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ministic parameters such as sensitivity, 
durability, sensing range, and response 
time were significantly improved by tre-
mendous efforts of researchers. Notably, 
many attempts have been carried out to 
realize highly strain-sensitive composites 
consisting of metallic nanowires, carbon 
nanotubes, carbon/metal nanoparticles, 
and elastomers.[6,7] Along with such mate-
rial consolidating strategy, a variety of 
mechanistic device structures (resistive, 
capacitive, piezoresistive, triboelectric, 
and piezoelectric types) has been demon-
strated to achieve high-performance strain 
sensors.[8–12] However, most of the con-
ventional strain sensors are only capable 
of detecting uniaxial strain and lack the 
ability to determine directional variable 
motions, limiting their applications in 
realistic surface stimuli environments 
such as dynamic human skin motion 
sensing and human–machine interfaces.

To address this issue, geometrically 
engineered[13–15] sensor devices composed 
of multidimensionally stacked channel 
or cross-shaped detecting electrodes have 
been introduced.[16,17] These strain sensors 
are capable of detecting the difference of 

gauge factor corresponding to different loading directions, suc-
cessfully exhibiting direction-dependent sensing characteristics. 
In fact, these newly engineered architectures have been devel-
oped to avoid the difficulty to achieve multidirectional strain 
sensing by employing microscopically isotropic conducting 
pathways of sensing channel layers, which typically experience 
identical deformation upon any stimulating direction. Although 

Mechanically stretchable strain sensors gain tremendous attention for 
bioinspired skin sensation systems and artificially intelligent tactile sensors. 
However, high-accuracy detection of both strain intensity and direction with 
simple device/array structures is still insufficient. To overcome this limita-
tion, an omnidirectional strain perception platform utilizing a stretchable 
strain sensor array with triangular-sensor-assembly (three sensors tilted by 
45°) coupled with machine learning (ML) -based neural network classifica-
tion algorithm, is proposed. The strain sensor, which is constructed with 
strain-insensitive electrode regions and strain-sensitive channel region, can 
minimize the undesirable electrical intrusion from the electrodes by strain, 
leading to a heterogeneous surface structure for more reliable strain sensing 
characteristics. The strain sensor exhibits decent sensitivity with gauge factor 
(GF) of ≈8, a moderate sensing range (≈0–35%), and relatively good reli-
ability (3000 stretching cycles). More importantly, by employing a multiclass–
multioutput behavior-learned cognition algorithm, the stretchable sensor 
array with triangular-sensor-assembly exhibits highly accurate recognition 
of both direction and intensity of an arbitrary strain by interpretating the 
correlated signals from the three-unit sensors. The omnidirectional strain 
perception platform with its neural network algorithm exhibits overall strain 
intensity and direction accuracy around 98% ± 2% over a strain range of 
≈0–30% in various surface stimuli environments.

Research Article
﻿

1. Introduction

In recent years, stretchable strain sensors have attracted much 
interest due to their mechanical stretchability and multi-
axial sensing characteristics, posing substantial potentials for 
emerging electronics such as wearable electronics, health-
care monitoring, and robotic skin/arms.[1–5] The key deter-

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adma.202208184.
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these advances are noteworthy, unsatisfactory linearity possibly 
due to complicated and intermixed conducting pathways in 
channel region could impede reliable determination of strain 
direction under complex stimulation environments. Moreover, 
the complexity of device architectures and implementation of 
channel structure can be problematic for industrial applica-
tions. Therefore, beyond the supervised directional sensing 
approaches with geometrically engineered devices, a new 
strategy which mimics the biological perception with simple 
device architectures has been proposed.[18–21] Human sensory 
systems can detect multi-mixed signals generated by concurrent 
events and discriminate each event through a behavior-learned 
cognition process in the brain. Determining the response in the 
brain has been typically exerted based on past experiences and 
cognitively learned rehearsal procedures. One of the machine 
learning algorithms such as multiclass-multioutput neural net-
work algorithms can mimic such neural process of the brain, 
exerting the rehearsal process by intentionally generated behav-
ioral data. The cognitively learned neural-network computation 
may further enable determination and discrimination of certain 
stimulation intensity and direction via the unique recognition 
and decoupling of the cross-reactive electrical signals from var-
ious intermixed stimuli, which may facilitate simplified device 
architectures with minimized power consumption.[2,22,23]

Here, we demonstrate a simply designed stretchable strain 
sensor array for detection and perception of both the direction 
and intensity of strain via cognitively learned neural network 
algorithm. The strain sensor is composed of a heterogenous sur-
face architecture featured by stretchable poly(dimethylsiloxane) 
(PDMS) substrate, poly(ethylene terephthalate) (PET) film 
forming strain insensitive rigid electrode regions, and strain 
sensing channel region composed of multiwalled carbon nano-
tube (MWCNT) with carbon black (CB) nanofiller dispersed 
in PDMS matrix.[7,24,25] The heterogeneous device architecture 

can minimize the undesirable electrical interruption from elec-
trodes by strain, leading to more reliable strain sensing char-
acteristics. An omnidirectional strain sensor array with trian-
gular-sensor-assembly is demonstrated by arranging three-unit 
sensors at tilting angles of 45°, to enable direction-dependent 
sensing characteristics. Furthermore, high-accuracy perception 
of strain intensity and direction is achieved by employing a ML 
process based on multiclass–multioutput neural network and 
classifier model algorithms. This strategy employing the cogni-
tive learning procedure can provide highly accurate detection 
of strain intensity and direction, validating the facilitation of 
cognitively learned sensory system for the application of omni-
directional perceptible strain sensors.

2. Results and Discussion

Figure 1a schematically illustrates the biological tactile sensing 
system which is composed of three major organs. A mechanore-
ceptor which senses the external stimuli, neurons that transmit 
the signals, and the brain that recognizes, classifies, and reacts to 
the stimuli. For mimicking the biological tactile sensory system, 
a stretchable strain sensor array is constructed with three-unit 
sensors tilted at angles of 45° as shown in Figure  1b, allowing 
the determination of strain direction and intensity. Recently, to 
overcome the limitation of unidirectional strain sensors, a dual-
sensor array has been proposed in which the sensors are posi-
tioned in horizontal and vertical directions.[18,26] In this case, the 
effective strain can be calculated by these equation. The strain 
applied to the sensor in a coordinate system with x* and y* axes 
according to an arbitrary inclined θ is expressed as follows

2 2
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ε ε ε ε
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Figure 1.  Schematic diagrams of biological sensory system and omnidirectional strain-perceptible sensor array. a) Schematic illustration of the bio-
logical tactile sensory system of human, and b) the schematic/photograph of fabricated omnidirectional strain-perceptible sensor array with trian-
gular-sensor-assembly. c) Schematics of cognitively learned neural network analysis process for perception of strain intensity and direction using the 
omnidirectional strain sensor array.
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where γxy is shear strain. Then, the strain applied to x direction, 
εy = γxy = 0. Therefore, off-axis deformation can be described by 
εx = ε × cos2θ, where ε is the applied strain, θ is the angle, and εx is 
the effective strain along the x-axis. Hence, the stretching angle 
(θ) can be determined by interpreting the measured εx.[13–15]  
However, the dual-sensor array typically shows limited accuracy 
and only supervised angle determination is possible. In addi-
tion, it is theoretically impossible to distinguish between the 
angles of 70° and 110° due to the symmetrical characteristics 
of stretching. Therefore, the sensing range is typically limited 
to ≈0–90° and ≈180–270° (due to the symmetric stretching). 
It is common to stretch both edges of entire device substrate 
because a stretching jig automatically measures the strain by 
fixing one side and pulling the other side. In the same way, 
when three sensors are used, which are tilted by specific angles, 
additional axial information can be obtained, enabling omni-
directional (360°) strain sensing. As shown in Figure  1c, with 
the triangular-shape sensor arrangement, the interpretation of 
multi-mixed data obtained from three individual sensors is pos-
sible, enabling detection of strain intensity and direction com-
pared to the dual-sensor array. Therefore, it is expected that a 
specific strain intensity and direction can be explored by ana-
lyzing the different behaviors of resistance variation (slope) and 
phase changes of each sensor device, respectively. Moreover, 
the accuracy of detecting strain intensity and direction with var-
ious combinations can be further enhanced by employing ML 
algorithms mimicking the human neural networks. As a result, 
when a strain of arbitrary intensity and direction is applied, the 
omnidirectional strain sensor array can classify and recognize 
the intensity and direction of strain with high accuracy.
Figure 2a; Figure S2, Supporting Information, shows the 

device structure and cross-sectional scanning electron micro
scopy (SEM) image of a unit strain sensor, respectively. The 

detailed fabrication process of the sensor is described in the 
Experimental Section; Figure S1, Supporting Information. The 
strain sensor consists of heterogenous surface regions featured 
by; electrode regions which are stacked on rigid PET islands 
and a strain-sensing channel region connecting the two elec-
trode regions. The electrode regions are insensitive to strain 
due to the bottom PET rigid islands. In contrast, the channel 
region without the rigid island is sensitive to strain. Therefore, 
when stretched, the imposed strain mainly affects the strain-
sensitive channel region, enabling more accurate strain detec-
tion. In our sensor structures, the two parts (sensing channel 
region and electrodes) are made by same materials and coated 
simultaneously, ensuring stable electrical contact between the 
sensing part and electrode part. In addition, detailed tensile 
strength simulation was performed as described in Figure S3,  
Supporting Information, to ensure device reliability and verify 
stability.[27] Therefore, deformation due to the difference in 
Young's modulus between different materials does not occur. 
The difference in modulus can be critical weakness in the 
strain sensor; so, we selected a single-layer rigid island con-
sidering the modulus between the substrate and the rigid 
island. As a result, the sensor shows good contact stability 
without large slippage up to high strain level. Furthermore, 
due to the asymmetric channel structure of the sensor device, 
strain direction can be also identified. Aforementioned, when 
an arbitrary directional strain ε is applied at an angle of θ, the 
effective strain that affects the resistance change can be calcu-
lated as εx  = ε  × cos2θ, whereas, the off-axis deformation can 
be calculated as εy = ε × sin2θ (Figure 2b). Therefore, because 
the change of the resistance varies according to the applied 
strain angle, the strain direction can be evaluated by analyzing 
the resistance variations of the three-unit sensors. Figure  2c 
illustrates the possible mechanism of strain intensity- and 
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Figure 2.  Device structure of fabricated unit strain sensor and the sensing mechanism. a) Schematic structure of the unit strain sensor consisting 
of strain-insensitive electrode regions and strain-sensitive channel region. b) Schematic of the strain components with respect to x- and y-axis  
(θ: stretching angle). c) Sensing mechanism of the strain sensor. The length and width of MWCNT/CB-PDMS are subject to change according to the 
intensity and direction of strain.

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202208184 by C
hung-A

ng U
niversity, W

iley O
nline L

ibrary on [13/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



© 2023 Wiley-VCH GmbH2208184  (4 of 11)

www.advmat.dewww.advancedsciencenews.com

direction-dependent resistance variation. At normal state with 
zero strain, the unit sensor shows a baseline resistance of  
≈80 kΩ. Then, when the sensor is stretched at an angle (θ) of 0° 
(longitudinal direction; strain direction parallel to channel), the 
number of conducting pathways between MWCNT and CB is 
decreased. As a result, the resistance tends to increase with the 
strain level.[28–31] Meanwhile, when the sensor is stretched at an 
angle of 90° (transversal direction; strain direction perpendic-
ular to channel), the number of conducting pathways between 
MWCNT and CB is barely changed due to limited elongation 
along the transversal direction by the two rigid regions. Thus, 
the resistance change is relatively small. Moreover, when the 
sensor is stretched at an arbitrary angle between 0° and 90°, the 
resistance changes according to the level of longitudinal strain 
applied to the sensor.

In addition, to investigate the effect of device architecture on 
sensing characteristics, finite element analysis (FEA) was per-
formed as shown in Figure S4, Supporting Information. A com-
parison of strain sensing performance with and without rigid 
island was carried out by FEA simulation with strain intensity 
of 30% at 0°. The structure of three-sensor array was designed 
with tilting angles of 45° between the sensors. The designed 
model and the material parameters used for the simulation are 
listed in Tables S1, Supporting Information. The color legends 
represent the strain intensity applied to the sensor. As shown 
in Figure S4b, Supporting Information, the strain experienced 
by each sensor was highly dependent on the presence of rigid 
islands. With rigid islands, the strain at the channel region of 
each sensor was 33.5% (θ  = 0°), 23% (45°), and 6.2% (90°), 
showing an evident angle-dependency. Meanwhile, without 
the rigid islands, the strain at the channel region was 36%  
(θ  = 0°), 29% (45°), and 21% (90°). As indicated, without 

the rigid islands, decent sensitivity and accuracy cannot be 
achieved because the strain is applied evenly across the sensor 
array. It is to note that with the rigid islands, the strain value 
at 0° sensor was slightly larger (33.5%) than the applied strain 
(30%). This can be attributed to two facts. First, the Young's 
modulus of channel region is much smaller than that of the 
electrode region. The channel region and electrode region are 
made by the same material; however, due to the rigid island, 
they have different strain distributions. Therefore, this can be 
the prominent factor for the observed high strain. Second, this 
is attributed to the fact that the channel layer is also stretched 
slightly to the transversal direction because the analysis method 
of FEA calculates the total strain of selected region to both 
transversal and longitudinal direction. In this case, ununiform 
distribution of slightly larger strain generally occurrs in a small 
modulus region.[32] Nonetheless, with the rigid islands, clear 
angle-dependent sensing behavior can be obtained, enabling 
the omnidirectional strain perception.

To design strain sensor array with highly efficient and stable 
performance, FEA was also performed as shown in Figure S5,  
Supporting Information. The various parameters such as 
channel length, electrode pad size, number, and arrange-
ment of strain sensors were varied, and the final architecture 
of sensor unit/array was designed. Figure 3a summarizes the 
influence on the difference of strain between applied strain 
and detected strain in the sensor array versus pad size, channel 
length, and the excessive local strain applied to the sensor array 
with different footprints (distance between channel layers). 
As a result, the design of three-sensor array was optimized as  
18 mm2 of pad size, 1  mm of channel length for minimizing 
the difference between applied and detected strain. In addition, 
when the footprint is too small (high density), the device can 

Adv. Mater. 2023, 2208184

Figure 3.  The FEA simulation results of optimized directional strain responses of strain sensor arrays. a) Influence of design parameters on the differ-
ence of strain between applied strain and detected strain in the three-sensor array versus pad size (left), channel length (middle), and excessive local 
strain (right) applied to the sensor array with different footprints (distance between channel layers). b) Schematic of three-sensor array (left), top-view 
of sensor array arranged with three-unit sensors tilted at 45° (middle), and the FEA simulation results (right). The strain at the channels was analyzed 
as 33.5% (0°), 23% (45°), and 6.2% (90°).
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be easily destroyed because of sharp excessive strain applied to 
the edge point. As a result, the length between each channel 
was designed as 1.5  mm showing the lowest peak strain with 
minimum array size. Therefore, it can be confirmed that stable 
and precise detection is possible in the sensing layer. Based 
on these results, we optimized the structure and size of the 
strain sensor array. In addition, the FEA simulation structures 
and result with optimized design of directional strain response 
of three-sensor array is shown in Figure  3b. The structure of 
three-sensor array was confirmed as tri-angular form with 
tilting angle of 45° for omnidirectional sensing. In addition, the 
strain at the channels was analyzed as 33.5% (0°), 23% (45°), 
and 6.2% (90°), respectively at 30% strain intensity and 0°. 
Moreover, the FEA simulations for determining the strain limi-
tation of optimized structure were presented in Figure S6, Sup-
porting Information. By comparing the difference between the 
strain applied at the check points and the actual applied strain 
to the device, we can identify the possible responses according 
to the location of the applied strain. Overall, although from 5% 
(total difference for minimal actual strain of 4%) to 9.2% (for 
maximum actual strain of 28%), strain error can be detected in 
the present structure, the error rate and sensing limitation can 
be correspondingly diminished when much less device distance 

and device area is employed with more scaled-down array struc-
tures. Concretely, when the number of sensors is increased, 
more information about the direction and strain level can be 
acquired which can increase the detection range or improve the 
efficiency. On the other hand, the addressing time for measure-
ment, energy consumption, and the footprint would increase as 
a trade-off. Accordingly, we choose the three-sensor array as an 
optimum device structure for our machine-learned omnidirec-
tional strain sensor array.

After this, the static and dynamic sensing characteristics of 
fabricated strain sensor unit and sensor array were investigated 
under diverse strain conditions. Here, the sensing performance 
was evaluated by obtaining the relative change of resistance 
(ΔR/R0, ΔR  = relative change of resistance, R0  = initial resist-
ance). In addition, the corresponding GF was calculated by 
GF = (ΔR/R0)/ε. At first, the static sensing characteristics were 
analyzed. As shown in Figure 4a, the sensor array consisting of 
three-unit sensors (sensor 1, 2, and 3) was stretched with strain 
directions of 0°, 45°, 90°, and 135°. With θ = 0°, the channel of 
sensor 1 is parallel to the strain direction. Therefore, sensor 1 
shows the highest resistance change. On the other hand, with 
the sensors 2 and 3, which are tilted by 45° and 90° with respect 
to the strain direction, respectively, the resistance variations 

Adv. Mater. 2023, 2208184

Figure 4.  Analysis of static and real-time responses to various strain intensities and directions. a) Relative change of resistance (ΔR/R0) in the strain 
sensor array in the strain range of 0–35% at stretching angles of 0°, 45°, 90°, and 135°. b) Relative change of resistance of a unit sensor in the strain 
range of 0–35% (θ = 0°). The corresponding gauge factor was ≈8. c) Relative change of resistance in the strain direction range of 0–180° (strain intensity 
= 30%). d) Real-time response characteristics of three-strain sensor array in the strain range of 0–24% (θ = 0°). e) The variation of resistance when the 
strain was changed from 0% to 30% with seven steps (θ = 0°). f) Stretching and releasing cyclic test data for 3000 cycles (30%, θ = 0°) and the inset 
shows change of resistance at ≈1500–1508 cycles.
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are relatively low. When θ = 45°, sensors 1 and 3 show similar 
resistance change while sensor 2 shows almost no resistance 
change. Here, the channels of sensors 1 and 3 are 45° tilted 
with the strain direction, while the channel of sensor 2 is 90° 
to the strain direction. In addition, when θ  = 90°, the oppo-
site trend is observed to those when θ = 0°. Furthermore, with  
θ = 135°, sensor 2 shows the highest resistance change because 
the channel of sensor 2 is parallel to the strain direction. How-
ever, for sensors 1 and 3, for which the channels are 45° tilted to 
the strain direction, the resistance variations are low. Additional 
results for various stretching directions from 0° to 180° with 15° 
step are summarized in Figure S7, Supporting Information, 
showing a similar dependency on the strain direction.

As shown in Figure  4b, the unit strain sensor showed 
decent sensitivity (GF ≈ 8), good linearity in the strain range of 
≈0–35%. In fact, the GF of 8 can be considered as not very high 
sensitivity, while it is sufficient to be applied for an omnidirec-
tional strain sensor array that can detect direction and strain 
level simultaneously. When the strain direction is changed, the 
resistance variation is changed accordingly. Figure  4c shows 
the relative change of resistance at different strain directions  
(≈0–180°, 15° step). As displayed, ΔR/R0 is decreased as the 
strain direction increases from 0° to 90°. In particular, the 
ΔR/R0 approaches almost to zero at 90° (transversal direction). 
Afterward, from 90° to 180°, ΔR/R0 increases symmetrically 
due to the uni-directional features of the sensor. The strain 
direction-dependent resistance variation can be clearly observed 
in three unit sensors having different tilting angles. Figure 4d 
shows the real-time response characteristics of three-unit sen-
sors when stretched up to 24% at a rate of 1%/50 ms (strain/
time) rate. It is observed that sensor 1 showes large resistance 
change. Meanwhile, sensor 2 shows relatively smaller resist-
ance change and sensor 3 shows almost no change, indicating 
strain direction dependency. As described, the strain direction-
dependent resistance variation can be attributed to less effec-
tive longitudinal strain which is applied to the sensor when 
θ is increased. Furthermore, the response time of the sensor 
was evaluated. The sensor showed rising time of ≈1.2 s and 
falling time of ≈2.4 s in the range of 10–90% change in resist-
ance. The relatively longer falling time is attributed due to the 
intrinsic resilient properties of PDMS, requiring an extra time 
to completely return to the initial state.[24,33,34] Figure 4e shows 
the sensing response to various strain levels (ε = ≈0–20%). It is 
clear that each sensor shows proportional responses to strain 
in this strain region and different levels of resistance variation 
depending on the sensor rotation angle. At high strain levels, 
slight fluctuations in resistance change are observed. This is 
general phenomenon that occurs frequently in the elastomer 
base mixture and some fluctuations may occur depending on 
the measurement environment and the elastic recovery force 
during fast dynamic test.[25,35] However, in this study, ML is 
introduced to compensate for such fluctuation errors by using 
numerous datasets. In addition, for practical demonstrations, 
the first 100 cycles are considered as network stabilization 
period. At the beginning of the cycle, the network intercon-
nection of nanoparticles and nanowires inside the mixture is 
stabilized. After that, the sensor device shows relatively good 
stability up to 3000 cyclic stretching and releasing test as shown 
in Figure 4f.[36]

Although the results show that the sensor array can identify 
the strain direction by comparing the responses of each sensor, 
it is not trivial to predict the strain intensity and direction when 
arbitrary strain stimulus is applied. This is due to many possible 
combinations of strain intensities and directions. To ensure the 
viability of the sensor array for identifying the strain, a condi-
tion classification neural network model is utilized. For the ML 
process; however, a large data point is needed to enhance the 
accuracy of learn-verifying process. Therefore, to generate more 
detailed strain direction-dependent data sets, we designed and 
implemented a sensor array consisting of seven-unit sensors 
as shown in Figure S8a, Supporting Information (each sensor 
tilted by 15°). First, to verify any variation of effective strain by 
increasing the number of sensors, FEA simulation was carried 
out for arrays having seven- and three-unit sensors. As shown 
in Figure S8a,b, Supporting Information, when the arrays were 
stretched by 30% along the x-axis (θ = 0°), the strain applied at 
the channel of sensors was almost identical. For example, the 
strain applied on 0°-sensor in seven-sensor array was 33.8%, 
which is similar to that observed in 0°-sensor in the three-
sensor array (33.5%). In addition, the strain applied on 45°- and 
90°-sensors was also similar. The slightly higher strain observed 
in 90°-sensor in the seven-sensor array (7.3%) can be attributed 
to the configuration of sensor arrangement. In particular, the 
seven-sensor array has larger gaps between the sensors and 
because the electrode regions are relatively rigid, larger strain 
is applied to the sensing channel compared to the three-sensor 
array. More specific validation of data compatibility between 
seven-sensor and three-sensor arrays is demonstrated in  
Figure S9, Supporting Information. Nevertheless, using the 
seven-sensor array configuration, more detailed 75  000 data 
points for ML are acquired with various strain directions and 
intensities with almost similar trends (Figure S9a,b, Supporting 
Information). Furthermore, statistical data (from 25 samples) 
was added to ensure the uniformity over the number of devices. 
The 25 sensors average relative change of resistance versus 
strain up to 35% at 0° with error bars is calculated and shown 
in Figure S10c, Supporting Information. Last, the examples 
of input data corresponding to specific situations (8%, 0° and 
24%, 135°) are provided in Figure S11, Supporting Information.

Aforementioned, a method that enables omnidirectional 
strain perception by utilizing ML process is strongly needed 
to accurately identify both the direction and intensity of strain. 
Among various ML models and algorithms developed for predic-
tion and classification of cross-reactive stimuli, we adopted the 
multi-class/multi-output neural network model which is typically 
used in multi-way classification process.[5,37,38] Figure 5a shows 
the neural network structure of direction and strain level per-
ception using ML-based classification algorithms. Owing to the 
distinct target of strain intensity and direction, the multi-class/
multi-output classification algorithm is examined. This algo-
rithm is typically used for multiple classification problems with 
multiple categories. For this process, continuous value of resist-
ance from three-strain sensors for 5 s (3-sensors × 60 points = 180  
data points) are used as the input dimension and the direction-
dependent strain (angle-strain) data samples are adapted as 
target (output) in the forms of one hot encoding to the algorithm. 
For the training process, a total of 75 000 data points (from real 
measurement) are used, and among them, 25  000 data points 

Adv. Mater. 2023, 2208184
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are applied for the verification. Then, two hidden layers (each 
layer consist of 128 neurons) and two output layers for direction 
and strain level are constructed and the targets are derived in the 
forms of (12, 7) indicating 12-angle (from 0° to 180°) and 7-strain 
(from 0% to 28%), respectively. In the learning and verifying pro-
cess, the cross entropy is used as loss function as:

t y t y
n

i i

k

n

k k∑ ∑+
= =

Loss: log( ) log( )
i 1 1

1 2

� (2)

where “i” is each class of strain, “k” is each class of degree, thus, 
n1 = 7, n2 = 12 (4% strain, 8% strain …. 28% strain, and, 0°, 15° 
…. 90° …. 175°), “t” is the true value, “y” is the probability that 
the class is “i” or ’k’ when the model predicts. (SoftMax out-
puts).[39] Furthermore, the Adam optimizer in PyTorch library, a 
convex optimization method with a momentum strategy which 
is utilized to adjust the learning direction and step size appro-
priately and reduce the loss between actual results and pre-
dicted results in neural network is adapted in this process.[40,41]

Adv. Mater. 2023, 2208184

Figure 5.  Cognition of the direction and strain process using the classification model for ML. a) Schematic of ML process with enormous input sensor 
data and multi-class neural network flow. b) The training and test loss function characteristics versus epochs up to 200; the corresponding train 
loss was 0.101 and test loss was 0.132. c) The accuracy characteristics versus epochs up to 200, the corresponding accuracy of degree and strain are 
analyzed over 90% after 100 epochs. d–g) Visualized synaptic weight contour maps for accuracy of detecting direction/strain intensity (z-axis color 
legend) versus training epochs (x-axis) and input dimension data / number of sensors (y-axis). (d,e) are the contour maps with input dimension data 
in a three-sensor array device. (f,g) are the contour maps with number of sensor array (two-sensor array with 120-dimension, three-sensor array with 
180-dimension, and four-sensor array with 240-dimension).
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The more detailed neural-network architecture is illustrated 
in Figure S12, Supporting Information. As shown in Figure 5b, 
cross entropy loss in the training set was 0.101 after 200 epochs 
and test set loss function was 0.132 after 200 epochs. In ML,  
the accuracy and time efficiency are important parameters 
which show the predictability, efficiency, and reliability of 
developed algorithm. Therefore, we tried to obtain high accu-
racy and short training + verifying time by changing the input 
and output dimensions and the structure of the hidden layer. 
The details are described in Figure S13, Supporting Informa-
tion. As a result, the accuracy for identifying the direction was 
over 98.6% after 30 epochs and the strain intensity was 96.4% 
in average after 100 epochs (Figure  5c) and the training + 
verifying time was 3.35  s These results are important indica-
tors to show that developed ML process is well-optimized and 
enables the detection of an arbitrary strain/direction with high 
accuracy. Figure 5d–f shows the weight contour map of cogni-
tively learned omnidirectional sensor array indicating trained 
accuracy tendency of strain intensity/direction (z-axis color 
legend) corresponding to training epoch (x-axis) and the input 
dimension/number of sensors (y-axis).[42,43] Of course, as the 
training epochs increase, the accuracy increases because the 
loss decreases by the algorithm. In addition, it is confirmed 
that the accuracy increases as the input dimension increases 
in both cases of strain intensity and direction. At last, as the 
number of sensors increases, the accuracy of strain intensity/ 
direction tends to increase. For accuracy of strain intensity, the 
accuracy increases in proportion to the number of sensors, but 
after about 100 epochs, the accuracy of the three-sensor array 
is almost same with those of larger number sensor arrays. In 
the case of the two-sensor array, as described in the manuscript, 
the accuracy of direction is very low possibly due to the limited 
directional sensing properties with the two sensors. As a result, 
like other classification models, the accuracy of developed algo-
rithm about direction and strain intensity has increased fol-
lowing diverse parameters such as training epochs, number of 
sensors, and the input dimension. In addition, the confusion 
matrix is shown in Figure S14, Supporting Information. These 
results show both the direction and strain intensity of the 
verifying data are accurately predicted with a very high prob-
ability of ≈98% ± 2% under most conditions. Furthermore, the 
accuracies corresponding to the number of unit sensors such 
as three-sensor structure and two-, four-sensor structure and 
the diverse input dimension are also compared in Figure S15, 
Supporting Information. Accuracy for direction represents a 
value about whether it can recognize and classify direction of 
strain ranging from 0° to 360°, and intensity of strain from 0% 
to 28%. Compared to the three-sensor array, the accuracy of a 
two-sensor array is relatively lower. In particular, the accuracy 
for strain direction is ≈60%. This low accuracy indicates that 
the two-sensor array can only recognize directions from 0° to 
90°, not up to 180°. In addition, the accuracy of a four-sensor 
array is relatively high. The accuracy for strain direction is 
100% and for strain intensity is 99.2%. As the number of sen-
sors increases, more data on a more detailed information about 
direction and strain intensity can be obtained, which can lead to 
improved accuracy. However, the difference between three- and 
four-sensor array in terms of the prediction accuracy is ≈2% 
on average. Therefore, even with three-sensors, detection and 

prediction of both direction and strain intensity are possible 
with high accuracy and efficiency. These results show that the 
three-sensor array is an optimized compact architecture that 
can accurately recognize omnidirectional strain. In conclusion, 
the sensitivity of this proof-of-conceptual omnidirectional strain 
sensor is likely not enough to accomplish the role of human 
skin sense; however, as a result of implementing comprehen-
sive system including neural network with soft sensor engi-
neering, the average accuracy for detecting both strain intensity 
and direction is over 96%. Therefore, we envision that more 
scaled-down proof-of-concept device with ML-based approach 
can provide a versatile way to advance the e-skin systems with 
reduced architecture complexity and enhanced adaptability to 
direction with strain beyond the limitation of conventional one-
way strain sensor system.

To validate the viability of cognitively learned omnidirec-
tional strain sensor array, arbitrary stretching tests are carried 
out. First, as shown in Figure 6a, a 28% strain (θ = 0°), which 
is manually measured with ruler, is applied. The reason is 
that the manually applied strain can be accurately predicted in 
this test because the algorithm calculates an approximation by 
dividing the angle (≈0–180°) and intensity (≈0–30%) into 12 and 
7 steps during the training process, respectively. In other words, 
the closest direction is determined among the degrees of 0, 15°, 
… 90°, …, and 180° by analyzing the resistance change values 
from the three sensors. In addition, strain intensity prediction 
shows ca. ±2% margin error because the strain values can be 
predicted with 7-step (28%/7 = 4%). For example, when a strain 
intensity in the range of ≈26–30% is applied, it is analyzed as 
28% by the classification algorithm. Figure  6a (right) shows 
the resistance change of three-sensor array when manually 
stretched by 28% and θ = 0°. The sensor 1 exhibits the highest 
change in resistance because the strain is applied in parallel to 
the channel deriving maximum principal strain. In addition, 
sensors 2 and 3 show the response to the stretching/releasing 
tilted by 45° and 90°, respectively at 28% of strain intensity. 
As their dynamic characteristics are iterative and stable, the 
manually stretched condition is accurately recognized by the 
algorithm as 28% of strain at 0°. Second, the sensor array is 
attached to a stick balloon, and then, air is injected as shown in 
Figure 6b.

Afterward, the dataset of second region in the graph, which 
indicates typical characteristics, is used as an input data to 
the algorithm. Sensor 1 shows almost no change in resistance 
because the effective strain is close to perpendicular to channel 
layer (90°). However, the resistance of sensors 2 and 3 changes 
in proportion to εx = ε × cos2 θ, following the air injection. Con-
sequently, the output shows 90°, 20% of strain intensity, which 
is the same result as the input stimulus. Last, the sensor array 
is attached to a round balloon and air is injected. In this case, 
we can expect the surface of balloon to be stretched omnidirec-
tionally; therefore, the sensors exhibit almost same responses. 
As shown in Figure  6c (right), resistance variations of the 
sensors 1 and 2 are almost identical and sensor 3 also shows 
similar characteristics although the value is slightly low that 
is negligible because it is within marginal error of resistance 
change in algorithms. Consequently, the algorithm interprets 
these results as omnidirectional stretching direction with strain 
intensity of 20%.
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3. Conclusions

We have  demonstrated omnidirectional strain perceptible 
sensor array with cognitively learned neural networks for accu-
rate recognition of arbitrary strain with variable intensity and 
direction. The strain information is obtained by the heteroge-
neous surface featured strain sensor array and the directional 
distribution of arbitrary strain forces are inferred by ML-based 
neural networks. The insight has an overall strain intensity and 
direction accuracy ≈98 ± 2% over a strain range of ≈0–30% in 
various surface stimuli environments. The hardware and soft-
ware design concepts reported here imply that the cognitively 
learned stretchable strain sensor array can offer a general route 
to realize highly sensitive, extremely reliable stimulation per-
ception with a marginal device complexity and implementation 
for large-scaled applications.

4. Experimental Section
Fabrication of MWCNT/CB-PDMS Composite for Electrodes and 

Channel: For the fabrication of MWCNT/CB-PDMS composite, MWCNT 
(LUCAN BT1001M from LG Chem, 10  nm of diameter and 250 m2 g−1 
surface area) and CB nanoparticles (Denka Black from Denka, 0.25 g cm−3  
bulk density and under 0.001% of 45  µm sieve) were mixed with 1: 1 
in weight. Then, the mixture was dispersed in PDMS with the ratio of 

10 wt% between MWCNT/CB composite and PDMS by using ball mill 
process in a ceramic container (300 rpm, 3 h). In the middle of mixing, 
viscosity and dispersion were checked frequently. Then, the ratio of 
PDMS base to curing agent was 10:1 in weight. Last, the MWCNT/
CB-PDMS composite was aged in air for 1 h to stabilize the percolation 
networks.[2,44]

Fabrication of Omnidirectional Strain Perceptible Sensor Array: At first, 
a PDMS sheet was prepared with thickness of 0.5 mm. On the PDMS, 
PET film (3  mm × 6  mm, 70  µm) was attached by using a silicone 
paste (Dragon skin 30, Smooth-On). Then, PDMS was spin-coated on 
the substrate to make a flat surface moulding the rigid island. Next, to 
fabricate the sensor array, the MWCNT/CB-PDMS mixture was printed 
on the PDMS substrate using a shadow mask followed by contact with 
conductive fibers (silver coated conductive yarn, Soitex) for evaluating 
the strain sensor array. Last, the sensor array was cured at 90° for 
2  h. The size of sensor unit was 7.5  mm × 6  mm and the size of the 
omnidirectional strain sensor array was 20 mm × 15 mm.

Finite Element Analysis (FEA) of the Strain Sensor Array: To 
investigate the strain distribution of the sensor array and the operation 
mechanism, FEA simulation was carried out (COMSOL Multiphysics 
5.5). Hexahedron PDMS was designed with nanofiller composite in the 
actual array size and structure with three-sensor array and seven-sensor 
array. The strain was applied by using Prescribed Displacement (from 
0% to 60%) in Solid Mechanics and analyzed by First Principal Strain in 
the results tap. The designed model and the material parameters used 
for the simulation are listed in Table S1, Supporting Information.

Analyses of Strain Sensing Characteristics: The electrical resistance 
of MWCNT/CB-PDMS-based strain sensor was measured by using a 
resistance-meter (2604B, Keithley). The response and relaxation time 

Figure 6.  Omnidirectional strain perception via cognitive learning algorithm. a) The photograph of arbitrary stretching test by hand and the result 
graph of strain sensor array. b) The photograph of stretching test attached to stick balloon and the result graph with blowup and pull process of strain 
sensor array. c) The photograph of stretching test attached to normal balloon and the result graph with blowup and pull process of strain sensor array.
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were determined and analyzed as the minimum time from initial state to 
target strain level using the cyclic stretchable measurement equipment 
(SSMS21, TERALEATHER). For the dynamic measurement of the sensor 
array, a measuring system comprised of a source meter (2604B, Keithley) 
and a homemade stretching jig connected to a data acquisition system 
(DAQ; TERALEATHER) was used.

Data Preparation and Process for ML: Multiclass-multioutput 
classification model was used to perceive the direction and intensity of 
strain. To apply the classification model for the perception of direction 
and strain simultaneously, a total of 75 000 data points were used and 
among them, 25  000 data points were used for the verification. All 
training data and test data did not overlap, and all data points were 
obtained by real measurement. Then, the algorithm made hidden layers 
(128–128) to reduce the loss function by the Adam optimizer. The ML 
process was conducted using Python.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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