
Invertible Polynomial Representation
for Private Set Operations

Jung Hee Cheon(B), Hyunsook Hong, and Hyung Tae Lee

CHRI and Department of Mathematical Sciences, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea

{jhcheon,hongsuk07,htsm1138}@snu.ac.kr

Abstract. In many private set operations, a set is represented by a
polynomial over a ring Zσ for a composite integer σ, where Zσ is the
message space of some additive homomorphic encryption. While it is
useful for implementing set operations with polynomial additions and
multiplications, it has a limitation that it is hard to recover a set from a
polynomial due to the hardness of polynomial factorization over Zσ.

We propose a new representation of a set by a polynomial over Zσ,
in which σ is a composite integer with known factorization but a cor-
responding set can be efficiently recovered from a polynomial except
negligible probability. Since Zσ[x] is not a unique factorization domain,
a polynomial may be written as a product of linear factors in several
ways. To exclude irrelevant linear factors, we introduce a special encod-
ing function which supports early abort strategy. Our representation can
be efficiently inverted by computing all the linear factors of a polynomial
in Zσ[x] whose roots locate in the image of the encoding function.

As an application of our representation, we obtain a constant-round
private set union protocol. Our construction improves the complexity
than the previous without honest majority.

Keywords: Polynomial representation · Polynomial factorization ·
Root finding · Privacy-preserving set union

1 Introduction

Privacy-preserving set operations (PPSO) are to compute set operations of
participants’ dataset without revealing any information other than the result.
There have been many proposals to construct PPSO protocols with various tech-
niques such as general MPC [1,9], polynomial representations [7,8,10,12,18],
pseudorandom functions [11], and blind RSA signatures [4,5]. While the last two
techniques are hard to be generalized into multi-party protocols, polynomial rep-
resentations combining with additive homomorphic encryption (AHE) schemes
enable us to have multi-party PPSO protocols for various operations including
set intersection [8,12,18], (over-)threshold set union [12], element reduction [12]
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and so on. Among these constructions, set intersection protocols run in constant
rounds, but others run in linear of the number of participants.

Let us focus on privacy-preserving set union protocols. There are two obsta-
cles to construct constant round privacy-preserving multi-party set union pro-
tocols based on the polynomial representation with AHE schemes. First, in the
polynomial representation set union corresponds to polynomial multiplication,
which is not supported by an AHE scheme in constant rounds. Second, to recover
the union set from the resulting polynomial, we need a root finding algorithm of
a polynomial over Zσ, where Zσ is the message space of the AHE scheme.

Recently, Seo et al. [19] proposed a constant round set union protocol based
on a novel approach in which a set is represented as a rational function using
the reversed Laurent series. In their protocol, each participant takes part in
the protocol with a rational function whose poles consist of the elements of his
set and at the end of the protocol he obtains a rational function whose poles
correspond to the set union. Then each participant recovers the denominator
of the rational function using the extended Euclidean algorithm and finds the
roots of the denominator. Since each rational function is summed up to the
resulting function after encrypted under an AHE scheme, the first obstacle is
easily overcome.

However, a root finding is still problematic on the message space Zσ of the
AHE schemes. Since the message space has unknown order [16] or is not a unique
factorization domain (UFD) [2,15,17] in the current efficient AHE schemes,
there is no proper polynomial factorization or root finding algorithm working on
the message space. To avoid this obstacle, the authors in [19] utilized a secret
sharing scheme. However, it requires computational and communicational costs
heavier than the previous and requires an honest majority for security since
their protocol exploits a secret sharing scheme to support privacy-preserving
multiplications in constant rounds.

Our Contribution. Let σ =
∏�̄

j=1 qj for distinct primes qj , which is larger
than the size of the universe of set elements. We propose a new representation
of a set by a polynomial over Zσ in which a corresponding set can be efficiently
recovered from a polynomial except negligible probability when the factorization
of σ is given.

For a given polynomial f(x) =
∏d

i=1(x − si) ∈ Zσ[x], if the factorization
of σ is given, one can obtain all roots of f in Zqj

for each j by exploiting a
polynomial factorization algorithm over a finite field Zqj

[22]. By reassembling
the roots of f in Zσ using the Chinese Remainder Theorem (CRT), we can obtain
all the candidates. However, the number of candidates amounts to d�̄, which is
exponential in the size of the universe.

We introduce a special encoding function ι to exclude irrelevant candidates
efficiently. For a polynomial f =

∏d
i=1(x − ι(si)) ∈ Zσ[x], our encoding function

aborts most irrelevant candidates without d�̄ CRT computations, by giving a
certain relation among roots of f in Zqj

[x] and roots of f in Zqj+1 [x]. As a
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Table 1. Comparison with previous set-union protocols

HBC Rounds Communication cost Computational cost # of honest party

[12] O(n) O(n3kτN ) O(n4k2τNρN ) ≥ 1

[8] O(n) O(n2kτN ) O(n2k2τNρN ) ≥ 1

[19] O(1) O(n4k2τp′) O(n5k2ρp′) ≥ n/2

Ours O(1) O(n3kτN ) O(n3k2τNρN ) ≥ 1

Malicious Rounds Communication cost Computational cost # of honest party

[8] O(n) O((n2k2 + n3k)τN ) O(n2k2τNρN ) ≥ 1

[19] O(1) O(n4k2τp) O(n5k2τpρp) ≥ n/2

Ours O(1) O(n3k2τN ) O(n3k2τNρN ) ≥ 1

n: the number of participants, k: the maximum size of sets
τN , τp′ , τp: the size of modulus N for Paillier encryption scheme or NS encryption
scheme, the size p′ of representing domain, the order p of a cyclic group for Pedersen
commitment scheme, respectively
ρN , ρp′ , ρp: modular multiplication cost of modulus N for Paillier encryption scheme
or NS encryption scheme, p′ for the size of representing domain, p for the order of a
cyclic group for Pedersen commitment scheme, respectively

result, our encoding function enables us to efficiently recover all the roots of f
with negligible failure probability if they are in the image of ι.

As an application of our representation, combining with Naccache-Stern (NS)
AHE scheme which is the factorization of σ is public, we obtain an efficient
constant round privacy-preserving set union protocol without an honest major-
ity. In Table 1, we compare our set union protocols with the previous main
results [8,12,19].

Organization. In Sect. 2 we look into some components of our privacy-preserving
set union protocol, including polynomial representation and AHE schemes. We
provide our new polynomial representation that enables us to uniquely factor-
ize a polynomial satisfying some criteria in Sect. 3. Our constant round privacy-
preserving set union protocols are presented in Sect. 4. Some supplying materials
including analysis of our representation are given in Appendix.

2 Preliminaries

In this section, we look into the polynomial representation of a set for PPSO
protocols and introduce efficient AHE schemes utilized in PPSO protocols to
support polynomial operations between encrypted polynomials.

2.1 Basic Definitions and Notations

Throughout the paper, let U be the universe, n the number of participants in the
protocol, and k the maximum size of participants’ datasets Si’s. Also, d denotes
the size of (multi-)set union among participants’ datasets in the protocol.
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Let R[x] be a set of polynomials defined over a ring R and R(x) be a set of
rational functions defined over R, i.e., R[x] = {f(x)|f(x) =

∑deg f
i=0 f [i]xi and

f [i] ∈ R for all i} and R(x) = { f(x)
g(x) |f(x), g(x) ∈ R[x], g(x) �= 0}. For a poly-

nomial f ∈ R[x], we denote the coefficient of xi in a polynomial f by f [i], i.e.,
f(x) =

∑deg f
i=0 f [i]xi ∈ R[x]. For a polynomial f(x) =

∑deg f
i=0 f [i]xi ∈ Zσ[x] and

a factor q of σ, f mod q denotes a polynomial
∑deg f

i=0 (f [i] mod q)xi ∈ Zq[x].
We also define a negligible function as follows: a function g : N → R is

negligible if for every positive polynomial μ(λ), there exists an integer N such
that g(λ) < 1/μ(λ) for all λ > N .

2.2 Polynomial Representation of a Set

Let R be a commutative ring with unity and S be a subset of R. We may
represent a set S by a polynomial or a rational function over R.

Polynomial Representation. In some previous works [7,8,10,12,19], a set S can
be represented by a polynomial fS(x) ∈ R[x] whose roots are the elements of S.
That is, fS(x) :=

∏
si∈S(x−si). This representation gives the following relation:

fS(x) + fS′(x) = gcd(fS(x), fS′(x)) · u(x) for some polynomial u(x) ∈ R[x] and
hence the roots of a polynomial fS(x) + fS′(x) are the elements of S ∩ S′ with
overwhelming probability. Also, the roots of fS(x) · fS′(x) are the elements of
S ∪ S′ as multi-sets.

Rational function Representation. Recently, Seo et al. [19] introduced a novel
representation of a set S ⊂ R by a rational function FS over R whose poles

consist of the elements of S. That is, FS(x) :=
1

∏
si∈S(x − si)

=
1

fS(x)
. This

representation provides the following relation:

FS(x) + FS′(x) =
fS(x) + fS′(x)
fS(x) · fS′(x)

=
gcd(fS(x), fS′(x)) · u(x)

fS(x) · fS′(x)

=
u(x)

lcm(fS(x), fS′(x))

for some polynomial u(x) ∈ R[x] which is relatively prime to lcm(fS(x), fS′(x))
with overwhelming probability. Hence the poles of FS(x)+FS′(x) are exactly the
roots of lcm(fS(x), fS′(x)), which are the elements of S ∪ S′ as sets, not multi-
sets, if u(x) and lcm(fS(x), fS′(x)) have no common roots. This rational function
is represented again by an infinite formal power series, so called a Reversed
Laurent Series (RLS), in [19].

2.3 Additive Homomorphic Encryption

Let us consider a commutative ring R with unity and a R-module G where
r · g := gr for r ∈ R and g ∈ G. Let Encpk : R → G be a public key encryption
under the public key pk. We can define a public key encryption for a polynomial
f =

∑deg f
i=0 f [i]xi ∈ R[x] as follows: Epk(f) :=

∑deg f
i=0 Encpk(f [i])xi.
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Assume Encpk has an additive homomorphic property. Then one can easily
induce polynomial addition between encrypted polynomials and polynomial mul-
tiplication between an unencrypted polynomial and an encrypted polynomial.

There have been several efficient AHE schemes [15–17]: Under the assumption
that factoring N = p2q is hard, Okamoto and Uchiyama [16] proposed a scheme
with R = Zp and G = ZN , in which the order p of the message space R is hidden.
With the decisional composite residuosity assumption, Paillier scheme [17] has
R = ZN and G = ZN2 for N = pq, in which the size of message spaces is a hard-
to-factor composite integer N . Naccache and Stern [15] proposed a scheme with
R = Zσ and G = ZN under the higher residuosity assumption, where N = pq
is a hard-to-factor integer and σ is a product of small primes dividing φ(N) for
Euler’s totient function φ.

In the above schemes, it is hard to find the roots of a polynomial in R[x]
without knowing a secret key. For the second case, in fact, Shamir [20] showed
that to find a root of a polynomial f(x) =

∏d
i=1(x− si) ∈ ZN [x] is equivalent to

factor N . While, in the NS scheme, it may be possible to compute some roots
of a polynomial in Zσ[x] since the factorization of σ is public. But Zσ[x] is not
a UFD and hence the number of roots of a polynomial f ∈ Zσ[x] can be larger
than deg f . In fact, if f(x) =

∏d
i=1(x−si) ∈ R[x], then the number of candidates

of roots of the polynomial f is d�̄ where �̄ is the number of prime factors of σ.
We will use the NS scheme by presenting a method to efficiently recover all the
roots of a polynomial f ∈ Zσ[x] satisfying some criteria.

3 Invertible Polynomial Representation

In this section, we provide our new polynomial representation that enables us to
efficiently recover the exact corresponding set from the polynomial represented
by our suggestion.

Focus on the fact that the factorization of σ is public in the NS encryption
scheme. Using this fact, given a polynomial f =

∏d
i=1(x − si) ∈ Zσ[x] for a set

S = {s1, . . . , sd}, one can obtain all roots of f mod qj for each j by applying
a polynomial factorization algorithm over a finite field Zqj

such as Umans’ [22].
To recover S, one can perform CRT computation for obtaining less than d�̄

candidates of roots of f over Zσ. In general, however, the number of roots of f
over Zσ is larger than deg f and there is no criteria to determine the exact set
S. To remove irrelevant roots which are not in S, we give some relations among
all roots of polynomials f mod qj ’s by providing an encoding function.

3.1 Our Polynomial Representation

We present our polynomial representation for supporting to recover a set from
a polynomial over Zσ represented by our suggestion.

Parameter Setting. Let us explain parameters for our polynomial representation
and PPSO protocols. First, set the bit size of the modulus N of the NS encryption
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scheme by considering a security parameter λ. For the given universe U and the
maximum size d of the resulting set union (here, d = nk for the number n
of participants and the maximum size k of participants’ datasets), let d0 =
max{d, �log N	} and set τ = 1

3 (log d + 2 log d0). This setting comes from the
computational complexity analysis of our set union protocol and the value τ will
influence the bit size of prime factors of σ and the size of the message space of
the NS encryption scheme. See Sect. 4 for details.

Set the parameter � and α so that � is the smallest positive integer such
that U ⊆ {0, 1}3τα� for some rational number 0 < α < 1 satisfying 3ατ and
3(1 − α)τ are integers. Note that the proper size of α is 1

3 ,i.e., U ⊆ {0, 1}τ� for
optimization. If α �= 1

3 , the expected computation is in polynomial time only
when the size of the universe is restricted. Details about the proper size of α is
given in the full version of this paper [3].

Then, set the proper size �̄ larger than � and let �′ = �̄ − �. The analysis of
the proper size of �̄ will be discussed at the end of Sect. 3.1. Choose �̄ (3τ + 1)-
bit distinct primes qj ’s and set σ =

∏�̄
j=1 qj . Note that the size of the message

space of the NS encryption scheme is less than N
4 for its security [15]. Hence,

the parameters have to be satisfied the condition σ < N
4 and so �̄ < �log N�−2

3τ .
Also, we assume that �̄ is smaller than d for optimal complexity of our proposed
protocol. In summary, the parameter �̄ is smaller than min{d, �log N�−2

3τ } (Fig. 1).

· · ·
· · ·

· · ·
. . .

(mod q1)

(mod q2)

(mod q�̄)

...
...

...

Fig. 1. Our encoding function ι

Encoding by Repetition. Let h : {0, 1}∗ → {0, 1}2τ and hj : {0, 1}∗ → {0, 1}τ be
uniform hash functions for 1 ≤ j ≤ �′. Parse a message si ∈ U ⊆ {0, 1}τ� into
� blocks si,1, . . . , si,� of τ -bit so that si = si,1|| · · · ||si,�. Let si,�+j = hj(si) for
1 ≤ j ≤ �′ and parse h(si) into two blocks si,�̄+1 and si,�̄+2 of τ -bit. We define
our encoding function ι : U ⊆ {0, 1}τ� → Zσ, in which ι(si) is the unique element
in Zσ satisfying ι(si) ≡ si,j ||si,j+1||si,j+2 mod qj for 1 ≤ j ≤ �̄. Then a set S is
represented as a polynomial fS(x) =

∏
si∈S(x − ι(si)) ∈ Zσ[x].

Decoding Phase. Denote by s
(i)
j := ι(si) mod qj for each message si = si,1|| · · ·

||si,�. For 1 ≤ j ≤ �̄ − 1, we define (s(i)j , s
(i′)
j+1) ∈ Zqj

×Zqj+1 to be a linkable pair

if the last (2τ)-bit of s
(i)
j is equal to the first (2τ)-bit of s

(i′)
j+1, i.e., si,j+1||si,j+2 =

si′,j+1||si′,j+2. Inductively, we also define (s(i1)1 , · · · , s
(ij+1)
j+1 ) ∈ Zq1 ×· · ·×Zqj+1 to

be a linkable pair if (s(i1)1 , · · · , s
(ij)
j ) and (s(ij)

j , s
(ij+1)
j+1 ) are linkable pairs (Fig. 2).
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s
(i1)
1 =

s
(i2)
2 =

s
(i3)
3 =

si1,1||si1,2||si1,3

si3,3||si3,4||si3,5

⇒
(
s
(i1)
1 , s

(i2)
2 , s

(i3)
3

)
is a linkable pair.

si2,2||si2,3||si2,4

Fig. 2. Linkable pair

Let ι(si) and ι(si′) be images of elements si and si′ of the function ι with
si �= si′ . We can easily check the following properties:

–
(
s
(i)
1 , · · · , s

(i)
j+1

)
is always a linkable pair.

– When si and si′ are uniformly chosen strings from {0, 1}τ�,

Pr[(s(i)j , s
(i′)
j ) is a linkable pair] = Pr [si,j+1||si,j+2 = si′,j+1||si′,j+2]

=
1

22τ
(1)

for a fixed 1 ≤ j ≤ �̄.

At decoding phase, when a polynomial f(x) =
∏d

i=1(x − ι(si)) ∈ Zσ[x] is
given, we perform two phases to find the correct d roots of the polynomial f(x).
In the first stage, one computes all the roots {s

(1)
j , · · · , s

(d)
j } over Zqj

[x] for each
j. For each j sequentially from 1 to �̄ − 1, we find all the linkable pairs among
{s

(1)
j , · · · , s

(d)
j } and {s

(1)
j+1, · · · , s

(d)
j+1} by checking whether the last (2τ)-bit of s

(i)
j

and the first (2τ)-bit of s
(i′)
j+1 are the same. It can be done by d2 comparisons or

O(d log d) computations using sorting and determining algorithms.
After �̄ − 1 steps, we obtain d′ linkable pairs of �̄-tuple, which are candidates

of roots of the polynomial f and elements of the set. It includes the d elements
corresponding to ι(s1), . . . , ι(sd). If d′ is much larger than d, it can be a burden.
However, we can show that the expected value of d′ is at most 3d in Theorem 1.
See the end of this section.

After obtaining d′ linkable pairs of �̄-tuple, in the second phase, we check
whether each pair belongs to the image of ι with the following equalities:

si,�+j = hj(si) for all 1 ≤ j ≤ �′, (2)
si,�̄+1|| si,�̄+2 = h(si). (3)

The linkable pairs of �̄-tuple, corresponding to ι(si) for some i clearly satisfies
the above equations. However, for a random �̄-tuple in Zq1 × · · · × Zq�̄

, the
probability that it satisfies the relation (2) is about 1

2τ�′ and the probability
that it satisfies the relation (3) is about 1

22τ under the assumption that h and
hj ’s are uniform hash functions. Hence, the expected number of wrong �̄-tuples
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passing both phases is less than d × 1
2τ(2+�′) . It is less than 2−λ for a security

parameter λ if we take the parameter �′ to satisfy

�′ >
3(λ + log d)

log d + 2 log d0
− 2. (4)

For example, when λ = 80 and d ≈ d0 ≈ 210, then �′ is about 8. Therefore,
one can recover a set from the given polynomial represented by our suggestion
without negligible failure probability in the security parameter.

3.2 Analysis of Our Polynomial Representation

Computational Complexity. Let us count the computational cost of our represen-
tation. The encoding phase consists of two steps: (1) the CRT computation per
each element to obtain a value of the encoding function ι and (2) the polynomial
expansion. The first step requires O(d log2 σ) bit operations for d elements and
the second step requires O(d2) multiplications. Hence, the complexity for the
encoding phase is O(d2) multiplications.

The decoding phase may be divided into three steps: (1) finding roots of a
polynomial f in Zqj

for each j, (2) finding all linkable pairs of length �̄, and
(3) checking the Eqs. (2) and (3). These steps require O(�̄d1.5) multiplications,
O(�̄d log d) bit operations, and O(�′d) hash computations, respectively. Hence,
the complexity for the decoding phase is dominated by O(�̄d1.5) multiplications.

The Expected Number of Linkable Pairs. We analyze the expected number of
linkable pairs of �̄-tuple when we recover a set from a polynomial of degree d,
represented by our suggestion. Theorem 1 gives a rigorous analysis of the upper
bound of the expected number of linkable pairs of �̄-tuple. The proof is given in
Appendix A.

Theorem 1. Assume that S = {s1, . . . , sd} is a uniformly and randomly chosen
set in the set of subsets of cardinality d of the set {0, 1}τ�. Define an encoding
function ι : {0, 1}τ� → Zσ so that ι(si) is the unique element in Zσ satisfying
ι(si) ≡ si,j ||si,j+1||si,j+2 mod qj for all 1 ≤ j ≤ �̄ when si = si,1|| . . . ||si,� and
si,j’s are τ -bit. Assume h and hj’s utilized in the encoding function ι are uniform
hash functions. Then the expected number of linkable pairs of �̄-tuple is at most
3d for all polynomials fS =

∏
si∈S(x − ι(si)).

4 Applications: Set Union for Honest-but-Curious Case

In this section, we present our set union protocol based on our polynomial rep-
resentation described in Sect. 3. Our construction exploits the NS AHE scheme
to encrypt a rational function whose denominator corresponds to a participant’s
set. For this we generalize a reversed Laurent series presented in [19] to work
on Zσ with a composite σ, which the domain of the NS scheme. As a result, we
obtain set union protocols which improve the complexity than the previous.
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4.1 Set Union for Honest-but-Curious Case

Rational Function Representation. We adopt the rational function repre-
sentation presented in [19]. To represent a set as a rational function, the authors
in [19] exploited a reversed Laurent series (RLS): For a positive integer q, a RLS
over Zq is a singly infinite, formal sum of the form f(x) =

∑m
i=−∞ f [i]xi (f [m] �=

0) with an integer m and f [i] ∈ Zq for all i. For a RLS f(x), we denote
f(x)[d1,d2] =

∑d2
i=d1

f [i]xi. For polynomials f, g ∈ Zq[x] with g �= 0, we define
the RLS representation of a rational function f/g by a RLS of f/g. In Fig. 3, we
provide an algorithm which takes polynomials f, g ∈ Zq[x] with deg f < deg g
and an integer k larger than deg g as inputs and outputs k higher-order terms
of the RLS representation of f/g. We also note that if one knows 2 deg g higher-
order terms of the RLS representation of a rational function f/g, one can recover
f ′ and g′ such that f ′

g′ = f
g [19].

Input f(x), g(x) ∈ Zq[x] with deg f < deg g and an integer k > deg g
Output k higher-order terms of the RLS representation of a rational function f/g

1. F (x) ← f(x) · xk

2. Compute Q(x), R(x) such that F (x) = g(x)Q(x) + R(x) and deg R < deg g using
a polynomial division algorithm

3. Return Q(x) · x−k

Fig. 3. RationalToRLS(f, g, k)

While Seo et al.’s constructions work on Zq[x] for a prime q, our constructions
are based on Zσ[x] for a composite σ. Hence, one may doubt a RLS representation
works well on Zσ[x]. In our protocol, we will represent each participant’s set
Si as our polynomial representation fSi

:=
∏

si,j∈Si
(x − ι(si,j)) ∈ Zσ[x] with

our encoding function ι. Then we convert a rational function of 1/fSi
to its

RLS over Zσ. Since Zσ is not a Euclidean domain, one may doubt whether the
RationalToRLS algorithm works on Zσ[x]. However, in our protocol, since the
conversion requires polynomial divisions only by monic polynomials, it works
well on Zσ[x].

After the end of interactions among participants in our protocol, each partic-
ipant obtains the 2nk higher-order terms of the RLS representation of a rational

function
u(x)
U(x)

=
r1
fS1

+
r2
fS2

+ · · · +
rn

fSn

where U(x) = lcm(fS1(x), . . . , fSn
(x))

and ri’s are hidden polynomials. There is no algorithm to recover u′(x) and U ′(x)

in Zσ[x] such that
u(x)
U(x)

=
u′(x)
U ′(x)

. However, from our polynomial representation,

it only requires U ′(x) mod qj for each j and we can obtain U ′(x) mod qj from
the RLS representation modulo qj by running polynomial recovering algorithm
on Zqj

[x]’s.
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The correctness and the security of our set union protocol are induced from
properties of a RLS representation. We omit the details due to the space limi-
tation. See the full version [3] of this paper for these.

Threshold Naccache-Stern Encryption. For a group decryption, it requires
a semantically secure, threshold NS AHE scheme in our protocol. One can easily
construct a threshold version of the NS encryption scheme using the technique of
Fouque et al. [6], which transforms the original Paillier homomorphic encryption
scheme into a threshold version working from Shoup’s technique [21].

Parameter Setting. Let U be the universe, n be the number of participants,
and k be the maximum size of participants’ datasets. Let d be the possible
maximum size of the set union, i.e., d = nk. Take the bit size of N by considering
the security of the threshold NS AHE scheme, which is the modulus of the
threshold NS AHE scheme. Put d0 = max{d, �log N	} and τ = 1

3 (log d+2 log d0).
Set � so that U ⊆ {0, 1}τ�, a proper size of �′ so that �′ satisfies the relation (4)
and let �̄ = � + �′. Note that �̄ is to be smaller than min

{
d, �log N�−2

3 log log N

}
since

τ ≥ log log N . Generate the parameters of the threshold NS encryption scheme,
including the size of message space σ, which is a product of �̄ (3τ +1)-bit distinct
primes qj ’s.

Our Set Union Protocol for Honest-but-Curious Case. Our set union
protocol against honest-but-curious (HBC) adversaries is described in Fig. 4. In
our set union protocol, each participant computes the 2nk higher-order terms of
the RLS representation of FSi

= 1
fSi

∈ Zσ[x] where fSi
=

∏
si,j∈Si

(x−ι(si,j)) for
our encoding function ι and sends its encryption to all others. With the received
encryptions of FSj

for 1 ≤ j ≤ n, each participant Pi multiplies a polynomial ri,j

using additive homomorphic property, which is a randomly chosen polynomial by
the participant Pi and adds all the resulting polynomials to obtain the encryption
of φi(x) =

∑n
j=1 FSj

· ri,j . Then, he sends the encryption of φi(x) to all others.
After interactions among participants, each participant can obtain the 2nk high-
order term of the RLS representation of F (x) =

∑n
i=1

(∑n
j=1

1
fSj

· ri,j

)
∈ Zσ[x].

Then each participant obtains the 2nk high-order terms of the RLS representa-
tion of F in Zσ[x] with group decryption and recovers polynomials uj(x) and

Uj(x) such that
(

uj(x)
Uj(x)

)

[−2nk,−1]
= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1

and gcd(uj(x), Uj(x)) = 1 in Zqj
[x] from these values. Thereafter, each partic-

ipant extracts all roots of Uj(x) over Zqj
for each j and recovers all elements

based on the criteria of our representation.

4.2 Analysis

Security Analysis. Now, we consider the correctness and privacy of our proposed
protocol described in Fig. 4. The following theorems guarantee the correctness
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Input: There are n ≥ 2 HBC participants Pi with a private input set Si ⊆ U of
cardinality k. Set d = nk. The participants share the secret key sk, to which pk is
the corresponding public key to the threshold NS AHE scheme. Let ι : {0, 1}∗ → Zσ

be the encoding function provided in Section 3.

Each participant Pi, i = 1, . . . , n:

1. (a) constructs the polynomial fSi(x) =
∏

si,j∈Si
(x − ι(si,j)) ∈ Zσ[x], runs

RationalToRLS(1, fSi , (2n+1)k−1) to obtain
(

1
fSi

(x)

)
[−(2n+1)k+1,−k]

, and

computes FSi(x) =
(

1
fSi

(x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1.

(b) computes F̃Si , the encrypted polynomial of FSi , and sends F̃Si to all other
participants.

2. (a) chooses random polynomials ri,j(x) ∈ Zσ[x] of degree at most k for all
1 ≤ j ≤ n.

(b) computes the encryption, φ̃i, of the polynomial φi(x) =
∑n

j=1 FSj · ri,j

and sends it to all participants.

3. (a) calculates the encryption of the polynomial F (x) =
∑n

i=1 φi(x).
(b) performs a group decryption with all other players to obtain the 2nk

higher-order terms of F (x).

4. (a) recovers a polynomial pair of uj(x) and Uj(x) in Zqj [x] for all 1 ≤ j ≤ �̄

such that
(

uj(x)

Uj(x)

)
[−2nk,−1]

= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1

and gcd(uj(x), Uj(x)) = 1 in Zqj [x], using the 2nk higher-order terms of
F (x) obtained in Step 3 (b).

(b) extracts all roots of Uj(x) in Zqj [x] for all j using a factorization algorithm.
(c) determines the set union using the encoding rule of ι.

Fig. 4. PPSU-HBC protocol in the HBC case

and privacy of our construction in Fig. 4. We provide proofs of the following
theorems in the full version of this paper [3].

Theorem 2. In the protocol described in Fig. 4, every participant learns the set
union of private inputs participating players, with high probability.

Theorem 3. Assume that the utilized additive homomorphic encryption scheme
is semantically secure. Then, in our set union protocol for the HBC case described
in Fig. 4, any adversary A of colluding fewer than n HBC participants learns no
more information than would be gained by using the same private inputs in the
ideal model with a trusted third party.

Performance Analysis. It is clear that our protocol runs in O(1) rounds. Let us
count the computational and communicational costs for each participant.

Step 1 (a) requires Õ(k) multiplications in Zσ for a polynomial expansion
of degree k and O(kd) multiplications to run the RationalToRLS algorithm and
compute FSi

.
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Step 1 (b) requires O(d) exponentiations for 2d encryptions and O(nd) com-
munication costs.

Step 2 (b) requires O(d2) exponentiations for computing the encryption φ̃i :=∑n
j=1 F̃Sj

· ri,j using additive homomorphic property and O(nd) communication
costs.

Step 3 (a) requires O(nd) multiplications for computing
∑n

i=1 φ̃i.
Step 3 (b) requires O(d) exponentiations for decryption share computation

for 2d ciphertexts and O(�̄
√

dqj) multiplications for solving d DLPs for �̄ groups
of order qj ’s.1 The communication cost is O(nd).

Step 4 (a) requires O(d2) multiplications in Zqj
to recover Uj(x) using

extended Euclidean algorithm for each j.
Step 4 (b) requires O(d1.5+o(1)) multiplications in Zqj

for each j to factor a
polynomial of degree d.

Step 4 (c) requires O(�̄d log d log qj) bit operations for sorting and O(d) hash
computations.

Then the computational complexity is dominated by one of terms O(d2)
exponentiations in Step 2 (b) and O(�̄

√
dqj) multiplications in Step 3 (b). Since

one modular exponentiation for a modulus N requires O(log N) multiplications
and �̄ < min

{
d, �log N�−2

3 log log N

}
, the computational complexity for each participant is

dominated by O(d2) = O(n2k2) exponentiations in ZN and the total complexity
is O(n3k2) exponentiations in ZN . The total communication cost for our protocol
is O(n2d) = O(n3k) (log N)-bit elements.

For the malicious case, we can also obtain the set union protocol using the
techniques in [12,19]. We omit the details about our set union protocol for mali-
cious case due to the space limitation. See the full version [3] of this paper.

5 Conclusion

In this paper, we provided a new representation of a set by a polynomial over Zσ,
which can be efficiently inverted by finding all the linear factors of a polynomial
whose root locates in the image of our encoding function, when the factorization
of σ is public. Then we presented an efficient constant-round set union protocols,
transforming our representation into a rational function and then combining it
with threshold NS AHE scheme.

We showed that our encoding function is quite efficient on average-case, but it
still requires exponential time in the degree of a polynomial to recover a set from
the polynomial represented by our encoding function at worst-case although the
probability of the worst-case is sufficiently small. Hence it would be interesting
to construct an encoding function that enables us to recover a set in polynomial
time even at worst-case.
1 Note that one has to solve �̄ DLPs over a group of order qj for one decryption in

the NS encryption scheme. In Step 3 (b), one has to solve 2d = 2nk DLPs over a
group of order qj for each qj . It requires O(

√
dqj) multiplications to solve d DLPs

over a group of order qj [13] and hence total complexity of this step is O(�̄
√

dqj)
multiplications.
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A Proof of Theorem 1

Let Ej be the expected number of linkable pairs of j-tuple in Zq1×· · ·×Zqj
for j ≥

2. For 1 ≤ j ≤ j′ ≤ �̄, let Sj′−j+1(ij , . . . , ij′) be the event that (s(ij)
j , . . . , s

(ij′ )
j′ )

is a linkable pair. Then,

E2 =
∑

i1,i2∈{1,...,d}
1 · Pr[S2(i1, i2)]

=
∑

i1,i2∈{1,...,d}
Pr[S2(i1, i2) ∧ (i1 = i2)] +

∑

i1,i2∈{1,...,d}
Pr[S2(i1, i2) ∧ (i1 �= i2)]

= d + d(d − 1)
1

22τ
= d

(

1 +
d − 1
22τ

)

since Pr[S2(i1, i1)] = 1 for i1 ∈ {1, . . . , d} and Pr[S2(i1, i2)] = 1
22τ for distinct

i1, i2 ∈ {1, . . . , d} from the Eq. (1).
Now, we consider the relation between Ej and Ej+1. When (s(i1)1 , . . . , s

(ij)
j ) is

a linkable pair, consider the case that (s(i1)1 , . . . , s
(ij)
j , s

(ij+1)
j+1 ) is a linkable pair.

One can classify this case into the following three cases:

1. ij+1 = ij ,
2. (ij+1 �= ij) ∧ (ij+1 = ij−1),
3. (ij+1 �= ij) ∧ (ij+1 �= ij−1).

At the first case, if ij+1 = ij and (s(i1)1 , . . . , s
(ij)
j ) is a linkable pair, then

(s(i1)1 , . . . , s
(ij)
j , s

(ij+1)
j+1 ) is always a linkable pair. Hence,

E
(1)
j+1 :=

∑

i1,...,ij+1

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij)]

=
∑

i1,...,ij

Pr [Sj(i1, . . . , ij)] = Ej .

At the second case, if ij+1 = ij−1 �= ij and (s(i1)1 , . . . , s
(ij)
j ) is a linkable pair,

then the relation sij−1,j+1 = sij ,j+1 = sij+1,j+1 is satisfied from the encoding
rule of ι. Hence,2

2 Due to the space limitation, the detailed computation of Eqs. (5) and (6) are given
in the full version of this paper [3].
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E
(2)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}
Pr[Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij−1 �= ij)]

≤ 1
2τ

∑

i1,...,ij∈{1,...,d}
Pr [Sj(i1, . . . , ij)] =

1
2τ

Ej . (5)

At the last case, we can obtain the following result:

E
(3)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}
Pr[Sj+1(i1, . . . , ij , ij+1) ∧ ((ij+1 	= ij) ∧ (ij+1 	= ij−1))]

≤ d − 1

22τ

∑

i1,...,ij∈{1,...,d}
Pr [Sj(i1, . . . , ij)] =

d − 1

22τ
Ej . (6)

From the above results, we obtain the recurrence formula of Ej as follows:

Ej+1 = E
(1)
j+1 + E

(2)
j+1 + E

(3)
j+1 ≤

(

1 +
1
2τ

+
d − 1
22τ

)

Ej

for j ≥ 2 and hence E�̄ ≤ d
(
1 + 1

2τ + d−1
22τ

)�̄−1
since E2 = d

(
1 + d−1

22τ

) ≤
d

(
1 + 1

2τ + d−1
22τ

)
.

Now, we show that �̄ ≤ 22τ

2τ+d . From the parameter setting, it is satisfied that

�̄ ≤ min{d, �log N�−2
3τ }. When d0 ≥ 8d, it holds

min
{

d,
�log N� − 2

3τ

}

≤ d ≤ d
1/3
0 d2/3

2
.

Consider the case that d0 < 8d. Then, it also holds

min
{

d,
�log N� − 2

3τ

}

≤ �log N� − 2
3τ

≤ d0
3τ

≤ d
1/3
0 d2/3

2

since τ ≥ 3. Hence

�̄ ≤ min
{

d,
�log N� − 2

3τ

}

≤ d
1/3
0 d2/3

2
≤

(
d20d

)2/3

2d0
≤ 22τ

2τ + d

since 2d0 > 2τ + d. Therefore we obtain the following result:

E�̄ ≤ d

(

1 +
1
2τ

+
d − 1
22τ

)�̄−1

< ed < 3d,

where e ≈ 2.718 is the base of the natural logarithm. In other words, the upper
bound of the expected number of linkable pairs of �̄-tuple is 3d. �
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