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Abstract. At Crypto 2013, Coron, Lepoint, and Tibouchi (CLT) pro-
posed a practical Graded Encoding Scheme (GES) over the integers,
which has very similar cryptographic features to ideal multilinear maps.
In fact, the scheme of Coron et al. is the second proposal of a secure
GES, and has advantages over the first scheme of Garg, Gentry, and
Halevi (GGH). For example, unlike the GGH construction, the subgroup
decision assumption holds in the CLT construction. Immediately follow-
ing the elegant innovations of the GES, numerous GES-based crypto-
graphic applications were proposed. Although these applications rely on
the security of the underlying GES, the security of the GES has not been
analyzed in detail, aside from the original papers produced by Garg et al.
and Coron et al.

We present an attack algorithm against the system parameters of the
CLT GES. The proposed algorithm’s complexity O(2°/ %) is exponentially
smaller than O(2°) of the previous best attack of Coron et al., where
p is a function of the security parameter. Furthermore, we identify a
flaw in the generation of the zero-testing parameter of the CLT GES,
which drastically reduces the running time of the proposed algorithm.
The experimental results demonstrate the practicality of our attack.

1 Introduction

In 2003, Boneh and Silverberg [2] introduced the concept of cryptographic multi-
linear maps by generalizing cryptographic bilinear maps. They proposed
interesting applications based on the concept, such as the multipartite Diffie-
Hellman key exchange and an efficient broadcast encryption. Until recently, it
was an important, yet hard-to-achieve open problem to construct multilinear
maps satisfying cryptographic requirements. At Eurocrypt 2013, Garg, Gentry,
and Halevi [18] proposed the first candidate multilinear maps, called Graded
Encoding Scheme (GES), having very similar cryptographic features to ideal
multilinear maps. At Crypto 2013, Coron, Lepoint, and Tibouchi [10] proposed
the second GES over the integers. The CLT construction has an advantage over
the GGH construction; specifically, it allows one to use a desirable assumption
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such as the subgroup decision assumption, which does not hold with the GGH
construction. Thus, the CLT construction has broader applications. Very re-
cently, Langlois, Stehlé, and Steinfeld [24] improved the GGH construction in
terms of the bit size of the public parameters. Immediately following the elegant
inventions of the GES, they received significant attention from the cryptography
community, and numerous cryptography applications based on the GES inven-
tions were built; for example, programmable hash [17], full-domain hash [22],
functional encryption [19,20], witness encryption [21], and indistinguishability
obfuscation [5,19,6]. Although these applications rely on the security of the un-
derlying GES, the security of the GES itself has not been analyzed in detail,
aside from the original papers produced by Garg et al. and Coron et al.

1.1 Owur Contributions

n-Masked Partial Approximate Common Divisors (n-MPACD). We
begin by introducing a new number theoretic problem, called n-Masked Par-
tial Approzimate Common Divisors (n-MPACD), which is a generalization of
the system parameters (such as the zero-testing parameter [10] and the re-
randomization parameter [10,8]) from integer-based schemes such as multilinear
maps [10] and Fully Homomorphic Encryptions (FHE) [8]. Roughly speaking, a
problem instance is a product of 7-bit primes zq = [ [, p; and polynomially-many

samples x; such that x; = Q- r;; (mod p;) where @ & Ly, Tij & (—2r,2P) and
p < n. Because of the unknown @), it is unlikely to directly apply the meet-in-
the-middle attack of Chen and Nguyen [7]; therefore, it appears to be harder
than the Partial Approximate Common Divisors (PACD) problem [23]. In fact,
the attack algorithm of Coron, Lepoint, and Tibouchi (CLT) [10], which is the

most efficient currently known algorithm for n-MPACD, has O(2”) complexity,
although it employs the technique used in the Chen-Nguyen attack.

Exponentially Faster Attack for n-MPACD. We present an attack algo-
rithm for n-MPACD, which is exponentially faster than the CLT attack. The
proposed algorithm follows the basic flow of the strategy of the Chen-Nguyen
attack [7]. However, several tricks are required to manage the unknown @ and
several moduli. Our attack is based on the following observation for subset-
sums of integers in the same interval (—2°,2°): given 2m integers, there are 22

Table 1. Algorithms for n-MPACD

Algorithm Error Type Computation (Z, op.) Space
(Corrected) CLT [10] arbitrary errors’ O(p*2°) O(p*2°)
arbitrary errors’  O(y/plog p - p?2°/%)  O(/plogp - p?2°/?)

uniform errors O(\/”l‘;gp - p?2°/%) O(\/”lj’f” - p?2e/?)

An instance of n-MPACD consists of o (product of n primes) and polynomially many samples

This paper

with errors chosen from (—27,2°).

t: Mild assumptions are necessary, which are specified in the paper.
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different subset-sums (ignoring duplications), but such subset-sums range from
(—2m2P,2m2°). That is, the number of subset-sums increases exponentially in
m; however, those ranges increase only polynomially in m. Therefore, by slightly
increasing m, we can find a collision among subset-sums. This observation is
essential to our exponentially faster algorithm, as compared to the CLT attack.
We summarize the comparison in Table 1.

A Flaw in the Generation of the Zero-Testing Parameter. We apply the
proposed attack algorithm to the system parameters of multilinear maps over the
integers; in particular, the zero-testing parameter [10]. The complexity of both
our attack algorithm and the CLT attack primarily depend on p, the size of errors
ri;; therefore, it is necessary to enlarge the size of errors. In the generation of the
zero-testing parameter, the matrix H = (h;;) € Z™*™ plays the role of (r;;) in
n-MPACD, indicating that the size of h;; is very important for the security of the
CLT GES. For the functionality of the multilinear maps, the matrix H is defined
to be unimodular, and to satisfy two bounds ||HT||o. < 2% and \|(H*1)T||OO <
28, In [10], the authors provided a method for generating H. However, we point
out that the given method does not provide sufficient randomness in H; that is,
the average size of each entry h;; in H is much less than expected. Eventually,
this will weaken the security of multilinear maps over the integers.

Experimental Results. We provide several experimental results for our al-
gorithm. In particular, we apply our attack algorithm to the implementation
parameters on Small size for 52-bit security and Medium size for 62-bit security
in [10] with a slight modification; the implementation in [10] used only a single
zero-testing integer. However, we assume that a zero-testing wvector is given, as
in the original CLT GES. Our experimental results demonstrate that our algo-
rithm requires less than 23484 and 23723 clock cycles on average for Small size
and Medium size, respectively.

We remark that a part of this paper was made public through [28] and the
missing details can be found in the full version of this paper [25].

1.2 Outline

In the following section, we provide some preliminary information that should
be helpful for reading this paper. In Section 3, we define our new problem,
and investigate a relation between it and the system parameters of multilinear
maps. Section 4 provides our attack algorithm along with a detailed analysis.
We describe how to speed our basic algorithm up and provide implementation
results of our algorithm on the parameters of multilinear maps over the integers
in Section 5. In Section 6, we discuss additional issues related to multilinear
maps and our attack algorithms.

2 Preliminaries

Notation. Throughout the paper, A is the security parameter, and we con-
sider only discrete values; the interval notation [a,b] indicates all integers be-
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tween a and b, containing a and b. Similarly, (a,b) and (a,b] notations also
indicate respective sets of all integers contained in the corresponding continu-
ous intervals. For integers a and p, the reduction of @ modulo p is denoted by
a (mod p) € (—p/2,p/2]. Problem instances are defined by Chinese Remainder-
ing with respect to n co-prime integers p1, ..., pn, making it convenient to use
the notation CRT,, . . (r1,...,7,) (abbreviated as CRT,,)(r;)) to denote the
unique integer z in (—} [Licp n pis ) [Licp,npi] with 2 = r; (mod p;) for all
i€ [1,n)].

2.1 Fast Polynomial Algorithms

We consider polynomials with integer coefficients modulo xy. There are classic
algorithms for fast polynomial arithmetic, which use the Fast Fourier Trans-
formation (FFT) [15,3,4] and have been used in various areas of cryptography,
in particular, cryptanalysis [9,7,16]. In this paper, we use two fast polynomial

arithmetic algorithms, each denoted by Alggflg and Algh /7, as subroutines; the

algorithm /—\Iggflzj takes ¢ points as inputs and outputs a monic degree-¢ poly-

nomial over Z,, having ¢ input points as roots. The algorithm Algf/g};; takes

a degree-¢ polynomial f(x) over Z,, and ¢ points as inputs, and then it evalu-
ates f(z) at £ input points and outputs the results. Alggflzj (Algh . resp.) has
quasi-linear complexity in the number of the input points (the degree of the in-
put polynomial, resp.). We summarize the basic information regarding these fast
polynomial algorithms in Table 2. We omit details of these classical algorithms;
instead, we refer to [31,27].

Table 2. Fast polynomial algorithms using FFT

NG AL
Input zo and {ao,...,ar—1} xo, f(X) of £-deg., and {pt;}ic0,e—1)
Output  f(X) =[[;Z)(X —ai) (mod z0)  f(pty),. .-, f(pt,_,) (mod o)
Comp. cost O(fLlog?£) operations modulo o O(£log? £) operations modulo zo
Space cost O(£log? £) polynomially many bits O(£log?¢) polynomially many bits

3 Masked Partial Approximate Common Divisors

Before providing our algorithm, we first generalize the problem instances for both
the re-randomization parameter and the zero-testing parameter in the CLT GES.
We believe that the following generalization will help readers to understand the
security of the multilinear maps; specifically, both the hardness and weakness of
the problem. We introduce a new number theoretic problem, which is a variant
of (Partial) Approzimate Common Divisors [23]. First, we describe the new
hardness problem, then discuss its relationship with the system parameters of
CLT GES in the following subsection.
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Definition 1 (n-Masked Partial Approximate Common Divisors). Given
integers @Q,qo,D1,--.,Pn, we state that xz; is sampled from the distribution

DM(Q,qo,p1,-- - pn) if

;= Q- CRTy (p,) (a5, 715, -+ s Tny)(mod qo H Di)s

i€[l,n

where g; < [0, qo) and ryj < (—2°,2°). o
We define the (p,n,~y,n)-Masked Partial Approzimate Common Divisors (ab-
breviated as n-MPACD) problem as follows. Choose n-bit random primes p; for
i € [1,n] and let w be their product. Set xg := qo - 7, where qo is a randomly chosen
2% -rough integer from [0,27 /7). Choose Q + [0,z¢). Given xg and polynomially
many samples x; from Dé”(Q, 40, P1, - - -y Pn), find a non-trivial factor of (xo/qo).

Note that we do not restrict the distribution of r;;’s and @) in Definition 1 explicitly
to cover various variants; in addition, our attack algorithm provided in the follow-
ing section succeeds regardless of the distributions of @ and r;;’s. We require only
mild restrictions satisfied by both the zero-parameters and the re-randomization
parameters of multilinear maps, which are the primary targets of our algorithm.

Hardness of n-MPACD: This paper mainly proposes attack algorithms against
n-MPACD; however, it would be interesting to precisely understand the hard-
ness of n-MPACD as well. To this end, we prove that n-MPACD is hard if PACD
[23,13,14,7] is also hard. The reduction is provided in the full version.

Asymptotic Parameters: When we consider algorithms for n-MPACD, we ba-
sically assume that parameters are set to thwart various lattice-based attacks and
factoring algorithms; that is, v (z¢’s bit size) must be large enough to prevent
lattice-based attacks, so that v = w(n?log ) [30,13,10] and n = w(\?), to pre-
vent an efficient factorization algorithm such as ECM from having sub-exponential
complexity in the size of factors. In this paper, we focus on the size of errors r;; €
(—2°,2P) and the complexities of all algorithms associated with p.

3.1 Parameters as an Instance of the MPACD Problem

We demonstrate that the system parameters in the CLT GES can be considered
as instances of n-MPACD.

Zero-testing Parameter: The zero-testing parameters (xo, (p.¢); for j € [1,n])
are of form
(Pzt)j = 2oy hij - (2% - g7 " mod p;) - [T, pir (mod o)
= Q . CRT(p7)(h”) (mod l’o)
where Q = CRT ) (2" ~g;1 . Hi,# pir). Here, h;; is distributed in a small bounded
set (—27,27), where 2° < p;. Therefore, we can regard the zero-testing parame-
ters as an instance of n-MPACD.

Re-randomization Parameter: The re-randomization parameters are of form
Hj = CRT(pL)(w”Zgl) = Q . CRT(pL)(wU) mod Zo,

where @ = CRT,,)(?). Note that the @;;’s of the errors are not chosen from

the same set, unlike those in n-MPACD; non-diagonal entries are chosen from



Security Analysis of Multilinear Maps over the Integers 229

(—27,2P), while the diagonal entries are chosen from (n2°,n2° 4+ 2°). Although
errors are chosen from two different sets, the sizes of both sets are almost equal to
27, This is sufficient for our attack algorithm provided in Section 4.

Remark 1. In fact, by excluding some parts that have entries chosen from
(n2°P,n2°P 4 2°), the re-randomization parameters generated by n primes may be
considered as an instance of (n—k)-MPACD as well for k < n. That is, {II;} c[1,1
for k € [1,n] can be re-written by

; Wij - Gi
q0:(Pi)ic(k+1,n] (q ) )

j = CRT(p )( ) CRT(p )(’(D”) CRT mod Zo,

where qp = Hi:l pi and ¢’ = CRT, . p, (@ij,...,wk;). Subsequently, all errors
w;j; fori € [k+1,n]and j € [1, k] are chosen from (—27,2%), so that (zo, {II;} jc[1,1))
is an instance of (n — k)-MPACD.

4 Our Algorithms for the n-MPACD Problem

We present an exponentially faster algorithm for solving n-MPACD problems; our
(basic) algorithm requires O((log p)°-°p>2¢/2) 7, operations. In [10], the attack
algorithm for n-MPACD is roughly sketched and details are omitted. We present
the detailed description of the CLT attack based on our speculation in the full
version, which achieves the complexity Coron et al. claimed. Our analysis of the
CLT algorithm for n-MPACD requires two mild assumptions about the distribu-
tion of samples. Similarly, the proposed algorithm also requires two mild assump-
tions about samples satisfied by our main application, multilinear maps over the
integers.

4.1 Overview

We provide an overview of our algorithm for solving n-MPACD problems. Our
strategy follows the basic flow of the Chen-Nguyen attack; however, we require
several additional ideas to manage the unknown masking @ and several moduli
in the n-MPACD problem, in contrast to the Chen-Nguyen attack for the PACD
problem.

Consider an instance of an n-MPACD problem: g = qo H?:l p; and z; =
ri; mod p; where p;’s are n-bit primes, r;; € (—27,2°) for 1 < j < 2m, and
2f <« p;. For randomly chosen bits b;-’s, if m is sufficiently large, then for each
p; there is a high probability that

2m 2m
ged (xo, H (Z bjz; — Z bjx;) (mod xo)). (1)
(b1,--,bam)€{0,1}2m =1 j=1

(01 sb2m ) #(b] o b )

For each p;, there are 22™ possible sums ZZTI b;jx; such that sz bjxz; (mod p;)
is contained in the relatively small range ( 2m2P 2m2°), Wthh is contained in
(—pi/2,pi/2]. If the number of samples m satisfies an inequality 22™ > m2r+3

(e.g., 2m = p + logp + loglog p for sufficiently large p), then there are many
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collisions in the range. In fact, at least a half of all possible elements have a collision
in the range (—2m2”, 2m2?) according to the pigeonhole principle. Therefore, for
2 2
such an m, we have [T ;... .00,0e(0.132m (ngl bjx; — ngl b;'xj) =0 (mod p;)
(b1 v sbom) A (V] b))

with at least 1/2 probability, depending on the choice of b’s.

To solve an n-MPACD problem using the relation (1), two remaining issues
must be considered, in terms of efficiency and correctness. First, 2™ > 2° mod-
ulus multiplications, which are quite large, are required for naive computation of
the above product. To reduce the complexity, we follow the concept of the meet-
in-the-middle approach, similar to the Chen-Nguyen attack. Second, it is likely
that the result of the ged computation in (1) is not a non-trivial factor of xg, but
just xg. To overcome this obstacle, we additionally equip our algorithm with the
concept of the divide-and-conquer technique.

Let us address the efficiency issue first. We define the 2¢-degree polynomial
fa,w) (X) over Z,, as follows:

2m

d
fd,(b;)(X) = H ((X + ijl‘j) - Zb;.%‘]) (HlOd xo) (2)
(b1,..,bq)€{0,1}4 J=1
Using this new notation, we can rewrite (1) as*

2m
ged (xo, H fm,(bg)( Z brxy) (mod xo)). (3)

(bm1,---,b2m)€{0,1}™ k=m+1

j=1

Di

We can compute the 2"-degree polynomial fm,(bg.)(X ) via /—\Iggflz and evaluate

fm,@;)(X) at 2™ points {ZZZmH Dkh} (b1, bam ) €0, Via Algh/pp so that
we can solve the n-MPACD problem with O(2™m?) complexity. If we set 2m =
p+log p+loglog p, then we determine that the complexity is O((log p)%-°p?52°/2).

For the second issue regarding the gcd computation result, we can apply the
divide-and-conquer method. It is clear that the result should be x( or its di-
visor. If the output of the gecd computation is g, then we divide the product
v, bom)eqoym fm,(b;)(zizm+l brxy) (mod xg) into four factors and com-
pute all factors. If there is a non-trivial factor among four factors, then the algo-
rithm succeeds. Otherwise, we select a factor that is a multiple of xg, and repeat
the same process until a non-trivial factor is found. We can demonstrate that this
process will find a non-trivial factor with overwhelming probability, and the re-
cursive process’s asymptotic complexity is still O((log p)%->p?-22¢/2). We provide
a clear description and analysis of our algorithm in the following subsections.

If the errors 7;;’s are distributed (almost) uniformly, then we can reduce the
complexity further by scrunching the domain of the product up; if the domain
size is decreasing, we cannot expect that (Zj:l b)) will have a collision in each
modulus p; with high probability; however, we can expect that it will have a col-
lision in at least one modulus p;, which is exactly what we want. In fact, we can

! Strictly speaking, (3) is not equal to (1) because (3) contains the case (b1, .. ., bam) =
(b1, .., b5, ) therefore the product is trivially 0. We can easily change (3) to not con-
tain the case (b1,...,b2m) = (b1, ..., b5, ). Because such a modification is technical,
we omit it in this overview and relegate the details to the next subsection.
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reduce the /n factor further from the complexity. In Section 5, we discuss the
method we used to increase the speed of our basic algorithm.

4.2 Basic Algorithm for n-MPACD

Given 2m samples z;’s when 2m < n and m2°™2 < 22™_ we require two mild
assumptions regarding samples.

Assumption 1. 2m2°PT < p; for each p;.

Assumption 2. The rank of the integer matriz (ri;) icnn € Z™<2™ s 9m, where
J€[1,2m]

z; =155 (mod p;).

Note that both the zero-testing parameter and the re-randomization parameter
of multilinear maps over the integers satisfy both Assumption 1 & 2; Assumption
1 is trivial. In the zero-testing parameter, the matrix (h;;) is invertible, so it can
satisfy Assumption 2. For the re-randomization parameter, r;;’s are distributed
uniformly and independently; thus, the rank(r;;) will be equal to 2m with over-
whelming probability because 7;;’s are chosen from the exponentially large set in
the security parameter.

Our n-MPACD Algorithm: We present our basic algorithm for n-MPACD in
Algorithm 1. Our algorithm consists of two steps. First, the algorithm computes
a product A that is a multiple of some prime factor of zy. Second, if A is not a
multiple of xg, then the algorithm stops and outputs it. Otherwise, the algorithm
runs the while loop to extract a non-trivial factor from the multiple of zg; that is,
we repeatedly split multiples of z( into four factors, until a non-trivial factor is
found.

Because A is a product, we can compute A’s four factors denoted by
Ago, Ap1, A1, and Ajp; via the same process used for computing A such that
A = AgoAo1A10A11, and then check if there is a non-trivial factor of xy among
them. If not, repeat the same process until a non-trivial factor of z¢ is found. To
optimize efficiency, we divide A into four factors evenly, that is, each A; is also a
product with the same size domain. Furthermore, we should set each domain of A;
to take full advantage ofAIggflg and Algh /2. To this end, we define Ago, Ao1, Ao,
and Ap; as follows: In the while loop, A € Z;,, is of the form

m 2m
H ( E bj.%‘j + E bj.%‘j + C) (HlOd xo),
V(biy e bm) ¥ (big sesbam)  j=is j=is
(bl,...,bzm);é(b’l ..... I)'zm)
where b1,...,b0i,—1,bm+1,...,bi,—1 are fixed for some 1 <i; <mym+1 < i <
_ i1—1 o ia—1 o 2m gy s
2m, and so C' = .U b + 322 1 bjwy — 3050 by is a constant. Then,

A TIOZ5%, 1 biws + ZZZ?H bjz; + C) (mod zp),

Ao = [TCCTL, 1 by + 2200, 1 bjag + C + xy,) (mod o),
Ao H(Z;n:il-}-l bjxi+ > ,ZLZ,QH bjz; +C + ;) (mod x),
A [T(

Z;‘n=1‘1+1 bjz; + Z]‘ZZ‘2+1 bjz; + C+w, +,) (mod o),
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Algorithm 1. n-MPACD algorithm: arbitrary distribution
Input: (zg,21,...,%Zom)
Output: a non-trivial factor of zg or L
1: Choose b & {0,1} for 1 < j < 2m.
2m baxs 2m b/

2: Compute A =[] ;... vperonzm (3250 bjzj — D250 bjr;) (mod o)
(b1 sbom ) A (D], b )

> by using Alg. 2

3: if A # 0 (mod zp) then return ged(zo, A).

4: else Set k «+ 1.

5: while £ < m do

6: Compute ged(xg, A;) for ¢ € {00,01,10,11}.
> by using (a variant of) Alg. 2

7 if ged(xo, A;i) € (1, x0) for some i then return ged(zg, 4;).

8: else Choose an A; s.t. A; = 0 (mod zo) and set A < A;, and k «

E+1.

9: end if

10: end while return 1.

11: end if

where C' is defined as before and each product is defined over all b;,4+1,...,bmn,

biy+1s---,bam € {0,1} such that (by,...,b2m) # (b],...,05,). It is clear that
A = AgoAp1Ai10A11 and each A; has the same form as A with a different domain
for the product.

Subroutine for Computing A and Its Factors: We describe how to compute
2 2
A=1I @1.varcronyzm (ng bjz; — ngl bix;) (mod o).

Using the notation in (2), A can be rewritten as

2m m
/
1T Py (D ) [T Qb —b)ay) (4)
(bmt1see0s b2m,) k=m+1 (b, bm)  j=1
e{o0,1}™m, e{0,1}™
(bm415--:02m) (b1,...,bm)
F( L1 obh ) AL b)

The left term is for the case (b1, ..., b2m) # (0,41, - -, b5,,) and the right term
is for the case (byy1,...,02m) = (b, 1,...,bh,,) with (b1,...,bm) # (b},...,
b:.). Therefore, (4) coversall (b1, ..., bam)’s except (b}, ..., bh,,), so that it is equal
to A. We describe an algorithm for (4) in Algorithm 2. Factors Ago, Ao1, A10 and
A1 of A have approximately the same form as A, and hence we can compute it
similarly to Algorithm 2.
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Algorithm 2. Subroutine for solving n-MPACD
Input: (zg,x1,...,2,) and (b, ..., ’22m). ,
Output: A = H (b1, bam )E€{0,1}2m (Zj;nl bjl‘j — ZjZLl b;»xj) (mod xo)

(b1, b2m)F (], 0 )
1: Compute a polynomial fm,(b;.) (X) over Z,, as follows.

m 2m
H(bl,“.,bm)e{o,l}m((X + Zj:l bjx;) — Zj:l b;-ffj) (mod o).

. 2
> by Algpay, with 2o and {(327) bja; — 3000 bj%5) b, b efo.1)m 88

inputs.
2: Perform multi-points evaluation of fm,(bg)(X) at {erﬁmﬂ N S R

by Algh/ps.

3: return 2m m
H fm,(bg)( E brxy) - H ( g (bj = b)x;)  (mod xo)
(bimt15---:b2m) k=m-+1 (b1, bm)  j=1
e{0,1}m, c{0,1}m
(bmt1see0s b2m) (byyeees bm.)
/

’
#O 1 bom)

4.3 Analysis

Success Probability: We demonstrate that Algorithm 1 correctly finds a non-
trivial factor of zp with at least 1/2 probability, where the probability goes over
only the algorithm’s random tape.?

Algorithm 1 begins by selecting b € {0,1} for 1 < j < 2m. Given an n-
MPACD instance xo and z;’s, we state that (b1, ...,b5,,) € {0,1}>™ is ‘good for
p;” if there exists (b1, . ..,bam) € {0,1}2™ such that (b, ..., bay) # (b],...,b5,,)
and 23:1 bjz; = 23:1 bix; (mod p;). We can prove that if we select b’s uni-
formly and independently, then with high probability (v}, ..., b},,) is ‘good for p;’
for each p;. See Lemma 1 for details.

Lemma 1. Given an n-MPACD instance xg and x;’s, we have that for each i €
[1,n],

Pr [(b),...,b,,,) is good for p;] > 1/2 under Assumption 1.
v, &{0,1}

Once the algorithm has a good (b, ..., b,,,) for p1, then we can demonstrate
that the algorithm eventually outputs a non-trivial factor of xg. If the while loop
arrives at the end before finding a non-trivial factor of xy (that is, it is repeated
m times), then ultimately we should have an integer Z?;nl bjz; — Z?:l Vix; =0
(mod z¢) for some (by,...,bam) # (b],...,b5,,); that is, we are not able to di-
vide A any further. Therefore, it is sufficient to demonstrate that such a tuple

(b1,...,bay,) cannot exist, and Lemma 2 guarantees it.

2 Because the success probability of our algorithm is constant, we can make that the
probability of success is overwhelming by running the algorithm linear in the security
parameter, with a fresh random tape.
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Lemma 2. Under Assumption 1 and 2, if (b1,...,bam) # (by,...,b5,,), then
there is an index i’ € [1,n] such that

m 2m
Z bjz; # Zb;-xj (mod py/)
= =

so that sz T 7 Z?ml iz (mod zo).

Algorithm 1 uses the randomness only in the 1st and 8th steps. Because any
A; with correct conditions will suffice in the 8th step, it does not affect the suc-
cess probability of the algorithm. Only a selection of (b}, ..., b5,,) will determine
the success of the algorithm, and we have a probability of greater than 1/2 for
a good (bY,...,b,,,) for p1. Therefore, the proposed algorithm has at least a 1/2

probability for success.

Complexity: The complexity of Algorithm 1 is dominated by computing A and
its factors. The complexity of Algorithm 2 mainly depends on the domain size

in the product; we require O(m?2™) operations modulo zq (from /—\Iggflg and

Algfﬁfg’s complexity). Similarly, for each of A’s four factors, we must perform

O((m — 1)22m~1) operations modulo zg because each factor of A uses a half-size
degree polynomial and number of points in Algorithm 2 in comparison with A.
Similarly, we require O((m — 2)?2™~2) operations modulo xq for each of A;’s four
factors, and so on. Overall, the computational complexity for A and all its fac-
tors is bounded by O(m 22’”)—1—4(’)(( 1227 N ... 440(2") = O(5m?2™) =
O(m?22™) operations modulo . Therefore, the overall computational cost is
O(m?2™) + O(m2™) = O(m?2™) Z,, operations. Similarly, we can demonstrate
that the space complexity is bounded by (9( 22’”) polynomially many bits from
the storage complexity of Algy/5y and Algpoly

If we set m = PHlosr ngog 8% then it asymptotically satisfies the requirement
2m < n and 2m2°t! < 22 where p > 4. Therefore, for m = #1108 pglog logr the
computational cost is O((# '8 Eloelosry2 9 PTIOErLEErY — O((log p)00 p2220/2)
Z4, operations and the space complexity is O((log p)°-°p?°2°/2) polynomially
many bits.

5 Attack on System Parameters of Multilinear Maps over
the Integers

5.1 Speed Increase for Multilinear Maps Parameters

We introduce several techniques to increase the speed of Algorithm 1, where all
of our techniques are applicable to the parameters of multilinear maps. If r;;’s
are uniformly distributed, we can increase the speed of the attack algorithm. For
example, w;;’s in the re-randomization parameter are uniformly distributed in
the corresponding domains. Furthermore, we know the distribution of h;;’s in the
zero-testing parameter. Although it is not a uniform distribution, we can consider
it as a quasi-uniform distribution in an appropriate bound.
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Using Shorter m: To guarantee exponentially many good (b}, ..., b5, ) for each
p;, we select m with 2m2°+1 < 22 The sum of uniform variables follows the bell-
shaped distribution, so that 22,7:”1 bjz; has a shorter image size than its range. Fur-
thermore, the bell-shaped distribution has more collisions around a center than
uniform distributions. This fact allows us to select a shorter m, and our experi-
mental results provided in Table 3 support our expectation.

Table 3. Shorter domains (Experimental results on average of 100 instances)

P 14 16 18 20
m g8 9 10 11
|domain|/[range| 0.25 0.22 0.20 0.18
|domain|/|image| 1.49 1.51 1.48 1.44

Shorter Domain in Products: Basically, Algorithm 1 becomes a brute-force
attack once we select a good (b, ..., b},,) for some p; at the beginning. It is likely
that (b),...,bh,,) is good for several moduli p;’s. (That is the exact reason why we
must have the while loop in Algorithm 1.) However, our goal is to select a vector

Algorithm 3. n-MPACD algorithm: speedup for the uniform distribution
Input: (2, 21,...,%2,), d=2%for§ > 1
Output: a non-trivial factor of xg or L

1: Choose (b}, ...,b,,) & {0,1}%m.

2: Choose b1, ...,b5,bm+41,- .-, bm+ts & {0,1}.

3: Compute A =[] (bsg1sbm)ezyy™? (Z?Lnl bjxj — Z?Zﬁ b;.’L‘]) (modzo)

(bt 541-b2m ) EZRG° )
(b1 1. b ) A (B o by ) > by using Alg. 2

4: The remaining process is the same as Step 3 — 11 of Algorithm 1.

Table 4. Speedup with shorter interval (Experimental results on average of 100
instances)

Instantiation A n n  p m d (Average) trials
Micro >34 64 1528 22 12 8 1.81 times

Parameters are set the average ratio between the domain and the image (modulus
pi) of El<j<2m bjx; for 100 problem instances to be 1.44 for each p;.

(b}, ...,bh,,) that is good for only one (or a few) p; and is not good for any others.
We compute a product A’ that is roughly 1/n of a random portion of the product
A in Algorithm 1. Then, we can expect the probability, Pr;, that p; divides A’ is
roughly equal to 1/2n. Furthermore, r;;’s are independent, and thus we can also
expect that the probabilities Pr;’s are nearly independent. Therefore, the prob-
ability that A’ is a multiple of at least one of p; is significant, from the birthday
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paradox;e.g., 1—1/4/e. Applying this technique, we present an improved attack in
Algorithm 3. The analysis above is heuristic, and thus to support our expectations
and the heuristic analysis, we provide experimental results in Table 4.

Insufficient Entropy in Zero-testing Parameters: The matrix H = (h;;) €

Z"*™ in the zero-testing parameters is selected to satisfy |[H||.. < 27 and
\|(H*1)T\|oo < 28 where || - ||oo is the operator norm of n x n matrices with re-
spect to the £°° norm on R™. In [10], Coron et al. proposed an algorithm to gen-
erate such a matrix H, with sufficient entropy. However, their approach does not
rapidly increase the entropy of H, though it satisfies the above two bounds. We

will demonstrate this by providing some experimental results in this section.

Table 5. Bit-size of entries of a matrix H (Experimental results on average of 100
matrices for Toy and Small and 10 matrices for Medium)

A n o p B8 Average Bit Size Maximum Bit Size 8 — logn

26 1.33 8 18.91

42(= \) 4.66 16 34.91

80 11.80 25 72.91

Toy 4213626 o) 9y 13.99 29 76.91
126(= 3)) 23.73 41 118.91

168(= 4) 32.67 51 160.91

41 2.84 14 31.92

52(= \) 4.14 17 42.92

80 9.70 29 70.92

Small 52 540 41— o)) 16.17 34 94.92
156(= 3)) 29.07 47 146.92

208(= 4)) 41.69 66 198.92

56 5.59 17 44.97

Medium 62 2085 56 62(= ) 5.63 17 50.97
80 11.73 27 68.97

Table 5 lists the average bit size of entries in H generated by the algorithm of
Coron et al. on various parameters (3 and n. From the last three columns of Table 5,
one can observe that average bit sizes are approximately 10 when 5 = 80 as in the
impelmentation parameters in [10]; moreover, the maximum bit sizes are lower
than 30, and they are much smaller than the best 8 — logn, which is obtained
from the bound |[H ||, < 2°.

In [10, Section 3.1], the authors stated that “One can take 8 = A”; however, our
analysis and experimental results indicate that 8 should be much larger than A.
In Table 5, when § < 3, the expected average bit-size of |h;;| is still smaller than
p, and for Small security, when 5 ~ 4\, the expectation of the average bit-size of
|hij| is equal to p; thus, 8 > 4\ would be safe for the security of the multilinear
maps. We investigate the reason why the H-generation in [10] could not increase
enough entropy in the full version.
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5.2 Implementation

We have implemented Algorithm 3 with various parameters in C++, using the
Gnu MP library [1] and NTL library [29], on an Intel(R) Core(TM) i7-2600 CPU
at 3.4 GHz with 16 GB RAM.

Attack on Zero-testing Parameter: We have implemented Algorithm 3 to at-
tack on the zero-testing parameters; we set n, 77, and p as in the implementation pa-
rameters for Small (52-bit) and Medium (62-bit) security [10, Section 6.4] and gen-
erated the zero-testing parameter normally by using the method described in [11,
Appendix F]. We summarize the result in Table 6, and it displays that Algorithm 3
finds a non-trivial factor very quickly on the parameters for Small and Medium
security levels.

Table 6. Attack on zero-testing parameter

Inst. A n n B Exp(lhiy]) m d  Time* Security against Alg. 3
Small 52 540 1838 80 10 8 16 8.42sec < 2381 clock cycles
Medium 62 2085 2043 80 12 9 32 47.28sec < 2372 clock cycles

* The average running time for solving 50 problem instances

Attack on Re-randomization Parameter: We first define Toy parameters for
42-bit security. To this end, we benchmark the parameter of FHEs in [12], which
is conservatively determined according to the complexity of the Chen-Nguyen at-
tack [7]. In Table 7, we provide the average running time to solve 50 problems
for Toy parameters, and the experimental result demonstrates that the expected
security level is tight.

Table 7. Attack on re-randomization parameter

Inst. A n n p m  d (Average) trials Running time Sec. ag. Alg 3}
Toy 42 136 1628 26 14 16 3.7 times 1979.55 sec 212.72

T This counts the number of clock cycles.

In fact, the complexity difference between Algorithm 3 and the Chen-Nguyen
attack is @(\/pl‘;gp) and \/p1ng ~ 1 for 42-bit security. For Large and Ex-

tra security level parameters, \/ P lzgp is less than 1; therefore, Algorithm 3 will
be slightly faster than the Chen-Nguyen attack algorithm. We extrapolate Algo-
rithm 3 to be at least 21-38 (22:12 resp.) times faster than the Chen-Nguyen attack
for Large security (Extra security, resp.), with a similar storage advantage. There-
fore, when one selects secure p size for large security level integer-based multilinear
maps, we suggest that the performance of Algorithm 3 should be considered.
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6 Discussions

Encoding-Validity Test: Zero-testing Vector vs. Zero-testing Integer:
In [10], Coron et al. implemented a one-round N-way Diffie-Hellman key exchange
protocol [2], based on their multilinear maps. They used heuristic optimizations
for implementation, in particular the zero-testing integer, instead of the
zero-testing wvector as in the original construction. Note that both the CLT at-
tack algorithm and our attack algorithm for n-MPACD require more than one
sample; therefore, both are inapplicable to their optimized version of multilinear
maps over the integers.

Garg et al. [18] pointed out a plausible threat when using a single zero-testing
element. In applications that require resilience of the zero test, including against
invalid encodings, several zero-testing elements can be utilized to prevent the use
of invalid encodings. In cryptographic applications such as the Diffie-Hellman key
exchange, it is important to test whether a given encoding is a group element.
Because GES is a substitute for ideal multilinear groups, it is also important to
test whether a given encoding is valid, and has an appropriate level. In the full
version, we present a (polynomial-time) key recovery attack on the multipartite
Diffie-Hellman key exchange protocol, based on the CLT GES with a single inte-
ger zero-testing parameter. The basic idea of the attack is analogous to the Lim-
Lee [26] key recovery attack of using invalid encodings on two-party Diffie-Hellman
key exchange based on group structures.

Applications Beyond Multilinear Maps: We note that Algorithm 3 is appli-
cable to the public parameters of a FHE scheme in [8]. Due to the space limitation,
we relegate the detail to the full version.
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