17 m.
A more compact sub-array, called DeepCore, consisting of

@ Springer
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Fig. 1 Footprint of the IceCube detector in its 79-string configuration,
that was taking data from June 2010 to May 201 1. Shown is the position
of the strings, where standard IceCube strings are marked in dark gray,
and DeepCore strings with a smaller DOM spacing are marked in light

gray

eight densely-instrumented strings, has been embedded in
the center of IceCube in order to lower the energy threshold
from about 100 to about 10 GeV [26]. The detector construc-
tion was completed in December 2010, however data were
already taken with partial configurations [27]. The footprint
of IceCube in its 79-string configuration (IC79) is shown in
Fig. 1. This is the configuration used in this analysis. Due to
its unique position at the geographic South Pole, the zenith
angle in local coordinates is directly related to the declina-
tion and the right ascension for a given azimuth angle only
depends on the time.

3 Neutrino flux from dark matter annihilation
in the Galactic halo

N-body simulations [28-30] predict the mass distribution
ppM (r) in galaxies as function of the distance r to the Galac-
tic Center, assuming a spherically symmetric distribution.
The resulting dark matter halo profile is parameterized by an
extension of the Hernquist model [31]

£0

y aq(B=y)/a’
(b+2) 1+ (2)]

where («, B, v, 6) are dimensionless parameters. r; is a scal-
ing radius and py is the normalization density. Both have to
be determined for each galaxy.

ey

ppoM(r) =
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Fig. 2 Line of sight integral J () as function of the angular distance
¥ to the Galactic Center is shown for the different halo profiles used in
this analysis. The shaded region corresponds to angular distances to the
Galactic Center that lie in the Southern Hemisphere and are not used in
this analysis

In this paper the halo profile of Navarro, Frenk and
White (NFW) [32,33] with (1,3,1,0) is used as base-
line. For the Milky Way ry, = 16.11‘%0 kpc and p(rs) =
0.471“8:82 GeV /cm? are used [34]. A currently favored model
is the Burkert profile, that was obtained by the observation
of dark matter dominated dwarf galaxies. The Burkert pro-
file is described by (2,3, 1, 1) [35], ry = 9.261‘2:2 kpc and
p(rs) = 0.491007 GeV /em? [34]. While for the central part
of the galaxy the models differ by orders of magnitude, the
outer profiles are rather similar.

The expected differential neutrino flux d¢, /dE at Earth
depends on the annihilation rate I'y = (oav)p(r)%/2 along
the line of sight /, the muon neutrino yield per annihilation
dN, /dE, and the self-annihilation cross-section of dark mat-
ter averaged over the velocity distribution (oav). The flux is
given by [36]:
doy (oav)

dE ~ 2 W)

Rscpic dN,
47tm§ dE "’

@

where m, denotes the mass of the dark matter particle. J ()
is the dimensionless line of sight integral, that depends on
the angular distance to the Galactic Center, v, and is defined
by [36]:

dmax plz)M <\/R§C — 2IRsc cos ¥ + 12>
J() = / dl

0

)

RSCP%Q

where p]%M is evaluated along the line of sight, that is param-

eterized by \/ Rgc — 2l Rsc cos ¥ 412 and psc is the local
dark matter density at the distance Rsc = 8.5 kpc of the Sun
from the Galactic Center [36]. dnmax is the upper boundary
of the integral and is sufficiently larger than the size of the
galaxy. The dimensionless line of sight integral for different
halo profiles is shown in Fig. 2. A large difference for small
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angles ¥ can be seen, while for the outer part a similar factor
is expected for all models.

This analysis searches for an anisotropy in the neutrino
arrival directions on the Northern Hemisphere. Here we
expect a characteristic anisotropy, proportional to J () as
shown in Fig. 3.

The neutrino multiplicity per annihilation for the flavors
e, L, T, are obtained with DarkSUSY, which is based on
Pythia6 [20,37]. The muon neutrino multiplicity per anni-
hilation at Earth, dN,,/dE, includes the oscillation proba-
bility into muon neutrinos in the long baseline limit. The
effective oscillation probability was calculated by numerical
averaging of the oscillation probability over a sufficient num-
ber of oscillation length using mixing angles and amplitudes
from [38]. Since the nature of the DM particles, as well as
the branching ratio for different annihilation channels, are

::1611 20}1

Galactic Center *,

Equatorial

0 Jw) 8

Fig. 3 Dimensionless line-of-sight integral for the NFW profile is
shown for the Northern Hemisphere in equatorial coordinates. The
anisotropy in the line-of-sight integral causes the anisotropy in the
expected flux of neutrinos from self-annihilation of dark matter in the
Galactic halo. The position of the Galactic Center is indicated by the
cross

T T TTTTT] T T T TTTTT] T T TITT

E dN, /dIn(E) in GeV

Ein GeV

Fig. 4 Muon neutrino multiplicity per annihilation dN,/dIn(E) as
function of energy is shown for the investigated benchmark channels
and m, = 600 GeV. The oscillation probability into muon neutrinos, in
the long baseline limit, is included in dN,, /d In(E). Beside the neutrino
line spectrum, the spectra were calculated with DarkSUSY [37]

unknown, a 100 % branching ratio to a few benchmark chan-
nels is assumed. Similar to previous analyses [19], we use the
annihilation to bb as a soft channel, WT W~ as a medium
and ut ™ as a hard channel. Furthermore we investigate
direct annihilation to vv, which results in a line spectrum.
We assume a 1:1:1 neutrino flavor at source, and then use the
long-baseline approximation as for all other spectra. This
model is implemented as a uniform distribution within +5 %
of m, ,instead of a Dirac delta-distribution, for computational
reasons. The different muon neutrino multiplicity per anni-
hilation spectra E2dN, /dE = E - dN,/dIn(E) are shown
in Fig. 4.

4 Data sample
4.1 Experimental data

Data taken from June 2010 to May 2011, with a total live-
time Tjive of 316 days, are used. Up-going muon events (dec-
lination >0) were selected in order to eliminate atmospheric
muon background, which becomes dominant at a few degrees
above the horizon. By means of a mixture of one dimen-
sional cuts on event quality parameters and a selection by
a boosted decision tree [39] the contamination of misrecon-
structed atmospheric muons that mimic up-going neutrinos
was reduced to <3 % [40]. The detailed selection is described
in [41] as “Sample B” for IC79. After the rejection of atmo-
spheric muons, the sample consists of 57281 up-going muon
events from the Northern Hemisphere, mostly atmospheric
muon neutrinos, which are background for the search of neu-
trinos from self-annihilating dark matter in the Galactic halo.
Unlike signal, the integrated atmospheric neutrino flux is
nearly constant with right ascension [20]. The reconstructed
arrival directions of all events in the final sample are shown
in Fig. 5. From full detector simulation it was found that
90 % of the events have a neutrino energy in the range from
about 100 GeV to about 10 TeV, with a median of 613 GeV.

ST

Galactic Center

Equatorial

T —
0 Events/Pixel 10

Fig. 5 Sky map of reconstructed neutrino arrival direction of the exper-

imental data sample in equatorial coordinates. The position of the Galac-
tic Center is indicated by the cross

@ Springer
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The median angular resolution is <1° for energies above
100 GeV [41]. Further details on the sample properties can
be found in [41].

4.2 Pseudo-experiments

The sensitivity of this analysis has been estimated and opti-
mized by pseudo experiments with simulated sky maps of
neutrino arrival directions. These sky maps contain back-
ground from atmospheric neutrinos and misreconstructed
atmospheric muons and signal from dark matter annihilation.

Signal events are generated at a rate proportional to the
line-of-sight integral. Furthermore, the arrival direction is
smeared according to the angular resolution [20], which was
determined with the full detector simulation. Moreover, the
acceptance of each event is randomized according to the
declination-dependent effective area. It is assumed that the
acceptance is constant in RA, due to IceCube’s special posi-
tion at the South Pole and the daily rotation of the Earth and
the almost continuous operation of the detector, which results
in a livetime of 91 % at final selection level.

The background generation is done by scrambling experi-
mental data. Here, the declination of the experimental events
are kept and the RA is uniformly randomized. The rescram-
bling of experimental data to generate background is justified
by anegligible signal contamination in the experimental data.
By this technique the background estimation is not affected
by systematic uncertainties from Monte-Carlo simulation.

The number of signal events in a sky map is fixed to Nsje.
The total number of events in a sky map N, is fixed to the
total number of events in the experimental sample, so that the
sky maps are filled up with N, — N, background events.

5 Method
5.1 Multipole expansion of sky maps
The sky maps of reconstructed neutrino arrival directions are

expanded by spherical harmonics Y;" [42]. Spherical har-
monics are given by

m t+DHE-m! b4 im
Y6, ¢) =\/—4n (£+m)1!n Py (cos <5 —9))6 ¢,
“

where 6 is the declination and ¢ the RA. ¢, m are integer
numbers withO < £and —¢ <m < /L. Pé” are the associated
Legendre polynomials. Because spherical harmonics are a
complete set of orthonormal functions, one can expand all
square-integrable functions f(6, ¢) on a full sphere €2 into
spherical harmonics. The expansion is given by

@ Springer

m={
fO.9) =) al-¥]'© ) (5)

{ m=—{t

with expansion coefficients aZ". Here, ¢ is the order of the
expansion and corresponds to an angular scale of approxi-
mately 180° /¢, while m corresponds to the orientation of the
spherical harmonic. The expansion coefficients are given by

ay' =/Qd9 f6, )Y/, ¢). (6)

The sky map of reconstructed arrival directions is represented
by

Ny

£0,0) =" 6" (cos(®) —cos(:) - 8P (¢ — i), (]

i=1

where (6;, ¢;) are reconstructed coordinates of event i in
equatorial coordinates. N, is the total number of events in
the data sample and 8P is the Dirac-delta-distribution. Since
the median angular resolution of the events (<1°) is much
smaller than the anisotropy to search for, the usage of Dirac-
delta-distributions is justified.

Coefficients with negative m do not provide additional
information, because the sky map is described by a real func-
tion, leading to |a}'| = |a, ™|, and a fixed relation between
arg(ay') and arg(a, ™) [42].

The multipole expansion is linear and the expansion coef-
ficients for signal and background follow the superposi-
tion principle. This can be seen from Eq. (6), if one uses
£0.9) =5 fig(0. $)+(1—5): foga (0. ), Where fuig (6. $)
is the sky map for pure signal, fyed(8, ¢) is the sky map for
pure background, and s is the relative signal strength.

In practice the expansion is stopped at some large £y,x.
Information on structures of an angular scale smaller 180° /¢
will be lost. Hence, the value of £y, should be sufficiently
large to include all angular scales of interest.

5.2 Application of multipole-expansion
to pseudo-experiments

For this analysis the calculation of the expansion coefficients
is done with the software package HealPix [43,44].

Figures 6 and 7 show the expansion coefficient corre-
sponding to Y;" with £ = 2 and m = 1 for a signal, as
described in Sect. 3, and a uniform distributed background
in RA, as described in Sect. 4.

For different signal strength s = Nsig/N,,, 1,000 pseudo-
experiments were performed and a; was calculated. For pure
background sky maps (s = 0 %) with no preferred direction
in RA (uniform) the expansion coefficient shows no preferred
phase and is almost normal distributed around the origin of
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Fig. 6 The expansion coefficient azl for large signal strength s in the
Euler representation (/eft panel) and in the complex plane (right panel).
Foreach signal strength s 1,000 pseudo-experiments were generated and
the expansion coefficient a21 calculated
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Fig. 7 The expansion coefficient a% for small signal strength s in the
Euler representation (/eft panel) and in the complex plane (right panel).
For each signal strength s 1,000 pseudo-experiments were generated and
the expansion coefficient a% calculated
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the complex plane. For pure signal (s = 100 %) there is
a clear separation from the origin. Also, a clear preferred
phase can also be observed, which corresponds to the orien-
tation of the expected anisotropy in the sky. This phase is the
same as the preferred phase for the sky maps with partial sig-
nal (0% < s < 100 %). Furthermore, a linear dependency
between the signal strength s and the mean power (|a; |) can
be seen.

In practice the number of events N, in the map is lim-
ited. Therefore, the value of az” has a statistical error, which
depends on the total number of events in the sky map N, and
weakly on the signal fraction s. For the value N, > 57,000 of
this analysis the error can be well approximated as Gaussian.

An overview of the logarithm of the absolute value of
all expansion coefficients with 0 < ¢, m < 50 is shown
in Fig. 8 for pure background (left panel), and pure sig-
nal (right panel). For the pure background case most of the
power is contained in the coefficients ag, related to the pure
zenith structure. Because the background was assumed to
be isotropic in RA all coefficients with m # 0 are at noise
level. The statistical noise level in the map is of the order of
1073-10~* and corresponds to the width of the distribution,
as shown in Figs. 6 and 7.

From Eq. (4) one can see that spherical harmonics with
m = 0 are independent of RA and thus purely depend on dec-
lination. The a? coefficients have an absolute value larger
than the noise level that means they contain power. These
coefficients describe the full declination structure, that is
mainly influenced by the declination-dependent acceptance
and the declination-dependent variation of the atmospheric
neutrino flux. Furthermore it was found that there is no pre-
ferred phase in any coefficient for background.

For pure signal (Fig. 8, right) there is also power in
coefficients with m # 0, resulting from the characteristic
anisotropy of the signal. It was found that all coefficients that
have a power larger than the noise level also have a preferred
phase. The characteristic checkered pattern in the coefficients

0.0

-0.4
-0.8
-1.2
-1.6
-2.0
-2.4
-2.8
-3.2
-3.6
-4.0

10g10<|a£ ' |>

Fig. 8 Mean logarithm of the absolute value for all expansion coefficients in the {—m-plane up to £, m = 50. The mean absolute value was obtained

from 1,000 pure background/signal sky maps (left/right)
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Fig. 9 Sketch to illustrate the projection of complex expansion coef-
ficients, on the axis corresponding to the preferred direction. The large
gray circles represent the central part of the Gaussian in the complex
plane in a large ensemble limit for different signal strength. In contrast
to that distributions the star corresponds to one specific value of the
expansion coefficient for one measured sky map. The projected value
of this specific expansion coefficient is given by the length of the thick
red line

results from the observation of just one hemisphere 6 > 0,
leading to a suppression of coefficients with even £ + m, that
correspond to a symmetric spherical harmonic with respect
to the equator.

From Fig. 8 (right panel) it becomes obvious that coef-
ficients with small ¢ and m carry most power. This is due
to the large-scale anisotropy of the line-of-sight integral (see
Fig. 3). In analogy to the relation of £ and the characteristic
angular scale of the structure, m is related to the characteristic
angular scale in RA, thus small m represent large structures
in RA and large m represent small structures in RA.

5.3 Test statistic

The test statistic (7'S) to separate signal from background
combines the phase information and the power of a complex
coefficient into one value. A projection of the complex coef-
ficient onto the axis, corresponding to the preferred phase, is
introduced [45]. This projection is illustrated in Fig. 9 and is
given by

V= a)| cos <arg (a}') — <arg <‘1leig)>) , (8)

where arg (a]') is the argument of a' and (arg(ap'y,)) is
the mean expected phase of the a;' of pure signal pseudo-
experiments.

This projected expansion coefficient has the following
advantages. First A}' is proportional to the power of the
expansion coefficient. Second, the most sensitive direction
is the axis of the preferred phase, and the value of the projec-
tion gets smaller, the more the phase differs. This results in

@ Springer

negative values for A, if the phase differs more than 7 /2,
indicating that the anisotropy is in the opposite direction of
the expectation.

Using these projected expansion coefficients the T'S is
defined as

Zmax 4

D sig (A7) wf!

=1 m=1

1
m
Zwﬁ ¢

A = (A7)

S =
! o (A7 ea)

C))

where sig(x) gives the sign of x and ( Zl,bgd) and G(A?,bgd)
are the mean and standard deviation of an ensemble of
Aj' estimated from pseudo-experiments of pure back-
ground [45]. w}" are individual weights for each coefficient.
The definition of the test statistic is motivated by a weighted
x2-function. The weights are chosen with respect to the sep-
aration power of the different coefficients and are defined
below. Because the sign of the deviation is lost in the squared
term, the sign is included as an extra factor. Coefficients with
no power, especially in the background case, have randomly
positive or negative sign. In average they add up to zero,
however for signal always positive values contribute to the
sum.
The weights are given by

(455) = (4]
wit = [ sy (10)
where ( Zfsi g) is the expected projected expansion coefficient

for pure signal, that can be calculated by averaging over the
A7 of an ensemble of pseudo-experiments for pure signal.
Because A} is proportional to a;' and, thus, to the signal
strength, a smaller signal expectation would just lead to a
different normalization of the weight, which is absorbed in
the factor 1/ ) w}'. Therefore the relative strength of coef-
ficients in this test statistic does not depend on the signal
strength s. The weights represent the power to separate signal
from background for each coefficient. Insensitive expansion
coefficients get assigned a small weight and do not contribute.

5.4 Test statistic application to the search for dark matter

To determine (arg(az"‘sig)), wy', ( ?,bgd> and O'(A?bgd),
1,000 pseudo-experiments were used in each case. The
weights for an NFW profile for all coefficients with £, m <
100 are shown in Fig. 10.

The weights range over orders of magnitude and are pro-
portional to the values shown in Fig. 8 (right panel) reflecting
the separation power of the coefficients.
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Fig. 10 The logarithm of the weight [as defined in Eq. (10)] for all
coefficients in the {—m-plane up to £, m = 100. In the calculation the
NFW profile was used

For IceCube, the coefficients with m = 0 contain the
declination dependence and, due to the detector location at
the geographic South Pole, this translates directly into the
zenith dependence of the detector acceptance. In order to
avoid introducing a zenith-dependent systematic uncertainty,
the coefficients with m = 0 are omitted in this analysis
and are not included in Eq. (9). Since spherical harmonics
are orthonormal functions, no additional systematic is intro-
duced by this choice. Possible systematic uncertainties in
azimuth average out due to the daily rotation of Earth, and
thus the detector.

Because the anisotropy introduced by the flux from dark
matter annihilation in the halo is a large scale anisotropy
a maximal expansion order of £;,x = 100 was chosen. In
general the coefficients become less sensitive with lager £.
Due to this generic suppression of insensitive coefficients in
the test statistic £y« does not need to be optimized.

Since the differences in weights for different halo profiles
are found to be small, which is a result of the similar shapes of
the outer halo predicted by the different models (see Fig. 2),
weights from NFW profiles are used for all model tests to
avoid trial factors. Differences with respect to the halo pro-
files will be discussed below.

Figure 11 shows the resulting test statistic for pseudo-
experiments of pure background (Nsigz = 0, s = 0%)
and pseudo-experiments with signal contribution of Nge =
1,000, 5,000 (signal strength s = 1.7, 8.7 %) assuming a
NFW profile.

5.5 Generalization of the method

In the previous sections the assumed signal was the charac-
teristic anisotropy of the flux from dark matter annihilation.

800
- = Ny, =0
700 ' : ' == Ny, =1000 [
600 - N1, =5000 i
500 | : : : : : 1
]
S 400} 1
S
300 | = 1
200 t LT : : : 1
100} |' :'I-:, : w : — ]
¥ . .,‘..,r""“."“m-,
0 " - PITEAR e
-5 0 5 10 15 20 25 30

Ts

Fig. 11 Test statistic 7'S for pure background simulation (solid) and
simulations with small signal contributions assuming a NFW profile.
Nsig is the number of simulated neutrino arrival directions from dark
matter annihilation in the Galactic halo

However, the method described here can be generalized to
any other anisotropy of preferred direction.

If there is no preferred direction in the signal expectation,
i.e. a characteristic event correlation structure which is dis-
tributed isotropically on the sky, the phase is also random
in the signal case. This is the case e.g. in a search for many
point-like sources that are too weak to be detected individ-
ually, but which lead to a clustering of events on specific
angular scales. Even in these cases it is possible to define
a test statistic analogously. Here one can use the averaged

power on a characteristic scale Cgff, that is given by

I
=5 2 la" | (11)

m=—{

m#Q

Note that also here the power coefficients are defined with-
out the ag coefficients, resulting in coefficients that are not
affected by systematic uncertainties in the declination accep-
tance. In the test statistic [Eq. (9)] one has to replace all A}’ by
CEH and wy' by w¢ and remove the sum over m. Furthermore
the sig(A}')-term now has to be written as si g(Cgff — Cff,f)g @)
The weight w, can be defined similar to Eq. (10) by replacing
AJ' by Czeff. An example where such a test statistic has been

used is [46,47].

6 Sensitivity

The median sensitivity at a 90 % confidence level (CL), Noo,
is given by that number of signal events, where 50 % of the
signal T'S distribution is larger than the 90 % upper quan-
tile of the background distribution. To estimate this median
sensitivity for different signal contributions 25,000 pseudo-
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Fig. 12 The median of the test statistic, 7', distribution as a function
of the signal strength Nog for different halo profiles. Furthermore the
90 %-upper-quantile of the 7'S background distribution is shown. The
statistical errors were computed by binomial statistics and are smaller
than the size of the markers

Table 1 Median sensitivity on the number of signal events at a 90 %
CL Ny and the statistical uncertainty for different halo profiles

Halo profile Nog
NFW 470.8 +£2.3
Burkert 511.24+2.8

experiments were generated for different numbers of signal
events Ngijg. In Fig. 12 the median of each TS distribution is
shown versus the signal strength N, for the different halo
profiles. Further, the 90 %-quantile of the background dis-
tribution is shown. The resulting Ngg for the different halo
profiles are shown in Table 1. It can be seen that differences
in the value of Ngg are smaller than 10 %. Note that the Nogg
value does not depend on the overall normalization but only
on the different shape of the profiles.

The sensitivity on the number of signal events in the data
set, and thus the flux, can be interpreted in terms of the self-
annihilation cross-section of the dark matter. Using Eq. (2)
the self-annihilation cross-section is given by

8nmi 1 1

—_— Noo. (12)
Rscpse Tiive [ [ J (V) Aetr Sy d EAQ

(oav) =

Here, Acgr is the effective area, which is shown for the cho-
sen data set, averaged over the Northern Hemisphere, in
Fig. 13. The resulting sensitivity on the self-annihilation
cross-section depends on the assumed annihilation channel
and WIMP mass.

In N-body simulations of structure formation using DM,
self-similar substructures are found. These structures lead to
an enhanced annihilation probability, because the gain of flux
from denser regions is larger than the loss in dilute regions.
The increase of the annihilation rate can be described by a
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Fig. 13 Effective area as a function of neutrino energy, averaged over
declination in the Northern Hemisphere. The gray band represents the
uncertainties due to systematic uncertainties in the optical detection
efficiency and in the ice properties

boost factor B(r), which modifies the line of sight integral.
An example of such a boost factor is given in [48] and has
been discussed in [20]. For this analysis the modification
of the line-of-sight integral as described in [20] results in a
median sensitivity, Nog, which is about 50 % worse, because
the shape of the line-of-sight integral and thus the anisotropy
becomes flatter. However, due to the larger total expected flux
the sensitivity on the self-annihilation cross-section is 20 %
more stringent. To be conservative, the results presented here
do not take substructures into account.

As a cross-check, the sensitivity on the number of signal
events of a cut-and-count based method as described in [20]
was determined. About 14,600 neutrinos are expected in the
off-source region, which covers 1.6 sr. This results in a sen-
sitivity to approximately 219 neutrinos when subtracting the
number of events in the on-source and off-source regions.
Taking into account the different solid angles in the denomi-
nator of Eq. (12), 12 % more signal events over background
are required for the same significance, resulting in a slightly
less sensitive analysis.

7 Systematic uncertainties

The relevant systematic uncertainties for the analysis can be
categorized into three groups:

— Systematic uncertainties on the background expectation.

— Systematic uncertainties on the signal detection effi-
ciency.

— Dependencies on the halo profile.

As the background expectation is generated from scram-
bled experimental events in RA, systematic effects can only
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Table 2 Systematic uncertainties resulting from pre-existing
anisotropies in the experimental sky map. (oA V)pase denotes (oav)
assuming no pre-existing anisotropy and (oA v)syst assuming the Nog
changed by the systematic effects

: (oA V)syst —(0AV)base
Uncertainty W (%)
Zenith acceptance <43
Sky exposure +2.2
Cosmic ray anisotropy +5.4

be caused by pre-existing anisotropies. Such an anisotropy
can arise from the zenith-dependent acceptance of the detec-
tor, the zenith-dependent variation of the atmospheric neu-
trino flux or the detector exposure. There is also the pos-
sibility of an anisotropy in the atmospheric neutrino flux,
caused by the cosmic-ray anisotropy which has been mea-
sured by Milagro [21], TUNKA [22], ARGO-YBJ [24] and
IceCube [23].

The systematic uncertainty on the self-annihilation cross-
section caused by zenith-dependent uncertainties is very
small as a result of the fact that the coefficients correspond-
ing to pure zenith(declination)-dependent spherical harmon-
ics are not included in the test statistic. In order to study
the influence of the zenith structure that arises from the
acceptance of the detector and the variation of the atmo-
spheric neutrino flux, pseudo-experiments were generated
using events according to a histogram of experimental zenith
values and not using the experimental data directly. To gen-
erate steeper and flatter zenith-spectra, the bin-contents of
the histogram are changed by raising the outer most left
bin by 25 % and decreasing the outer most right bin by
25 %. The bins in between are raised or decreased accord-
ing to a linear interpolation between +25 % and —25 %.
The uncertainties on the zenith-spectrum are on the order
of 5%. However to study this effect and not be limited
by statistics the slope of the zenith-spectrum was changed
by £50 % resulting in a large overestimation of the effect.
Based on these pseudo-experiments the median sensitivity
on (o4 v) was calculated. This results in a conservative upper
limit on the effect of zenith-dependent uncertainties (see
Table 2).

The up-time of the IceCube-detector is of the order of
98 %, however due to high quality criteria in the data selec-
tion the used data correspond to 91 % up-time. The geom-
etry of the detector is almost symmetric in azimuth, and
thus the exposure of each direction in the sky is nearly
constant. However due to short down-times and a non flat
azimuth acceptance an anisotropy of 0.02% in the data
sample (~10 events) can occur. In the worst case this
anisotropy can mimic a (anti-)signal and thus result in a
small systematic effect on the median sensitivity (cav) (see
Table 2).

Milagro, ARGO-YBJ and TUNKA have observed an
anisotropy in cosmic rays at few hundred GeV-EeV energies
of primary particles in the Northern Hemisphere [21,22,24].
Because the experimental sky map is dominated by atmo-
spheric neutrinos, that were produced in air-showers initiated
by cosmic rays an analogous anisotropy is expected in atmo-
spheric neutrinos. Therefore, pseudo-experiments were gen-
erated that allow for an anisotropy as parameterized in [21].
The uncertainty on the median sensitivity on (oA v) is given
in Table 2.

Systematic uncertainties on the signal efficiency can be
expressed by uncertainties in the effective area. Because
the effective area depends on energy, the resulting system-
atic uncertainties on (cav) depend on the assumed energy-
spectrum and, thus, on the annihilation channel and the mass
of the dark matter particle.

The main uncertainties of the detection efficiency arise
from the optical efficiency of the DOMs and from the optical
properties of the antarctic ice, described by the absorption and
scattering length. The influence of these effects on the effec-
tive area was determined by a full detector simulation where

Table 3 Relative systematic uncertainties on (oav) resulting from
uncertainties in the detection efficiency. Because the detection efficiency
is energy-dependent, the uncertainties are given in dependence of anni-
hilation channel and the mass of the DM particle m,, . (oA V)pase denotes
(oav) assuming the baseline effective area and (oA v)syst assuming the
effective area changed by the systematic effects

mGev) Lt g
bb Wrw- nwtpn~ vy

100 +89 +30 +32 +33
200 +34 +28 +30 +29
300 +26 +25 +27 +24
400 +27 +22 +24 +15
500 +27 +20 +22 +18
600 +26 +19 +20 +22
700 +25 +18 +19 +15
800 +25 +18 +19 +17
900 +24 +18 +18 +18
1,000 +23 +18 +18 +14
2,000 +20 +15 +16 +12
3,000 +19 +14 +14 +16
4,000 +18 +13 +13 +15
5,000 +18 +12 +12 +13
10,000 +16 +10 +11 +9
20,000 +14 +9 +7 +12
30,000 +13 +10 +8 +10
50,000 +12 +7 +7 +24
70,000 +11 +6 +4 +13
10,0000 +10 +6 +3 +26
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Fig. 14 TS distribution for background expectation (solid), and the
observed value T Sexp = 0.23 (dashed). The error bars on the back-
ground distribution reflect the statistical precision arising from the finite
number of pseudo-experiments realized

the nominal values of the DOM efficiency and the absorption
and scattering lengths were changed by 10 % [49,50]. The
uncertainties on the effective area were further propagated
to uncertainties on (oav), which depends on the dark matter
particle mass m, and the annihilation channel. The resulting
uncertainties are listed in Table 3. They typically lie in the
range 15-30 %, and they are the dominating uncertainties of
this analysis.

The sensitivities as obtained from the different halo pro-
files using best-fit parameters differ by about 6 %. This is
smaller than the uncertainty that arises from uncertainties on
the profile fit values. The dominant contribution comes from
the local dark matter density, and corresponds to an uncer-
tainty on the sensitivity of up to 50 %. In the following the
dependency of the assumed model is not treated as a sys-
tematic uncertainty, but as model uncertainty, and thus the
experimental result will be interpreted for each of the dif-
ferent halo profiles, and benchmark annihilation channels,
respectively.

8 Experimental results

This analysis was performed blind, meaning it was developed
by using pseudo-experiments only. After the analysis proce-
dure was optimized and fixed, the data were unblinded. The
experimental sky map has a test statistic value of 7' Sexp, =
0.23. The probability of a larger experimental value in the
background-only case is 22 % and thus the result is compat-
ible with the background-only hypothesis. The observation
is an over-fluctuation corresponding to 0.80, where o is the
standard deviation of the background expectation of the test
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Fig. 15 Deviation of experimental projected expansion coefficients
from background expectation, normalized to standard deviation of back-
ground coefficients in the {—m-plane. No significant excess can be seen

statistic. Note that the test statistic can not be approximated
by a Gaussian due to larger tails. The experimental value and
the background expectation of the test statistic are shown in
Fig. 14.

Figure 15 shows the deviation of the experimental expan-
sion coefficients from the background expectation, normal-
ized to the standard deviation of the background coefficients.
These values correspond to the last term in Eq. (9) without
the square. Also here no significant deviation can be seen.

As no signal was observed, upper limits on the num-
ber of signal events in the sample, Nyp, were calculated
at a 90% CL following the approach of Feldman and
Cousins [51]. In order to calculate the confidence belt, 25,000
pseudo-experiments for different Ny, were generated respec-
tively. Due to limited computational resources the pseudo-
experiments were not generated for each Ngig, but for signal
contributions Ny, ; with a step-size of Agy = 25 events.
The test statistic distribution was interpolated for the remain-
ing Njig, using a Gaussian, pgaus, with mean u = N and
standard deviation o = \/Wig . The interpolated test statistic
distributions are given by

Nsim,i"'Asim/2
TS(Nsig) = Z TS(Nsim,i) : / Pgaus(N)dN >
i

sim, i *Asim/z
(13)

where i runs over all generated test statistics. The result of
the pseudo-experiments (number of signal neutrinos) was
smeared by a Gaussian with width corresponding to the sys-
tematic uncertainties, as described in Sect. 7. Systematic
errors, including the uncertainty on the effective area, are
thus included in the effective upper limits on the number of
events, listed in Table 4. These can be directly translated to
limits on (oA v) using Eq. (12).
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Table 4 Effective 90 % CL Feldman—Cousins limit on the number of
signal events in the data set, Ny, for different halo profiles. The values
include systematics and can be directly translated to limits on (oA v)
using Eq. (12)

Halo profile NuL
NFW 949
Burkert 1014
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Fig. 16 Exclusion limits on dark matter self-annihilation cross-section
from this analysis at 90 % CL. The baseline limit curves are calculated
for the NFW profile. The model-dependence has been estimated from
the Burkert profile and are shown as bands, which are very narrow and
thus hard to see. The gray band describes the natural scale if all dark
matter consists of WIMPs and the gray upper region is excluded by the
unitarity bound [5]

By using Eq. (12) the limit on the signal events Nyp, can
be interpreted in terms of a limit on the self-annihilation
cross-section (oav)yrL. The resulting limits are shown in
Fig. 16 as function of m, and for the different benchmark
annihilation channels. The limits are also listed in Table 5.
In correspondence to the experimental exclusion limit it is
possible to calculate the average upper limit, which gives
the mean expected exclusion limit in case of no signal [52].
The average effective upper limit on the number of signal
neutrinos in case of an W W~ annihilation channel and
a dark matter particle mass of 600 GeV is (Nyp) = 747.
Note that the average upper limit is more stringent by 10—
24 9% than the resulting exclusion limits depending on the
halo profile annihilation channel and dark matter particle
mass.

Table 5 Limit on the self-annihilation cross-section (oa v) for different
annihilation channels, halo profiles and DM-particle masses m

my (GeV) (oav) (em®s™!)
bb Wrw- uwtu~ vy

Assuming Burkert profile
100 42x10719 7.6x10721 2.6x10721 1.9x 1072
200 6.0x 10720 65x 1072 38x 1072 4.0x 10723
300 2010720 32x1072 18x 1072 26x 10723
400 1.1x 10720 23%x1072 13x1072% 22x 1072
500 73x 10721 20x 1072 1.0x 1072 2.1 x 10723
600 54x 10721 1.8x 1072 9.0x 1072 2.1 x 10723
700 44 %1072 17x1072 84x1072 20x 1072
800 37x 1072 17x1072 79x 1073 20x 1073
900 33x 10720 1.6x 1072 77x1073 2.0x 1072
1,000 29x10721 1.6x1072 75x1073 20x1073
2,000 1.8x 10721 1.5x 1072 7.1x1072 22x 1072
3,000 15x10720 1.6x1072 75x1073 25x1073
4,000 14x 10721 1.8x 1072 80x 1072 28x 10723
5,000 14x10721 19x1072 86x1073 3.1x1073
10,000 1.3 x 10721 25x 1072 1.1x 1072 49 x 10723
20,000 13x10721 36x 1072 18x 1072 87x 10723
30,000 15x10721 47x1072 24x1072 13x 1072
50,000 1.8x 10721 67x1072 37x1072 21x 1072
70,000 2.1x 10721 89x 1072 5.1 x 1072 3.2x 10722
10,0000 2.5x 10721 12x1072 74x1072 53 x 1072

Assuming NFW profile
100 44x1071° 7.6x 10721 2.6 x 10721 1.9 x 10722
200 6.1x1070 64x1072 38x1072 4.0x 1072
300 20x10720 32x1072 18x 1072 26x 10723
400 1.1x10720 23x1072 12x1072 2.1 x 10723
500 72%x 10720 20x 1072 1.0x 1072 20x 1073
600 53x 10721 1.8x 1072 88x 1072 20x 1072
700 43x10721 17x1072 82x1073 19x1073
800 3.6 x 10720 1.6x 1072 77x1073 1.9x 10723
900 32%x 10720 16x1072 75%x 1073 1.9x 10723
1,000 20x 10721 1.6x 1072 73x1072 1.9x 10723
2,000 1.8x 10721 15%x1072 69x 1073 21x10723
3,000 1.5x 10721 1.6 x 1072 73 x 1072 2.5x 10723
4,000 14x10720 17x1072 77 x1073 2.7 x 10723
5,000 1.3x 10721 1.8x 1072 83x 1072 3.0x 10723
10,000 12x10721 24x1072 1.1x1072 47x1073
20,000 13 x107%" 34x1072 1.7x1072 83 x 1072
30,000 1.4x1072" 45%x1072 23x1072 12x 1072
50,000 1.7x10721 64 x 1072 35x 1072 2.1x 1072
70,000 2.0x 10721 85x 1072 48 x 1072 3.0x 10722
100,000 2.4 x 10720 12x10721 7.1x107%2 52x 1072
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9 Discussion

Compared to the predecessor analysis of IC22 data using a
cut-and-count based method [20], the effective area increases
by more than an order of magnitude in the low energy region
(~100GeV) but just a factor of about 3 at high energies
(~10TeV) in the relevant zenith region. The larger gain in
effective area for low dark matter masses is caused by Deep-
Core, the low-energy extension of IceCube, which was not
implemented in IC22, but was already in operation in IC79.
The lager gain in the effective area at low energies causes an
increase in sensitivity of more than an order of magnitude at
these energies. However due to a much larger sample size,
caused by the large increase in the number of low energy
events, and just a slight increase in effective area at high
energies, there is just a small gain in sensitivity for high dark
matter masses. As this analysis measures an over-fluctuation
and the IC22 analysis has measured a under-fluctuation the
exclusion limits of the IC22 analysis are more stringent for
high dark matter masses of a few TeV. However the lim-
its in the low-mass region of 100 GeV are still an order of
magnitude more stringent due to the larger increase in sensi-
tivity. For comparison the exclusion limits (90 % CL) of the
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Fig. 17 Exclusion limits on dark matter self-annihilation cross-section
from outer Galactic halo searches only. The results of this analysis
and exclusion limits from the predecessor analysis of IceCube-22 [20]
(both 90% CL) and from the Fermi-LAT [53] (30 CL) are shown.
The baseline limit curves are calculated for the NFW profile, however
different normalization parameter are used. For reasons of comparison
the limits from IC22 and Fermi are rescaled to the local density of
psc = 0.47GeV/cm? that is used in this analysis. The gray band
describes the natural scale if all dark matter consists of WIMPs and the
gray upper region is excluded by the unitarity bound [5]
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predecessor analysis are shown in Fig. 17. Note that in the
predecessor analysis a NFW profile was assumed, but with
a local density of 0.3 GeV/cm?, while here 0.47 GeV/cm?
is assumed. For reasons of comparison the limits in Fig. 17
have been rescaled to the local density used in this analysis.

Furthermore, exclusion limits of an outer Galactic halo
analysis by Fermi-LAT [53] are also shown in Fig. 17 for
annihilation into bb and pt . This analysis has measured
the y-ray emission along the Galactic plane in a window
of £15°, whereas the central £5° are excluded. In [53]
a NFW profile was assumed, but with a local density of
0.43GeV/cm?, while here 0.47 GeV/cm? is assumed. For
reasons of comparison the limits in Fig. 17 have been rescaled
to the local density used in this analysis. It can be seen that
for hard neutrino channels (1™ .7) the exclusion limits of
this analysis come close to the outer Galactic halo limits of
Fermi.

The most stringent exclusion limits from y -ray telescopes
in the energy-range of this analysis are set by HESS [55], with
an analysis focusing on the Galactic Center, and Fermi [56]
with an analysis focusing at dwarf galaxies. These limits are
about two orders of magnitude more stringent. However it is
important to note, that the systematic uncertainties for y-ray
and neutrino telescopes are of very different nature. Also y
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Fig. 18 Median sensitivity on dark matter self-annihilation cross-
section assuming annihilation in W+ W~ for this analysis and for the
IceCube-79 high energy Galactic Center analysis (IC79 HE GC) [54].
The baseline limit curves are calculated for the NFW profile (markers).
The model-dependence (bands) has been estimated from the Burkert
profile. The gray band describes the natural scale if all dark matter con-
sists of WIMPs and the gray upper region is excluded by the unitarity
bound [5]
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telescopes have the highest sensitivity for the soft channel
and vice versa, smallest sensitivity for the hard channels.

The halo profile dependencies in this analysis are very
small compared to the Galactic Center analysis of IceCube.
This can be seen by comparing this analysis with a Galactic
Center search, that focuses on the central part of the galaxy.
The sensitivity for the W+ W~ annihilation channel of the
IceCube-79 Galactic Center analysis described in [54] and
the sensitivity of this analysis are compared in Fig. 18. The
bands represent the model uncertainties determined from
Burkert and NFW profile, whereas NFW is used as base-
line. It is clearly visible that the halo profile uncertainties
are much smaller for a halo analysis (compare Fig. 2), while
the overall sensitivity of the two approaches are remarkably
similar.

10 Conclusions

We have presented a competitive analysis technique to search
for characteristic anisotropies by using a multipole expansion
of the neutrino arrival direction sky map. It was found that the
multipole analysis is a sensitive and robust analysis method,
that has the feature to reduce systematic uncertainties in an
easy way.

We applied the analysis to one year of data taken with the
IceCube detector in its the nearly completed detector config-
uration. The search for a neutrino flux, resulting from dark
matter annihilation, has found no significant deviation from
the background expectation. Exclusion limits on the self-
annihilation cross-section (oav) were calculated approach-
ing 1.9 x 10723 cm? s~!. The resulting exclusion limits are
more stringent than the predecessor analysis of IC22 data
in a wide parameter range. Furthermore the extracted limits
come close to limits from y-experiments, that also focus on
the outer Galactic halo, for hard annihilation channels and
large dark matter masses. The presented analysis, focusing
on the Galactic halo, is very robust against halo profile uncer-
tainties compared to analyses targeting the Galactic Center
or dwarf spheroidal galaxies (compare Fig. 2).
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