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Abstract: Inflammatory environments provide vital biochemical stimuli (i.e., oxidative stress, pH,
and enzymes) for triggered drug delivery in a controlled manner. Inflammation alters the local
pH within the affected tissues. As a result, pH-sensitive nanomaterials can be used to effectively
target drugs to the site of inflammation. Herein, we designed pH-sensitive nanoparticles in which
resveratrol (an anti-inflammatory and antioxidant compound (RES)) and urocanic acid (UA) were
complexed with a pH-sensitive moiety using an emulsion method. These RES-UA NPs were char-
acterized by transmission electron microscopy, dynamic light scattering, zeta potential, and FT-IR
spectroscopy. The anti-inflammatory and antioxidant activities of the RES-UA NPs were assessed
in RAW 264.7 macrophages. The NPs were circular in shape and ranged in size from 106 to 180 nm.
The RES-UA NPs suppressed the mRNA expression of the pro-inflammatory molecules inducible
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis
factor-α (TNF-α) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in a concentration-
dependent manner. Incubation of LPS-stimulated macrophages with RES-UA NPs reduced the
generation of reactive oxygen species (ROS) in a concentration-dependent manner. These results
suggest that pH-responsive RES-UA NPs can be used to decrease ROS generation and inflammation.

Keywords: resveratrol; urocanic acid; pH responsive; anti-inflammatory; antioxidant; nanoparticles

1. Introduction

Osteoarthritis (OA), the most common degenerative joint disease, is characterized by
degradation of the extracellular matrix (ECM), synovial inflammation, subchondral bone
sclerosis, and regression of articular cartilage, and is a major cause of disability among
the elderly worldwide [1–3]. The global incidence of OA is increasing due to the increase
in obesity rates and resulting joint trauma [4,5]. The general consensus is that the key to
treating this disease is to prevent the patients’ deterioration to severe stages that require
surgery by suppressing the progression of inflammation and destructive processes in the
early stages. However, most current treatments provide only pain relief and do not inhibit
inflammatory activity or reverse cartilage damage [6,7]. Clinical management options
for OA can be divided into non-pharmacological, pharmacological, and surgical mea-
sures [8,9]. Initial treatment typically comprises non-pharmacological strategies, including
self-care, exercise, weight loss, aquatic exercise, and aerobic and resistance exercise [10,11].
The most commonly used drugs used for local, oral, and/or intra-articular pharmaco-
logical treatment are non-steroidal anti-inflammatory drugs (NSAIDs), COX-2 selective
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inhibitors, acetaminophen, paracetamol, corticosteroids, and hyaluronic acid (HA) [8,12,13],
each of which has significant limitations. Generally, NSAIDs and COX-2 inhibitors are
associated with gastrointestinal toxicity, cardiovascular side effects, nephrotoxicity, and
cardiac nephrotoxicity [14]; long-term use of these substances may produce adverse effects
on the digestive system and blood coagulation, which can alter immune function and
worsen arthritis [15,16]. The materials used in intra-articular treatments are rapidly cleared
and/or degraded and need to be administered frequently [17]. Long-term treatment with
corticosteroids is associated with serious side effects, such as osteoporosis, osteonecro-
sis, hyperglycemia, and hypertension [18]. Therefore, alternative management strategies
based on natural materials that have fewer side effects and can effectively inhibit cartilage
degeneration are urgently required.

Resveratrol (RES), first extracted from the roots of Veratrum grandiflorum in 1940, is a
polyphenolic compound found in many fruits and vegetables such as peanut bean sprouts,
grapes, and peanuts [19,20]. The beneficial effects of RES include anti-inflammatory, free
radical scavenger, immunomodulatory, antibacterial, and anti-diabetic activities, together
with the inhibition of platelet aggregation and coagulation, and reduction in the risk of
cardiovascular disease (CVD) [21–24]. The anti-inflammatory properties of RES are linked
to the inhibition of TNF-α, IL-1β, and nitric oxide (NO) synthesis [25]. Previous studies
have reported that RES also downregulates COX-2, IL-1β, and IL-6, which play important
roles in OA by blocking nuclear factor-κB (NF-κB) signaling [26,27]. Other studies have
confirmed that intra-articular injection of RES in rats with OA induced by monosodium
iodoacetate (MIA) injection or in rabbits with arthritis induced by lipopolysaccharide (LPS)
injection not only inhibited the expression of inflammatory factors but also prevented the
degeneration of glycosaminoglycans (GAGs) [28,29].

Joint degeneration in OA is mainly due to inflammation, although the degree of
inflammation is lower than that seen in rheumatoid arthritis (RA). The concentrations of
COX-2, IL-1β, and TNF-α are significantly elevated in the synovial tissues of OA patients
and contribute to OA progression [30]. In the context of OA, nanodrug delivery systems
are being widely explored as options to provide the selective, controlled, and sustained
delivery of drugs to inflammatory sites after intra-articular injection. Nanoparticles (NPs)
injected into the joint space respond to physiological factors such as pH, reactive oxygen
species (ROS), and enzymes. Although the pH range of the synovial membrane is 7.4
to 7.8 under normal physiochemical conditions, the pH in joints affected by OA may be
as low as 6.0 due to the deposition of inflammatory metabolites in and around the joint
tissues [31,32].

Given the acidic conditions within inflammatory sites, pH-responsive nanomateri-
als have been developed using fluorescent, porous nanofibers with high pH sensitivity
that act as pH sensors and metal-organic frameworks to perform controlled drug deliv-
ery [33,34]. As an intermediate metabolite of histidine, urocanic acid (UA) exhibits a
hydrophilic–hydrophobic transition at pH values around its pKa (~6.0) due to the presence
of pH-sensitive imidazole groups that can be used as drug delivery carriers: at neutral
pH, UA is amphiphilic and can self-assemble into NPs at concentrations greater than the
critical aggregation concentration (CAC) due to hydrophobic interactions between urocanyl
groups [35]; however, under acidic pH conditions (pH ~6.5), the imidazole groups are pro-
tonated (positively charged) and the nanostructures disassemble due to charge repulsion,
allowing loaded drugs to be released [35–37].

In order to deliver drug molecules under low pH conditions and to effectively control
inflammation in inflamed tissues, we designed pH-responsive RES-UA NPs that self-
assemble due to interactions between hydrophobic RES and amphiphilic UA in the presence
of surfactant (Scheme 1A). The prepared RES-UA NPs were characterized to evaluate
particle sizes and pH-responsive drug release. We also investigated the in vitro cytotoxicity
and the anti-inflammatory and antioxidant properties of the RES-UA NPs.
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Scheme 1. (A) Illustration of the preparation process of RES-UA NPs. (B) pH-responsive RES release
from RES-UA NPs at acidic pH.

2. Results and Discussion
2.1. Characterization

Urocanic acid (UA), which has both imidazole and carboxyl groups, has been used as
a pH-responsive molecule to adjust polymers by chemical modification [35–37]. Table 1
shows the particle size and zeta potential of RES-UA NPs under different pH conditions.
After incubation for 24 h at pH 6.0, the hydrodynamic radius of RES-UA NPs was slightly
elevated at 159.30 ± 36.80 nm (polydispersity index; PDI: 0.531 ± 0.05), compared to RES-
UA NPs at pH 7.4 that had a hydrodynamic radius of 106.50 ± 31.00 nm (PDI: 0.545 ± 0.08).
The hydrodynamic diameter of RES-UA NPs increased significantly to 188.70 ± 59.20 nm
(PDI: 0.487 ± 0.08) at a lower pH (pH 5.0). As shown in Scheme 1B, the increased size of
RES-UA NPs at a lower pH was due to charge repulsion after protonation of the imidazole
groups of UA in RES-UA NPs [36–38]. Furthermore, the assessed zeta potential of RES-UA
NPs at pH 6.0 (−2.63± 0.25 mV) was lower than at pH 7.4 (−1.17± 0.31 mV). Under acidic
pH conditions, RES-UA NPs released more RES and the carboxyl groups of UA molecules
in RES-UA NPs were relatively more exposed than at pH 7.4. Thus, the determined zeta
potential of RES-UA NPs (−2.80 ± 0.26 mV) at pH 5.0 was the lowest observed among the
pH conditions tested.

Table 1. Size and zeta potential of RES-UA NPs at various pH values.

pH Particle Size (nm) PDI * Zeta-Potential (mV)

7.4 106.5 ± 31.0 0.545 ± 0.08 −1.17 ± 0.31
6.0 159.3 ± 36.8 0.531 ± 0.05 −2.63 ± 0.25
5.0 188.7 ± 59.2 0.487 ± 0.08 −2.80 ± 0.26

* PDI: polydispersity index.

To assess the morphology of RES-UA NPs prepared at different pHs, we used trans-
mission electron microscopy (TEM; Figure 1). The size of RES-UA NPs increased as the pH
decreased, and their particle sizes measured by TEM were consistent and not significantly
different from the results obtained using dynamic light scattering (DLS) because RES-UA
NPs without hydrophilic shells did not shrink when dried.
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Figure 1. Representative transmission electron microscopy (TEM) images of RES-UA NPs at pH
values of (a) 7.4, (b) 6.0, and (c) 5.0.

Figure 2 shows the FT-IR spectra of RES, UA, and RES-UA NPs. In the Fourier
transform infrared (FT-IR) spectra, UA exhibited absorption peaks at 1660 cm−1 (C=O) and
1590 cm−1 (C=C) (Figure 2A). Characteristic absorption peaks at 3160 cm−1 and 3085 cm−1

corresponding to =C-H in UA were also present. With respect to RES, three peaks at
1610 cm−1, 1585 cm−1, and 1510 cm−1 corresponding to C=C bending, as well as two peaks
at 3320 cm−1 corresponding to O-H and at 3015 cm−1 corresponding to =C-H were evident
(Figure 2B) [39–41]. The FT-IR spectrum of RES-UA NPs exhibited similar peaks, including
O-H, =C-H, C=O, and C=C peaks that are characteristic of UA and RES, indicating that
RES-UA NPs consisted of UA and RES (Figure 2C).
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2.2. Resveratrol Release from RES-UA NPs

We assessed drug-loading amounts and efficiency. Based on the standard curve for RES
(Y = 0.036x + 0.0387, R2 = 0.9989), RES-UA NPs (1 mg) contained 71.05± 0.09 µg RES, and the
RES loading efficiency was 78.10± 0.09%. The pH-responsive release of RES from RES-UA NPs
was assessed at pH 7.4, 6.0, and 5.0. The results are shown in Figure 3. After 24 h, 43.10± 7.43%
of RES was released from RES-UA NPs at pH 7.4, and 61.80 ± 6.62% and 73.26 ± 13.58% of
RES was released at pH 6.0 and 5.0, respectively. The greater release of RES at pH 6.0 and pH
5.0 than at pH 7.4 was likely due to protonation and charge repulsion of the imidazole groups
in UA under acidic conditions, leading to RES release from the NPs following disassembly of
the NPs [35–37].
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2.3. Cell Viability

To assess the cytotoxicity of RES-UA NPs, we determined cell viability using the
CCK-8 assay. After 24 h treatment of RES-UA NPs at various concentrations, macrophage
viability was maintained at over 85% for all tested concentrations (Figure 4a), indicating
that RES-UA NPs are not cytotoxic to macrophages in cell culture.
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Figure 4. (a) Cytotoxic effects of various concentrations of RES-UA NPs against RAW
264.7 macrophages. (b) Cell viability of macrophages exposed to various concentrations of RES-UA
NPs with or without LPS. Untreated cells were used as negative controls. p-values are for comparisons
between RES-UA NP- vs. LPS-stimulated cells. Values are presented as means ± standard deviations
(SDs). ** p < 0.01; n = 4 per group.

To create an inflammatory environment, we treated RAW 264.7 macrophage cells
with LPS. Lipopolysaccharides are molecules located on the outer membranes of Gram-
negative bacteria [25,26]. The presence of LPS stimulates host inflammatory responses that
promote the production of chemokines, which stimulate macrophages [42]. LPS-stimulated
macrophages produce high levels of pro-inflammatory mediators, resulting in enhanced
inflammatory responses.

RAW 264.7 cells were incubated with LPS for 24 h in the absence or presence of various
concentrations of RES-UA NPs to assess the effects of RES-UA NPs in an inflammatory
context. The survival of cells incubated with LPS was significantly lower than that of
control cells, probably because inflammatory stimuli can interfere with cell proliferation
(Figure 4b) [43]. However, the incubation of cells with (100 µg/mL) RES-UA NPs protected
the cells against LPS-induced cell death. This result was consistent with the findings
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reported in a previous study in which various concentrations of RES (1, 5, and 10 µM) were
found to protect macrophages against LPS-induced inflammation [24].

2.4. Effect of RES-UA NPs on Nitric Oxide Production in LPS-Activated RAW 264.7
Macrophages

Nitric oxide (NO) production is associated with the uptake of L-arginine, which is a
substrate for NO synthase in LPS-treated macrophages [24]. We assessed NO production
in LPS-activated RAW 264.7 cells in the presence or absence of RES-UA NPs using Griess
reagent. As shown in Figure 5, untreated (control) cells secreted very little nitric oxide,
whereas LPS-activated macrophages displayed elevated NO production. In LPS-stimulated
cells incubated with RES-UA NPs (100 µg/mL), NO production was significantly lower
than in LPS-stimulated cells (* p < 0.05). RES suppressed the LPS-induced formation of
NO in macrophages in a concentration-dependent manner [24]. Consistent with previous
studies, RES-UA NPs effectively reduced NO production in LPS-stimulated cells [24,44,45].
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2.5. Effect of RES-UA NPs on Inflammatory Gene Expression in LPS-Treated RAW 264.7 Cells

The production of NO in macrophages is controlled by inducible NOS (iNOS) [46,47].
In LPS-induced macrophages, the production of various pro-inflammatory mediators and
cytokines, including COX-2, IL-1β, IL-6, TNF-α, and prostaglandin (PGE2), is elevated [24,46].
As shown in Figure 6, LPS-stimulated cells showed markedly elevated expression of mRNA
for COX-2, IL-1β, iNOS, and TNF-α compared with control group cells. In comparison, COX-2,
IL-1β, iNOS, and TNF-α gene expression in cells incubated with RES-UA NPs was reduced in a
concentration-dependent manner. The expression of COX-2, IL-1β, and TNF-α in cells incubated
with RES-UA NPs (50 µg/mL) was lower than in LPS-activated cells. Furthermore, COX-2, IL-
1β, iNOS, and TNF-α mRNA expression in cells incubated with RES-UA NPs (100 µg/mL) was
downregulated compared to cells incubated with RES-UA (10 µg/mL) and RES-UA (50 µg/mL).
RES can inhibit the formation of pro-inflammatory cytokines such as COX-2, IL-1β, iNOS, and
TNF-α, in a dose-dependent manner [24,48]. Consistent with previous studies [24,45,48], we
demonstrated that RES-UA NPs had a noticeable anti-inflammatory effect by inhibiting the
mRNA expression of pro-inflammatory cytokines.
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Figure 6. In vitro anti-inflammatory effects of RES-UA NPs in LPS-stimulated RAW 264.7 cells. The
expression of mRNA for pro-inflammatory components was assessed using real-time PCR. (a) COX-2,
(b) IL-1β, (c) iNOS, and (d) TNF-α expression in LPS-stimulated RAW 264.7 cells after incubation
with various concentrations of RES-UA NPs. p values are for comparisons between RES-UA NPs and
LPS-stimulated cells. Values are represented as means ± SD. * p < 0.05; ** p < 0.001; *** p < 0.0001;
n = 4 per group.

2.6. Antioxidant Effects of RES-UA NPs and ROS Scavenging Assay at the Cellular Level

The antioxidant activity of RES-UA NPs was determined using the ABTS assay [38]. As
shown in Figure 7a, RES-UA NPs had ROS scavenging activities at all tested concentrations.
Compared to the ROS scavenging activity of Vitamin C (50 µg/mL) at pH 7.4, RES-UA
NPs showed lower ROS scavenging activities at all tested concentrations. However, RES-
UA NPs exhibited increased ROS scavenging activity with decreasing pH values because
RES-UA NPs could release higher amounts of RES from the NPs, as shown in Figure 3.
Additionally, RES-UA NPs displayed dose-dependent ROS scavenging activity at pH 5.0,
which was associated with the amount of RES released from the NPs, consistent with the
findings of previous studies [49,50].

Reactive oxygen species (ROS) are highly reactive and unstable molecules that contain
oxygen produced during normal and disease-associated metabolic processes; the super-
oxide anion (·O2

−), hydrogen peroxide (H2O2), hydroxyl radicals, and singlet oxygen
are all ROS [51–54]. LPS stimulates ROS production and inflammatory cytokine release
within hours [52,54]. The secreted inflammatory cytokines accelerate intracellular ROS
accumulation by encouraging the inflow of macrophages into tissues [47]. In addition, the
overproduction of ROS causes oxidative stress, which eventually leads to cell death.
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Figure 7. (a) Antioxidant activity according to various concentrations of RES-UA NPs as determined
by assessing ABTS scavenging activity. (b) Fluorescence images of intracellular ROS formation in
RAW 264.7 cells stimulated with LPS for 24 h after pre-incubation with various concentrations of
RES-UA NPs for 1 h. (c) Fluorescence intensity due to intracellular ROS generation in RAW 264.7 cells
stimulated with LPS for 24 h after pre-incubation with various concentrations of RES-UA NPs for 1 h.
p-values are for comparison between RES-UA NP- and LPS-stimulated cells. Values are presented as
means ± SDs. *** p < 0.0001 and ** p < 0.001; n = 4 per group. Scale bar: 50 µm.

Macrophages were pre-incubated with various concentrations of RES-UA NPs for
1 h, followed by the addition of LPS (100 ng/mL) to induce oxidative stress and a 24 h
incubation to assess the antioxidant activity of RES-UA NPs at the cellular level. At the
end of the incubation, intracellular ROS in cells was monitored using the fluorescent dye
DCF-DA and a confocal laser scanning microscope (CLSM; Carl Zeiss, Germany). As
shown in Figure 7b, control cells (no RES-UA NPs or LPS added) did not fluoresce, whereas
LPS-stimulated cells showed strong fluorescence. The addition of various concentrations
of RES-UA NPs (10, 50, or 100 µg/mL) resulted in a remarkable concentration-dependent
reduction in fluorescence intensity. To further quantify ROS generation, we measured
DCFDA fluorescence intensity. As shown in Figure 7c, LPS-stimulated cells showed
higher fluorescence intensity than control cells, while cells incubated with REA-UA NPs
showed a concentration-dependent decrease in fluorescence intensity. In other words, the
fluorescence intensity of cells incubated with 50 or 100 µg/m RES-UA NPs was much lower
than that of LPS-stimulated cells (*** p < 0.001). These findings suggest that the antioxidant
effects of RES-UA NPs prevented ROS generation in macrophages in a concentration-
dependent manner, consistent with the results of previous studies [38,55].

3. Materials and Methods
3.1. Preparation of Resveratrol and Urocanic Acid Nanoparticles

To prepare the resveratrol (RES; Carbosynth Ltd., Staad, Switzerland) and urocanic
acid (UA; Sigma-Aldrich, St. Louis, MO, USA) nanoparticles, we used a single-step emul-
sion solvent evaporation method and ultrasonication. First, UA (200 mg) was dissolved in
10-mL vials containing 5 mL N,N-dimethylformamide (DMF; Sigma-Aldrich), followed by
addition of RES (20 mg) and vigorous mixing for 1 min. Afterward, the mixture was added
to 10% polyvinyl alcohol (PVA, Mw = 13,000–23,000, 98% hydrolyzed; Sigma-Aldrich)
solution (3 mg PVA in 30 mL deionized water) at a flow rate of 0.1 mL/min using an NE-
100 syringe pump (New Era Pump Systems Inc., Farmingdale, NY, USA) while stirring at
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500 rpm for 3 min. After incubation for 3 min, the resultant mixture was re-dispersed using
a probe ultrasonicator (55 W; Korea Process Technology Co., Ltd., Seoul, Republic of Korea)
with a pulse function (pulse on/off = 10/2 s) in an ice bath for 30 min and subsequently
incubated overnight at 25 ◦C. After incubation, the RES-UA NP solutions were rinsed
three times with distilled water (DW) by centrifuging at 3000 rpm for 10 min. Finally, the
RES-UA NP solutions were freeze-dried using an FD8515 freeze dryer (IlShinBioBase Co.,
Ltd., Dongducheon-si, Gyeonggido, Republic of Korea).

3.2. Characterization

To assess changes in morphology according to pH, we incubated RES-UA NPs (1 mg/mL)
with 5 mL of phosphate-buffered saline (PBS; Welgene Inc., Gyeongsan-si, Gyeongsangbuk-
do, Republic of Korea) under different pH conditions (pH 7.4, 6.0, or 5.0) at 37 ◦C for 24 h.
The hydrodynamic size and zeta potential of the RES-UA NPs were measured under the
above conditions. Samples were further characterized by field emission transmission electron
microscopy (FE-TEM; JEM-F200; JEOL Ltd., Tokyo, Japan). The RES-UA NPs were sonicated
in ethanol (C2H6OH; DaeJung Chemical & Metals, Siheung-si, Gyeonggi-do, Republic of
Korea) by probe ultrasonication for 1 h, followed by deposition onto carbon-coated TEM
grids and drying in a drying oven to remove residual ethanol. The morphology of the
NPs was assessed by FE-TEM at a running voltage of 200 kV. The hydrodynamic size and
zeta potential of the RES-UA NPs were determined at 24 h using a nanoparticle analyzer
(SZ-100V2; HORIBA, Kyoto, Japan) at a 90◦ angle based on dynamic light scattering (DLS)
fundamentals. Regarding the calculations, each group (100 µg) was dispersed in 10 mL DW
by probe sonication for 10 min over ice. Next, each scattered group was transferred to a
disposable container and measured as described above. Resveratrol, urocanic acid, and RES-
UA NPs were characterized using Fourier transform infrared (FT-IR) spectroscopy (Shimadzu
8400S; Kyoto, Japan). The FT-IR spectra were acquired using KBr powder at a resolution
of 4 cm−1 and a wavelength range from 4000 to 400 cm−1. To quantify the drug-loading
amount and efficiency, we dissolved the RES-UA NPs (1 mg) into 1 mL of methanol for at
least 1 h, and the absorbance was measured at 307 nm using a multimode microplate reader
(Varioskan™; Thermo Scientific, Walthan, MA, USA). Then, the drug amount and efficiency
were determined based on the standard curve for RES (Y = 0.0306x + 0.0387, R2 = 0.9989; RES
concentration range of standard curve: 0 to 20 µg/mL).

3.3. In Vitro pH-Responsive RES Release Behavior of RES-UA NPs

Freeze-dried RES-UA NPs were investigated by dialysis at different pH values (pH 7.4,
6.0, or 5.0) to assess the pH-responsive release profiles of RES-UA NPs. The RES-UA NP
(2 mL at 1 mg/mL) solution was placed in a dialysis tube (cellulose membrane; MWCO of
3500 Da; Spectrum Laboratories, CA, USA), followed by immersion in a solution containing
30 mL of PBS buffer at a pH of 7.4, 6.0, or 5.0 and then incubation at 37 ◦C with continuous
shaking at 100 rpm. At various time intervals (1, 3, 6, 12, 24, 48, and 72 h), 4 mL of the
release medium was removed and replaced with 4 mL of the same amount of fresh release
medium. The amount of released RES was monitored using a multimode microplate reader
at a wavelength of 307 nm. The amount of RES released was calculated based on the
standard curve for RES (Y = 0.0306x + 0.0387, R2 = 0.9989; RES concentration range of
standard curve: 0 to 20 µg/mL).

3.4. Cell Viability Assessment

To assess the cytotoxicity of RES-UA NPs, we plated RAW 264.7 macrophages (Korea
Cell Line Bank, Seoul, Republic of Korea) at a density of 3 × 104 cells-per-well in 96-well
culture plates (Welgene Inc.) and cultivated them in DMEM (Thermo Fisher Scientific,
Rockford, IL, USA) containing 10% FBS (Thermo Fisher Scientific) and 1% antibiotics
(Thermo Fisher Scientific) in an incubator at 37 ◦C with 5% CO2 for 24 h. Then, the cells
were incubated with RES-UA NPs (0, 10, 50, or 100 µg/mL) for 24 h, and CCK-8 (Cell
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Counting Kit-8, Dojindo, Inc., Rockville, MD, USA) reagent for 1 h in the dark at 37 ◦C, and
well supernatants were transferred into 96-well plates.

To determine if the RES-UA NPs were able to protect against lipopolysaccharide-
induced (LPS; Sigma-Aldrich) cytotoxicity, cells were plated at a density of 3× 104 cells-per-
well in a 96-well plate and incubated for 24 h. They were then pre-incubated with RES-UA
NPs (0, 10, 50, and 100 µg/mL) for 1 h, followed by stimulation with LPS (100 ng/mL)
for 24 h. Then, cells were rinsed three times with PBS, followed by the addition of CCK-8
reagent and incubation for 1 h in the dark. At the end of this incubation period, supernatants
were transferred into the wells of a new 96-well plate.

The absorbance of cells after the addition of RES-UA NPs with or without subsequent
LPS stimulation was recorded using a multimode microplate reader at a wavelength of
450 nm. Untreated cells cultured under the same conditions as the treated cells were used
as the control group. Four samples per group were analyzed, and all experiments for each
time period were repeated three times.

3.5. Anti-Inflammatory Potential
3.5.1. Investigation of Nitric Oxide Production

The RAW 264.7 cells (2 × 105 per well) were plated into 24-well plates and incubated
for 24 h. Cells were rinsed twice with PBS, followed by the addition of serum-free medium
containing LPS (100 ng/mL) and different concentrations of RES-UA NPs (0, 10, 50, or
100 µg/mL) and incubation for another 24 h at 37 ◦C. The supernatants were harvested
to analyze nitrite accumulation using Griess reagent. In brief, supernatant (200 µL) was
added to an Eppendorf tube, followed by the addition of an equal volume of Griess reagent
(1% (w/v) sulfanilamide (DaeJung Chemical & Metals) in 5% (v/v) phosphoric acid and
0.1% (w/v) naphthylethylenediamine-HCl) and incubation for 10 min in the dark. At
the end of this incubation, optical density at 540 nm was determined using a multimode
microplate reader. The supernatant harvested from untreated cells was used as the blank
in all experiments. The amount of nitrite in the samples was determined by referring to a
sodium nitrite standard curve (Y = 0.0460x + 0.0204, R2 = 0.996).

3.5.2. Real-Time Reverse Transcription-Polymerase Chain Reaction Determination of
Transcript Levels of Target Genes

The in vitro anti-inflammatory effects of RES-UA NPs in LPS-activated macrophages
were investigated by quantifying the mRNA expression of pro-inflammatory mediators us-
ing real-time PCR. Cells were plated at a density of 2 × 105 cells-per-well in 24-well cell cul-
ture plates and incubated for 24 h. The cells were then stimulated with LPS (100 ng/mL) in
the presence or absence of different concentrations of RES-UA NPs (0, 10, 50, or 100 µg/mL)
for 24 h. Thereafter, cells were rinsed with PBS three times, followed by RNA extraction
using an RNeasy Plus mini kit (Qiagen, Valencia, CA, USA). cDNA was obtained from
total RNA (1 µg) using AccuPower RT PreMix (Bioneer, Daejeon, Republic of Korea) after
the measurement of total RNA. The sequences of the pro-inflammatory mediator primers
were as follows: COX-2: (F) 5′-GCG ACA TAC TCA AGC AGG AGC A-3′, (R) 5′-AGT GGT
AAC CGC TCA GGT GTT G-3′; IL-1β: (F) 5′-TGG ACC TTC CAG GAT GAG GAC A-3′, (R)
5′-GTT CAT CTC GGA GCC TGT AGT G-3′; iNOS: (F) 5′-GAC TTT CCA AGA CAC ACT
TCA C-3′, (R) 5′-TTC GAT AGC TTG AGG TAG AAG C-3′; TNF-α: (F) 5′-AAG CCT GTA
GCC CAC GTC GTA-3′; (R) 5′-GGC ACC ACT AGT TGG TTG TCT TTG-3′. An ABI7300
Thermal Cycler was used to perform thermocycling, and SYBR Green PCR master mix was
used for real-time monitoring of transcript levels (Applied Biosystems, Foster City, CA,
USA). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize the
expression of pro-inflammatory mediator genes.
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3.6. Antioxidant Effects of RES-UA NPs
3.6.1. In Vitro Antioxidant Capacity

To evaluate the antioxidant capacities of various concentrations of RES-UA NPs in
PBS with different pH conditions (pH 7.4, 6.0, and 5.0), we performed the ABTS (2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, as described previously [38]. L-ascorbic
acid (Vit-C; Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) was used as a positive
control. The ABTS radical solution was generated by mixing equal volumes of 14 mM
ABTS solution and 4.9 mM K2S2O8 (potassium persulfate) solution for 14 h at 25 ◦C in
the dark. The resulting mixture was diluted with PBS solution until the absorbance was
0.7 ± 0.02 at 734 nm. Vit-C (50 µg/mL) was dissolved in PBS (pH 7.4) and then diluted
in ABTS solution. Various concentrations of RES-UA NPs (10, 50, and 100 µg RES/mL)
were prepared in PBS with a pH of 7.4, 6.0, or 5.0, and then the diluted ABTS solution,
Vit-C solution, and sample solution were combined at a 3:1 v/v ratio and left to react in the
dark for 2 h. The absorbance of the reaction solution was monitored from 300 to 900 nm
using a multimode microplate reader. At 734 nm, the ABTS scavenging of the various
concentrations of RES-UA NPs and Vit-C was calculated using the following equation:
Scavenging activity = [(Abscon − Abssam)/Abscon] × 100, where Abscon is the absorbance
of the control, and Abssam is the absorbance of the sample in PBS with different pH values
(pH 7.4, 6.0, and 5.0).

3.6.2. ROS Scavenging Ability of RES-UA NPs

To assess whether RES-UA NPs could protect cells against oxidative stress, we in-
vestigated intracellular ROS generation using an ROS-responsive fluorescence indicator,
2,7-dichlorofluorescein diacetate (DCF-DA; Sigma-Aldrich). Macrophages were deposited
at a density of 5 × 104 on cover glasses, and these were then placed into the wells of
24-well plates followed by a 24-h incubation. Cells were washed three times with PBS
and pre-exposed to RES-UA NPs (0, 10, 50, or 100 µg/mL) in serum-free medium for 1 h,
followed by stimulation with LPS (100 ng/mL) for 24 h. Cells were stained with DCFDA
(25 µM) in the dark for 30 min and then fixed with 3.7% paraformaldehyde (BioSesang Co.,
Seongnam-si, Gyeonggi-do, Republic of Korea) for 30 min. After fixation, 4′,6-diamidino-2-
2phenylidole (DAPI; Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) and Alexa® Fluor
594-labeled wheat-germ agglutinin (Thermo Fisher Scientific Inc.) were used to stain cell
nuclei and membranes, respectively. Each sample was examined under a confocal laser
scanning microscope (CLSM; Carl Zeiss, Oberkochen, Germany). Fluorescence intensity
was measured using a multimode plate reader at excitation and emission wavelengths of
485 and 535 nm, respectively, to further quantify ROS formation.

3.7. Statistical Analysis

All data are reported as means ± standard deviations. Statistical analyses were
performed using a one-way ANOVA with the post hoc Holm–Sidak test in SigmaPlot
12.0 (Systat Software, Inc., San Jose, CA, USA). p values less than 0.01 were considered
statistically significant.

4. Conclusions

In this study, pH-responsive self-assembled RES-UA nanoparticles were successfully
fabricated using single-emulsion solvent evaporation and ultrasonication. The release pat-
tern of RES-UA NPs was faster in slightly acidic environments than in neutral environments.
The RES-UA NPs had anti-oxidative and anti-inflammatory effects in LPS-stimulated RAW
264.7 macrophages. The RES-UA NPs also significantly reduced the production of NO
in LPS-activated cells in a concentration-dependent manner. In addition, RES-UA NPs
remarkably diminished the mRNA expression of pro-inflammatory molecules (COX-2,
IL-1β, iNOS, and TNF-α). Furthermore, RES-UA NPs effectively scavenged ROS in cells
in a concentration-dependent fashion. Accordingly, RES-UA nanoparticles are promising
materials for the treatment of inflammatory conditions such as osteoarthritis.
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