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ABSTRACT Outdoor low dynamic range (LDR) panoramic images that contain the sun and sky are
generally over-saturated because the sun is 10,000 times brighter than the regions that surround it. Because
the luminance information in the region that contains the sun in these images is lost, it is difficult to
identify the sun’s position and generate high dynamic range (HDR) environment maps that can be used to
realistically relight virtual objects. Previous methods to reconstruct HDR maps did not consider that the sun
covers a small area in an image but contains extremely high luminance values. These methods are therefore
insufficient for estimating scene illumination. We propose a multi-faceted approach to reconstructing HDR
maps from a single LDR sky panoramic image that considers the sun and sky regions separately. We encode
an input image and transfer a multi-dimensional latent representation to two decoders, which reconstruct
the luminance information in the sky and sun regions separately. To plausibly model sun illumination,
we introduce two networks (Sunpose-net and Sunrad-net) that estimate the position and radiance of the sun.
The generated sun radiance map is then merged with the output of the decoder that is responsible for sun
regions. We demonstrated that the proposed method more plausibly reconstructs HDR maps than previous
methods using the HDR-VDP-2.2 which measures the visual quality of reconstructed HDR maps against
ground truth. The accuracy of the overall sun and sky illumination distribution in HDR maps reconstructed
using the proposed method was evaluated using histogram distance measures.

INDEX TERMS Sky appearance model, high dynamic range map, deep learning model, sun illumination
estimation.

I. INTRODUCTION

In augmented reality (AR), to realistically render an image
of a virtual object, it is necessary to simultaneously con-
sider geometric (occlusion based on camera viewpoint) and
lighting (effect of light sources on the scene: shadows and
shading regions) components. More specifically, the position
and luminance of the sun in outdoor environment affects FIGURE 1. HDR maps (top) reconstructed using the proposed method
the shadow shape, sharpness, and direction in the rendering under three weather conditions (left: clear, mid: cloudy, right: overcast);
image. Though many studies that consider these components the images rendered using the reconstructed HDR maps (bottom).
have been conducted, there are still several challenges to be
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FIGURE 2. An overview of the proposed method.

is because it is difficult to consider the extremely high lumi-
nance of the sun, that causes the surrounding image region to
be over-exposed as well as the saturation caused by heavy
cloud-cover occluded the sun. The goal of this paper is to
facilitate more precise lighting estimation for outdoor envi-
ronments by taking the presence of the sun and the other
regions of the sky panoramic image into account separately.
HDR maps were generated using the proposed method and
used to render the images shown in Figure 1.

The parameters of models for the appearance of the
sky have been estimated, using an analysis of physical
phenomena, to simulate the luminance distribution of the sun
and sky [3], [4], [5], [6]. This approach enables us to set up
the rendering environment for an outdoor scene. SKy appear-
ance models are, however, unable to model complex weather
conditions, such as cloudy, partially cloudy, and overcast.
Learning-based approaches that retrieve sky parameters from
low dynamic range (LDR) images [7], [8], [9], [10], [11]
inherit all the limitations of physically-based analytical
models.

In rendering engines, real-world lighting information is
directly represented using high dynamic range (HDR) images
in the form of HDR environment maps, thereby avoiding
the challenges associated with estimating sky parameters.
However, the input sky panoramic images are generally sat-
urated because the region that contains the sun is 10,000
times brighter than the regions that surround it. Much of the
luminance information in the sky regions surrounding the sun
is thus lost. Previous methods to reconstruct HDR maps [12],
[13],[14],[15],[16],[17], 18], [19], [20] did not consider the
presence of the sun, which covers a small area in the image but
contains extremely high luminance values, and are therefore
insufficient for estimating scene illumination.
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Blending (Sec. 3.F)

In general, HDR maps can be generated by merging multi-
exposure (bracketed) LDR images [12], [13], [14]. To create
HDR images by merging bracketed images, the scene ele-
ments to be synthesized must be static. In order to solve this
problem, studies on HDR reconstruction from a single LDR
image are being widely conducted [15], [16], [17], [18], [19],
[20]. In order to more accurately estimate illumination of an
outdoor scene, we reconstructed an HDR map from an LDR
image, while separately taking the position and luminance
distribution of the sun and sky into account. The light from a
distant object like the sun is scattered due to the participating
media’s transmittance [4], [6]. The light incident (illumi-
nance), J, on a virtual object and observed from a camera is
modeled as a combination of the light (J,,,) from the sun and
the luminance of the sky Jgy, as shown in equation (1).

J= Jst,m - T+ Isky’ (1)

where t describes the participating media’s transmittance.
Based on equation (1), we introduce a method to reconstruct
the luminance distribution in the sun and sky regions sepa-
rately and then merge them in an HDR map. Jy,, is generated
by masking the non-sun regions of the output image of the sun
luminance estimator (Sec.III-C). Jg, is generated by masking
the sun regions of the output image of the sky luminance
estimator (Sec.IlI-B). Jy,, and Jg, applied an inverse tone
mapping operation and then blended to generate the final
output HDR map J.

Our method encodes the sky information from an input
sky panoramic image and transfers the information to two
decoders. The two decoders reconstruct the luminance infor-
mation in the sky and the sun regions separately. To regulate
the range of the illumination, the decoder responsible for the
sky takes the residuals of the input image and the ground truth

VOLUME 11, 2023



G. Shin et al.: HDR Map Reconstruction From a Single LDR Sky Panoramic Image for Outdoor lllumination Estimation

IEEE Access

HDR map and combines them with the input LDR image. The
decoder for the sun considers the range of luminance distribu-
tion in the regions near the sun. Because the sun illumination
is lost due to the over-exposure in the input images, two deep
learning networks (Sunpose-Net and Sunrad-Net) are used to
estimate the sun position and the parameters of the Dirac delta
function.

The sun position as well as the estimated parameters
(B, ) are fed into the Dirac delta function to generate a sun
radiance map. The output illuminance distributions of these
two modules are upscaled and softly blended into a single
HDR map. To evaluate our method, HDR images from the
Laval HDR sky database are transformed into LDR images
using four tone mapping operators (TMO). Figure 2 shows an
overview of the proposed method. In this figure, f is a tone
mapping operation defined by equation (2)

f(x)=log (14 vx)/log(l+v), ()

where v is the maximum expected luminance value (5000).
x is the pixel value (luminance) in the HDR map. f ~! repre-
sents the upscale (inverse tone mapping) operation.

The simulation results show that our method more accu-
rately reconstructs HDR maps of the sky than previous meth-
ods do in terms of HDR-VDP-2.2, peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM) and his-
togram distance measures. We compared the rendering results
of our method against those of previous methods for outdoor
scenes under various weather conditions.

The main contributions of this manuscript are highlighted
as follows.

o A multi-faceted HDR reconstruction approach that sep-
arately considers the luminance distribution of the sun
and that of the sky in outdoor environments.

o An encoder that generates a multi-dimensional
latent representation for the luminance distribution
in an input LDR sky panoramic image.

o Two decoders that consider the heterogeneous
luminance properties of the sky and the sun region
separately.

e A network that estimates the parameters of the Dirac
delta function to retrieve the luminance distribution
of the sun which covers a small area in HDR maps
but has extremely high luminance values relative to its
surroundings.

e A dataset (CAU) containing 505 LDR images
captured under multiple exposures and their cor-
responding 101 HDR images. It is available at
https://github.com/ShinYwings/HDR-Map-
Reconstruction-From-a-Single-LDR-Sky-Panoramic-
Image-For-Outdoor-Illumination-Estimation.

Il. RELATED WORK

A. SKY APPEARANCE MODELING

Physically based analytical methods estimate the luminance
distribution of the sun and sky using explicit parametric
equations [3], [4], [5], [6]. These methods can generate the
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sky appearance for any given input time, date, or location.
The Perez model [3] predicted a sky luminance distribution
using five parameters based on global and direct irradiances,
building on the 1993 CIE sky model. However, because this
model only accounts for luminosity using five parameters, it
can only simulate skies under limited weather conditions. The
Preetham model [4] improved on the Perez model by adding
chromaticity considerations to generate a greater number
of sky conditions. The model also proposed a set of linear
functions that allow for the coefficients in the Perez model to
be retrieved for various levels of turbidity. The Hosek-Wilkie
model [5] generated an even more realistic sky appearance
for a wider range of turbidity values and low solar altitude
(sunset and sunrise) scenes by employing a brute force path
tracer to fit the collected reference data. Hosek and Wilkie
later used Monte-Carlo simulation and Rayleigh scattering
to model solar radiance [6]. Analytical approaches based on
physical models are computationally inexpensive and do not
require a large dataset. However, they focused on the clear
sky and were unable to generate the illumination distribution
for the cloudy weather. This is because the limited number
of parameters used by analytical models is insufficient for
modelling more complex sky conditions, such as partially
cloudy and overcast. In addition, the parameters that simulate
areal-world sky are retrieved through a time-consuming fine-
tuning process.

Learning based methods [7], [8], [9], [10], [11] have
focused on estimating the illumination of an outdoor scene
from a single input image, rather than generating the sky
appearance. Unlike for the analytical methods, manually tun-
ing parameters is not necessary for this process. To account
for variations in sun intensity in complex situations like
cloudy weather, Matthews [7] added the sun, which inolves
an exponential drop-off in the log-intensity domain, to the
Preetham model. He also introduced a regression model
to consider the dispersion of sunlight that is attenuated by
the atmospheric transmission conditions and cloud coverage.
Hold-Geoffroy et al. [8] introduced a CNN-based method
to reconstruct an outdoor illumination environment map by
explicitly predicting the Hosek-Wilkie model’s parameters
from a single outdoor LDR image of a general scene. This
approach inherits the Hosek-Wilkie analytical model’s inabil-
ity to represent complicated sky conditions.

Hold-Geoffroy et al. [10] estimated illumination condi-
tions by implicitly learning the parameters of a low-
dimensional, physically-based model. Specifically, he tried
to represent sky features as a 64-element latent vector, but
this vector was not sufficient to represent the luminance
distribution of the sun and various weather conditions. This
procedure is performed by mapping the sky appearance in the
image to the scene illumination.

To address this problem, Yu et al. [11] developed three
auto-encoders that represent sky and sun conditions as two
separate vectors for accurate outdoor illumination prediction.
Because the encoders were designed to consider the sun
and sky intensities separately, the dataset was separated into
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clear and cloudy weather conditions to train the encoders.
Furthermore, the above-mentioned two methods [10] and [11]
require user-guided post-processing to compensate for any
inaccuracies in the final environment maps.

To account for the variations in light incident on a virtual
object caused by changes in spatial properties, [1] and [2]
combined the reconstructed environment maps with warped
image information according to the geometrical information
estimated from intrinsics. Reference [1] considered shadow,
depth, normal, and albedo and [2] only considered depth as
intrinsic parameters. The HDR enviroment maps are recon-
structed using the methods in [20] and [10] for [1] and [2],
respectively. Since both methods compressed the environ-
ment map into a single vector, they were unable to sufficiently
represent the luminance distribution of the sun under various
weather conditions.

Zhang and Lalonde [20] proposed a model that learns
an inverse tone mapping of LDR sky panoramic images,
to HDR sky panoramic images in outdoor scenes. This study
employed an encoder—decoder structure to reconstruct HDR
images and estimate sun elevation. In general, PSNR, SSIM,
and HDR-VDP-2.2 measures are used for HDR image quality
assessment [21]. However, in this study, HDR image quality
was only evaluated using the mean absolute error between
generated and ground truth HDR maps. Another limitation
of this approach is that the output resolution is limited to
64 x 128, implying that HDR information in a full resolution
LDR background image cannot be extrapolated.

In [22], an HDR environment map, which is represented
using spherical harmonics, is estimated from a single LDR
monocular spherical panoramic image. This study relied on
a global Lambertian assumption of the scene and required its
normal map. In addition, only the low-frequency environment
map estimates were offered because it regresses up to the third
order spherical harmonics coefficients. This implies that the
HDR map generated cannot be used to accurately simulate the
effects (shadow shape, sharpness, and direction) of the sun in
an outdoor scene.

B. HDR RECONSTRUCTION
HDR images can store a wide range of luminance values and
are therefore well suited to representing illumination in a real-
world sky. It is possible to generate an HDR image from
an LDR image using an inverse camera response function
(CRF), but the CRF may not always be accessible. In much
earlier approaches, HDR images were generated by fusing
bracketed exposure LDR images into a single HDR image
[12], [13], [14] which may not recover any missing details in
under or over-exposed image regions. The need for bracketed
(multi-exposed) images limits the use of images from com-
monly accessible sources like the web, where camera expo-
sure setting information is unknown. Also, ghosting artifacts
commonly occurs when bracketed images of dynamic scenes
are combined [12].

Many deep learning approaches [15], [16], [17], [18], [19],
[23] that perform a direct single LDR to HDR mapping
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overcome these challenges. Endo et al. [16] developed an
encoder-decoder network to infer up/down-exposed (brack-
eted) images from a single LDR image. The bracketed
images were then merged to reconstruct an HDR map using
Debevec’s method [12]. The number of over/under-exposed
images affect much of the HDR reconstruction performance,
but an increase in the number of inferred images is com-
putationally expensive in terms of memory and processing.
This model is not suited to highly dynamic scenes, such
as those containing the sky, because it is trained on an
image dataset with a limited exposure range. It does not ade-
quately reconstruct outdoor scenes with the highly dynamic
range [16].

More recent approaches employ a direct single LDR-
to-HDR conversion with an auto encoder-based model
[17], [18], [19], [23]. Eilertsenetal. [17] reconstructed
an HDR image from a single exposure by employing an
encoder-decoder framework with skip connections to recover
details in over-exposed image regions. This approach gener-
alized well to various illumination conditions, however, the
use of a fixed inverse CRF such as gamma g 'x) = x¥
for linearization makes the approach unsuitable for images
captured by the camera with dissimilar exposure values.

Liu et al. [18] modeled the HDR-to-LDR image formation
pipeline as dynamic range clipping, non-linear mapping from
a CRF, and quantization. A couple of U-Nets and CNNs are
used to reverse each of these steps while imposing effective
physical constraints to facilitate the training of the individ-
ual subnetworks. Liu used a separate network to estimate
the CRF as a linear combination of PCA basis vectors,
as stipulated by the empirical camera models [13]. Yang and
Aydin [19] employed two U-Net-based modules to recover
low-frequency components and hallucinate the image details
clipped due to quantization as well as insufficient dynamic
range. However, when the input image is severely clipped,
this method tends to suffer from banding effects and color
shift artifacts in over-exposed regions. The U-Net structure is
generally well suited for image detail reconstruction but com-
pletely unable to recover lost details in large over-exposed
regions.

C. IMAGE-TO-IMAGE TRANSLATION

Image-to-image translation converts an input image (source
domain) to the transferred style image (target domain) while
preserving the content representations [24], [25], [26], [27],
[28]. A mapping between the source and target domains
is learned through training. Isolaetal. [24] proposed a
method based on conditional generative adversarial network
(GAN) [25] to synthesize photos from label maps, recon-
struct objects from edge maps, and colorize images. This
approach used U-Net for its generator and a Markovian-based
method (PatchGAN) for its discriminator. The key limitation
of this supervised approach is the need for a source-to-target
paired dataset in the training procedure. Unsupervised image-
to-image translation approaches overcome this limitation by
employing a cycle-consistency constraint [26], [27], [28]
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FIGURE 3. Architecture of the sky luminance estimator.

to learn mapping functions between the source and target
domains.

D. CLASSIFICATION ACTIVATION MAP (CAM)
By employing global average pooling (GAP), a CNN trained
for classification can be used for object localization without
bounding box annotations [29], [30]. This approach identi-
fies exactly which regions of an image are being used for
discrimination, but only achieves class-specific feature maps
and requires the fully connected layers of the network to be
replaced with convolutional layers and GAP [29].
Grad-CAM [30] addressed these issues by employing
gradient-based localization to generate saliency maps, show-
ing the location and intensity of the regions of interest in an
image for a wide range of CNN-based classification models.
Grad-CAM used the gradient information flowing into the
last convolutional layer of a CNN to understand the impor-
tance of each neuron for a given classification procedure
[30]. CAM needs GAP as a last layer, but the Grad-CAM
does not require further modification of classification models.
In this study, the Grad-CAM is used to identify the regions of
the image that are necessary for estimating the position of
the sun and its luminance distribution under various weather
conditions.

lll. METHODOLOGY

A. OVERVIEW

Our goal is to reconstruct an HDR map from a single LDR sky
panoramic image. Panoramic images are generally generated
using multiple images captured by the camera with a limited
field of view. In this procedure, the image pixels from mul-
tiple consumer cameras are interpolated, so the pixel values
are not explained by a single CRF [31]. Instead, we consider
the HDR reconstruction as an image-to-image translation
problem for which a GAN-based architecture is well suited.
By regarding the HDR map as the output of the generator,
an adversarial approach can be used to train both generator
and discriminator.
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U-Net and encoder-decoder architectures have been widely
used in image-to-image translation [24], [25], [26], [27],
[28]. The U-Net down-samples input images into a sin-
gle latent vector, which cannot sufficiently represent the
high-frequency components in the luminance distribution of
sky images. We employ a modified encoder-decoder architec-
ture that generates a high-dimensional latent representation to
sufficiently include the coherence of the sun region and sky as
well as the luminance gradation in the sky region. Because the
sky image intensities are heavily influenced by the high lumi-
nance value of the sun, we employ a single encoder to build a
representation of the entire luminance distribution of the sky
images. The sky region includes a lot of fine textures, and it
has a wider coverage, and much lower luminance distribution
than the sun region does. The sun region covers a smaller
area but on the log scale, contains luminance values that are
five orders of magnitude higher in the sky regions. There-
fore, we design and implement two decoders to consider the
heterogeneous luminance properties of the sky and the sun
region separately. In this paper, the decoder for the sky region
is called the sky decoder and that for the sun region is the sun
decoder. Separately computed luminance distributions of the
sun and the sky are combined to reconstruct an HDR map.
A PatchGAN discriminator architecture is adopted because of
its ability to model high-frequency components in the image.

B. SKY LUMINANCE ESTIMATOR
The sky luminance estimator (Figure 3) reconstructs the
luminance distribution of the sky regions without the
over-exposed sun regions of an input sky LDR panoramic
image. A latent representation of the input LDR image is
generated using an encoder. Then, the latent representation
is decoded to generate the sky luminance distribution, which
is identity-mapped to the original input sky LDR panoramic
image. Additionally, the input LDR image is passed to each
of the residual blocks.

Our encoder-decoder architecture is based on the fully
convolutional ResNet [32] but uses a modified activation
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passed to the Sunrad-Net as input.

function. The encoder down-samples the input image into
a multi-dimensional latent vector to represent the overall
luminance distribution of the sky panoramic image. The
down-sampling layers consist of a 7 x 7 convolutional layer
with a stride of 1 and two 3 x 3 convolutional layers with
a stride of 2. After each convolutional layer, instance nor-
malization and leaky ReLU activation with a slope of 0.1 are
applied. The decoder enables the latent representation to be
used to linearly expand the dynamic range in the sky image
regions that do not contain the sun. The up-sampling layers
(decoder) consist of two 3 x 3 deconvolutional layers with a
stride of 2 and a7 x 7 deconvolutional layer with a stride of 1.
After each deconvolutional layer, instance normalization and
leaky ReL.U activation are applied.

Between the encoder and decoder, there are six residual
blocks, each with five operations: a 3 x 3 convolution with
a stride of 1, instance normalization, leaky ReLU, a 3 x 3
convolution with a stride of 1, and instance normalization.
In each residual block, an input is added to the output of
the residual block. By adding the input LDR image inten-
sity to the result of the sky decoder and applying a ReLU
operation to clip the negative values, we ensure that the
global luminance of the sky region is preserved and avoid
sudden variations near over-exposed regions in the train-
ing process. The identity mapping is added in the encoder-
decoder architecture to learn residual information in the
LDR images, as shown in Figure 3. The output of the sky
luminance estimator is then softly blended with the sun
luminance distribution (Sub-Section III-F). These successive
optimizations allow for an even more stable estimation of
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the illumination distribution of the sky without estimating
the CRF.

C. SUN LUMINANCE ESTIMATOR

The sun luminance estimator recovers the luminance distri-
bution of the sun regions, which are highly over-exposed in
an LDR image. This module consists of a decoder and two
networks: Sunpose-Net estimates the position of the sun in the
sky panoramic image, and Sunrad-Net obtains the parameters
of the Dirac delta function, which is used to generate the
luminance distribution of the sun.

The decoder of the sun luminance estimator uses the
multi-dimensional latent representation generated by the
encoder to reconstruct the overall luminance distribution for
over-exposed regions that contain and surround the sun. The
decoder in this module is identical in structure to that in
the sky luminance estimator. It is, however, unable to fully
recover the illumination distribution of the sun. To addi-
tionally consider the extremely high luminance of the sun,
we employ the Dirac delta function with three parameters:
sharpness (), transmittance scale (t) and sun position (x).
Here, the sun position is estimated using the Sunpose-Net (in
Sub-Section III-D).

The Dirac delta function can generate the sun radiance
map for various weather conditions. More specifically, this
function can generate various levels of sharpness for the
sun regions and maintains the total energy of the radiance
map. A map generated using the Dirac delta function spikes
as the B value increases and spreads out as it decreases.
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In equation (3), T represents the transmittance value of the
sky. The Sunrad-Net estimates these two parameters to sim-
ulate the sharpness and the intensity of the sun radiance map
under various atmospheric conditions.

T (1-x)*
8 (xi,j, T, ,3) = m exp _T , 3)

where x; j is the probability that the sun is present at a given
pixel (i, j).

D. SUNPOSE-NET

The Sunpose-Net generates a likelihood map that illustrates
the probability that each pixel (7,j) in the input LDR sky
panoramic image contains the sun. In order to improve
performance in terms of convergence time and accuracy,
the Sunpose-Net is pretrained for 1,000 epochs using the
Adam optimizer at a learning rate of le-04. The Kullback-
Leibler (KL) divergence and difference-of-Gaussian (DoG)
loss functions that are used in pre-training KL divergence
are used to compare predicted and ground truth probability
distributions. The DoG loss function, originally designed in
the thermal diffusion equation, encourages the network to
better represent the gradation (high frequency components) of
the luminance distribution of the sun. The DoG loss function
is further described in Sub-Section III-G.

The ground truth sun position (zenith angle and azimuth
angle) labels are converted to a probability distribution using
the von Mises distribution as proposed by Hold-Geoffroy
[8]. The numerical sun position is expressed as a probability
distribution modeled from the circular normal distribution
(von Mises distribution). This representation contains spa-
tial information and achieves better sun position prediction
results than that in the numerical representation.

The Sunpose-Net (Figure 4(a)) employs a modified
VGG16-Net [32] with three CNN blocks and two affine trans-
form layers. Each CNN block consists of two sub-layers and
max pooling. The first CNN block consists of two sub-layers
that each have a 7 x 7 convolution filter with a stride of 1.
The remaining two CNN blocks consist of two sub-layers that
each have a 3 x 3 convolution filter with a stride of 1. Each of
the sub-layers is followed by an instance normalization layer
and a ReLU activation function. The three CNN blocks output
feature maps with 32, 64, and 128 channels, respectively.
Each affine layer has a fully connected layer and a ReLU
activation function. The dimensions of the final output prob-
ability distribution by the Sunpose-Net are identical to the
resolution of the input image. The output vector is reshaped to
atwo-dimensional feature map that represents the probability
that each pixel in the input LDR sky panoramic image con-
tains the sun. Instance normalization is used instead of batch
normalization to preserve variations in activation maps.

E. SUNRAD-NET
To reconstruct the extremely high luminance in image regions
that contain the sun, Sunrad-Net is used to estimate the
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FIGURE 5. Input LDR images and corresponding attention maps
generated by applying Grad-CAM at each block in the Sunpose-Net under
various weather conditions.

parameters of the Dirac delta function. The luminance distri-
bution of the sun is generally affected by weather conditions
such as cloud coverage. To consider those variations, the
Grad-CAM generates an attention map that is used as an input
to the Sunrad-Net. Attention maps (Figure 5) are generated by
applying Grad-CAM to the outputs of the three blocks in the
Sunpose-Net. These attention maps are concatenated to the
input LDR image, and then the concatenated maps are passed
to the Sunrad-Net as input. As shown in Figure 5, the attention
map varies with changes in weather conditions. The first row
shows panoramic images of cloud cover varying from clear,
as in (a), to heavily overcast skies, as in (d). The remaining
rows show the corresponding attention maps generated by
applying Grad-CAM at each block in the Sunpose-Net for
each input image.

In the Sunrad-Net, a PatchGAN architecture is adopted
as shown in Figure 4(b). The Sunrad-Net consists of four
sequential 4 x 4 convolutional layers with a stride of 4 and
two parallel affine transform layers. As in PatchGAN, batch
normalization is excluded from the first convolutional layer
and each convolutional layer is followed by batch normaliza-
tion and leaky ReLLU activation with a slope of 0.3. convolu-
tional layers are used to encode the sun radiance distribution
of the input image, which is described by the correlated
parameters T and . The encoded representation is flattened
and passed to two separate FC layers that estimate the param-
eters T and B. Here, the FC layers have the same number of
nodes and apply the sigmoid activation function to generate
the final parameters T and 8 of the Dirac delta function as a
value between 0 and 1.

Because a 0 beta value input to the Dirac delta function
results in an infinite sun intensity estimation, we chose to
clip the sun radiance at a value of 30,000 in accordance with
NASA’s tabulated data on spectral radiance [4].

F. BLENDING
The luminance distributions of the sun and the sky are
computed separately to take into account the differences in
the luminance properties of the sky and the sun regions.
These two luminance distributions are upscaled (inverse tone-
mapped) into HDR maps using equation (2) and ultimately
combined into a single HDR map, which is regarded as
the output of our PatchGAN-based generator, similar to the
image-to-image translation approaches.

By examining the luminance information retrieved by the
sky luminance estimator, we can identify which regions of the
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sky panoramic image contain the sun. The mask («) repre-
senting the sun region is generated to combine the luminance
distribution of the sun with that of the sky. We used a soft
mask [17] to blend the illumination distributions generated
by the sun and sky illumination estimators into a single HDR
map without banding effects.

min (1, max (maxC De — (1 —v) /y))) , 4

where D, is the output of the sky luminance estimator in
channel ¢ and y is the threshold (y = 0.12). The linear ramp
for the blending starts at the threshold value and ends at the
maximum pixel value. max, is the maximum value in each
channel c.

G. LOSS FUNCTION

Our objective function (L) is defined as a linear com-
bination of reconstruction, perceptual, DoG, and adversarial
losses.

Liotal = A Lyec + )"2£Jperc + A3Laav + A4LpoG, ®)

Reconstruction loss (L), the L1 norm, is used to measure
the similarity between the ground truth HDR map and the
reconstructed HDR map. Perceptual loss (Lper) computes
the perceptual distance between the ground truth and the
reconstructed HDR maps, tone-mapped using equation (2)
[33]. DoG loss (Lpog) considers the difference between the
high-frequency components in the ground truth HDR map
and those in the reconstructed HDR map.

Because we consider HDR reconstruction as an image-
to-image translation and employ a PatchGAN-based
approach, the output HDR map is continuously evaluated
using an adversarial loss (L,4,) during training. The adver-
sarial loss is used to evaluate how closely the predicted
HDR map matches the ground truth HDR map. Here, L4,
is computed with the least-squares measure, which stabilizes
the training and alleviates the unwanted blurring effects [34].
This ensures that the predicted HDR map is visually more
similar to the ground truth HDR map. In our experiment, set-
ting A1, A2, A3, and A4 to 10,0.01, 1, and 1000, respectively,
resulted in the highest performance.

In our discriminator, 4 x 16 patches in the predicted HDR
map are compared with corresponding patches of the ground
truth HDR map. The discriminator consists of four convo-
lutional layers with 64, 128, 256, and 512 output channels.
Each layer has 4 x 4 convolution (stride of 2), batch normal-
ization, and leaky ReL.U activation with a slope of 0.3. Batch
normalization is not used in the first convolution layer as in
PatchGAN [24]. An additional convolutional layer outputs
a probability value describing how correct or fake a given
patch is.

IV. EXPERIMENTAL RESULTS

A. TRAINING DETAILS

To evaluate our HDR reconstruction methods, we used Ten-
sorFlow 2.4 to conduct experiments on a computer equipped
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with an Intel®) Core™ 19-10920X CPU and an Nvidia RTX
3090 graphics processing unit.

In our experiment, the Laval Sky HDR database [7] and
a real image dataset (the CAU dataset) were used in the
training and testing processes. The Laval Sky HDR database
included 30,000 HDR sky-dome panoramic maps, at a reso-
lution of 1024 x 2048, and their corresponding sun positions
(zenith angle and azimuth angle) were provided. For the
training, 24,000 HDR maps were used, and the remaining
6,000 images were used in testing. The HDR maps were
resized to 32 x 128 for a reasonable trade-off between com-
putational cost and realistic rendering [20]. The sun was
horizontally centered in all panoramic images, and the corre-
sponding sun position was converted from real-world angles
to pixel positions in the panoramic image. These numerical
sun positions were eventually expressed as the probability
distributions. Because the focus of this study was the recon-
struction of HDR maps from the LDR sky panoramic images,
the image regions at a horizontal elevation that was less than
0 degrees were clipped.

In order to evaluate the generalization performance of our
method, testing and training data were generated using differ-
ent TMOs. The test data were generated using four different
methods: Drago, Durand, Mantiuk, and Reinhard [35], [36],
[371, [38], whereas the training data were generated using the
CREF database-based method proposed by Liu et al. [18].

FIGURE 6. HDR input and corresponding Drago, Durand, Mantiuk,
Reinhard TMO output LDR images.

Drago employed an adaptive logarithmic mapping tech-
nique to compress luminance values, which preserves image
details and contrast. Reinhard, inspired by the adaptation
processes in the human visual system, proposed intuitive
parameters to control intensity, contrast, light, and chromatic
adaptation. In Durand’s method, the image was decomposed
into large-scale variations and edge components using a bilat-
eral filter, to preserve the image details. Mantiuk imposed
constraints on the contrast image over a full range of spa-
tial frequencies in order to enhance image contrast without
artifacts. In Figure 6, the first image is a ground truth HDR
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FIGURE 7. Qualitative comparison of HDR maps generated using different HDR reconstruction methods on the Laval dataset.

map, and the susbsequent images are the results found by
Drago, Durand, Mantiuk, and Reinhard TMO, respectively.
We generated the tone-mapped images using four methods
whose parameters were randomly generated 6,000 times.
We confirmed that TMOs result in color distributions similar
to those in Figure 6.

TABLE 1. Hyperparameters of the compared approaches and proposed
method.

Methods Lear | Batch Blending Inverse
ning size parameter Camera
rate » Response

Function

HDRCNN Se-5 8 0.05 xT(n=2

[17] fixed)

SingleHDR le-4 16 0.05 Estimated using

[18] CNN [13]
SingleHDR* le-4 16 0.12 Estimated using

CNN [13]
Proposed le-4 32 0.12 Sky luminance
estimator (Sec.

3.B)

B. HDR RECONSTRUCTION MAP RESULTS

We compared HDR maps reconstructed using the proposed
model with those reconstructed using HDRCNN [17] and
SingleHDR [18] in qualitative and quantitative aspects. HDR-
CNN is a hybrid U-net model that estimates the over-exposure
area by applying the inverse camera response function (x") to
the skip connection layers of the U-net. Here, the parameter,
n, was set to 2. SingleHDR is also based on the U-net model
but estimates a different inverse camera response function
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for each LDR sky panoramic image by employing a para-
metric model, whose parameters are estimated using a con-
volutional neural network [13]. The proposed method uses a
sky luminance estimator (Sec. III-B) for estimating inverse
camera response functions. In the case of SingleHDR, the
results obtained by running inference using the pre-trained
weights offered by the author [18] are labeled ‘‘Single-
HDR”, and those attained following training on the Laval
dataset are labeled “SingleHDR*”’. HDRCNN, SingleHDR,
SingleHDR*, and the proposed method were trained using
batch sizes of 8, 16, 16, and 32, respectively. A learning rate
of le-4 was used for all methods except HDRCNN where a
Se-5 learning rate was used. In previous methods, a blending
parameter was used to combine the linear LDR image with
the output of the networks that recover over-exposed and
saturated. In our method, the output of the sky luminance
estimator is then softly blended with the sun luminance dis-
tribution. The blending parameters are shown in Table 1.

Figure 7 shows the HDR maps generated using the pro-
posed method are closer in appearance to the ground truth
HDR maps than those generated using HDRCNN [17] and
SingleHDR [18] are. The displayed images are the results of
tone-mapping using Reinhard’s method, which is ideal for
qualitative comparison given that it is based on the human
visual system [38].

In Table 2, the proposed model was compared with the
HDRCNN, SingleHDR, and SingleHDR* using the HDR-
VDP-2.2, PSNR, and SSIM evaluation metrics. The best
values by each metric are highlighted in bold. The results
for these methods were obtained using the source code pro-
vided by the authors. The proposed method more accurately
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reconstructed HDR maps of the outdoor scenes than the two
previous methods (HDRCNN and SingleHDR) did.

The method HDR-VDR-2.2, which is based on the visual
model for all the luminance conditions, examines visibil-
ity and image quality differences between images. For this
measure, we paid particular attention to image quality and
evaluated it as a mean opinion score (Q score) [39]. A higher
Q score implies a better-quality image. The PSNR is the ratio
of the maximum possible power of the signal to that of the
noise. In our experiment, the PSNR is a pixel-to-pixel com-
parison between the ground truth HDR map and the predicted
HDR map, and it considers the accuracy of the high lumi-
nance values [23]. The SSIM estimates the perceived lumi-
nance, contrast, and structure quality differences between the
ground truth and the predicted images. Here, perceptual uni-
formity encoding is performed on HDR maps because PSNR
and SSIM metrics are originally designed for LDR image
comparison [40].

The HDR-VDP-2.2 measure improves as the inverse cam-
era response function is more accurately reconstructed [41].
As described in Section I1I-B (Sky Luminance Estimator), the
proposed sky luminance estimator reconstructs the luminance
distribution of the sky without estimating the inverse cam-
era response function. In other words, achieving the highest
performance in the HDR-VDP-2.2 measure implies that our
GAN-based architecture implicitly reconstructed the most
accurate inverse camera response function.

In addition, the histograms show that HDR maps geneated
using the proposed method more closely matches the peak
luminance values in the sun regions of the ground truth HDR
maps than those generated using other methods. Since the
peak luminance value is considered in PSNR measure, the
proposed method scored highest in two tone-mapping opera-
tors: Durand and Mantiuk that preserve a wide range of lumi-
nance values. Since the other two tone-mapping operators
(Drago and Reinhard) focus on compressing the luminance
values to preserve the image details, the HDRCNN achieve
slightly higher performance in terms of PSNR measure in
Table 2.

HDRCNN often generates overly-bright results and suf-
fers from noise in the under-exposed regions because an
aggressive and fixed inverse camera response function is used
(n = 2) [18]. As shown in Table 2, HDR maps recon-
structed using HDRCNN were generally worse than those
reconstructed using the proposed method. SingleHDR shows
better results in terms of SSIM because it explicitly estimates
an inverse camera response function for each input image by
employing a parametric model, whose parameters are esti-
mated using a convolutional neural network [13]. However,
as shown in Figure 7, the small discrepancy in the SSIM
can be explained by the fact that quantitative metrics do not
always match subjective results and may incorrectly rank the
approaches [41].

SingleHDR scores better than other methods on the
SSIM metric which examines the image structure proper-
ties between two images. This is because HDRCNN and
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FIGURE 8. Tone mapped LDR images from the Laval dataset under two
weather conditions (top); corresponding histograms generated from HDR
maps reconstructed using four methods (bottom).

our method simultaneously infer inverse CRFs and over-
exposure regions, but SingleHDR uses a canonical method
to reconstruct the over-exposed regions after an inverse CRF
is inferred. In order to prevent banding effects and to more
accurately recover the dynamic range and tone, the proposed
method did not estimate a CRF. In some cases, our encoder-
decoder architecture results in unexpected noise. Further con-
sideration is required to alleviate this unexpected noise effect.

Figure 8 shows tone mapped LDR images from the Laval
dataset under cloudy and sunny weather conditions, and
the corresponding histograms generated from HDR maps
reconstructed using four methods (HDRCNN, SingleHDR,
SingleHDR*, and the proposed method). In the histograms,
the x axis (bin) represents columns in the HDR map, and
the y axis represents the difference between the luminance
values of the ground truth (blue line) and reconstructed HDR
map. The plots closer to the blue line imply that reconstructed
HDR maps have luminance distributions that are more similar
to the ground truth HDR map. Figure 8 shows that the HDR
maps reconstructed using the proposed method have the lumi-
nance distributions most similar to ground truth. This is also
confirmed in evaluation using the HDR-VDP-2.2 measure as
shown in Table 2.

In order to evaluate how accurately each of the methods
reconstructed luminance distribution, histograms of the HDR
maps are generated and are directly compared using the earth
mover’s (EM) and Hellinger (H.) distance measures. The
Hellinger distance is used to compute similarity between two
probability distributions using a bounded metric [42]. The
EM distance is based on the minimal amount of work required
to transform one distribution into another. Table 3 shows
that the HDR maps generated by our method surpass those
generated by previous methods in histogram similarity to the
ground truth.

Table 4 shows a quantitative comparison of the HDR maps
generated using different combinations of loss functions in
our approach on the Laval dataset. The tests were initially
conducted with one, two, three, and eventually all loss func-
tions. In Table 5, case A refers to tests conducted using only
an encoder-decoder setup. In case B, Sunpose-Net was added
prior to inference. In case C, the Sunrad-Net was added to
the setup in case B. All four loss terms were used in all cases.
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TABLE 2. Quantitative comparison of HDR maps reconstructed from tone-mapped images (Laval dataset).

Drago TMO [35] Durand TMO [36] Mantiuk TMO [37] Reinhard TMO [38] Mean Value
HDR- HDR- HDR- HDR- HDR-
VDP- PSNR SSIM VDP- PSNR SSIM VDP- PSNR SSIM VDP- PSNR SSIM VDP- PSNR SSIM
22 22 22 22 22
HDRCNN
[17] 67.17 28.05 0.5412 | 69.03 32.67 0.5904 | 69.02 32.38 0.5502 | 66.94 27.29 0.4820 | 68.04 30.10 0.5410
SingleHDR
(18] 67.22 27.17 0.6000 | 68.50 32.65 0.6416 | 68.18 3242 0.6018 | 66.23 25.89 0.4903 | 67.53 29.53 0.5834
SingleHDR
" 68.08 27.39 0.5152 | 69.83 33.54 0.6707 | 69.78 33.24 0.6471 | 67.52 26.90 0.4778 | 68.80 30.27 0.5777
Proposed 68.51 27.82 0.5342 | 70.55 33.98 0.6302 | 70.32 33.48 0.6018 | 68.01 26.85 0.4915 | 69.35 30.53 0.5644
TABLE 3. Histogram distance comparison for HDR maps reconstructed from tone-mapped images (Laval dataset).
Drago TMO [35] Durand TMO [36] Mantiuk TMO [37] Reinhard TMO [38] Mean Value
EM dist. H. dist. EM dist. H. dist. EM dist. H. dist. EM dist. H. dist. EM dist. H. dist.
HDRCNN
(7] 0.1309 10.78 0.04843 4.663 0.05131 5.071 0.08628 7.387 0.07923 6.975
SingleHDR
(18] 0.04208 3.711 0.03275 3.193 0.02960 3.050 0.05505 5.146 0.03987 3.775
SingleHDR* 0.06995 5.641 0.03654 3.218 0.03900 3.454 0.04377 3.686 0.04732 4.000
Proposed 0.02624 2215 0.02145 1.814 0.02306 1.979 0.03025 2.542 0.02525 2.138
TABLE 4. Ablation for the proposed loss functions.
Case 1 Case 2 Case 3 Case 4
Lrec + Lperc Lrec + Ladv Lrec + Ladv
Lrec [’rec + Lperc Lrec + Ladv 'Crec + LDOG + LDGG + LDaG + LPerc Ltotal

HDR-VDP-2.2 69.01 67.27 67.22 69.19 69.2852 69.26 69.57 69.35
PSNR 30.17 29.44 30.17 30.24 30.37 30.27 30.49 30.53
SSIM 0.5670 0.5262 0.5709 0.5674 0.5662 0.5602 0.5681 0.5644

Because Mantiuk TMO uses four parameters to ensure that
output LDR images match the input HDR scene as closely as
possible, an encoder-decoder architecture alone (case A) is
sufficient to reconstruct HDR maps.

In our experiment, an input 1024 x 2048 image is reduced
to a resolution of 32 x 128 because of the limited compu-
tational resources available. In order to examine the effects
of reducing the resolution of LDR inputs on HDR recon-
struction, we compared the quality of reconstructed HDR
images under three input resolutions (32 x 128, 40 x 160,
and 48 x 192) in terms of histogram distance measures:
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Earth mover (EM) and Hellinger (H). Figure 9 and Table 6
show that the proposed method’s performance improves as
the resolution increases.

The proposed model was additionally evaluated on the real
CAU image dataset, which was captured using a CANON
EOS 6D Mark II with a CANON EF mount and an 8-15 mm
f/AL. CANON fisheye USM lens. Figure 10 shows images
captured under various exposures and the correspondingsyn-
thesized HDR map. We set the aperture value to f/22 and the
ISO value to 100. We then captured each scene with 1/4,000,
1/1,000, 1/250, 1/60, and 1/15 shutter speeds.
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TABLE 5. Ablation for the various configurations of the sun luminance estimator.

FIGURE 9. Ground truth of three different resolutions and corresponding
reconstructed HDR maps.

TABLE 6. Histogram comparison of HDR maps reconstructed for three
different resolutions.

Resolutions EM dist. H. dist.
32x128 0.026 3.145
40%160 0.017 1.516
48%192 0.012 1.085

TABLE 7. Quantitative comparison of HDR maps reconstructed from

Drago TMO [35] Durand TMO [36] Mantiuk TMO [37] Reinhard TMO [38] CAU dataset
HDR- HDR- HDR- HDR- HDR-
VDP- PSNR SSIM VDP- PSNR SSIM VDP- PSNR SSIM VDP- PSNR SSIM VDP- PSNR SSIM
22 22 22 22 22
Case A 68.67 2747 0.5194 70.55 33.95 0.6396 70.34 33.56 0.6210 68.11 26.74 0.4910 66.16 13.70 0.1804
Case B 68.50 27.35 0.5167 70.48 33.87 0.6459 70.29 3347 0.6231 67.88 26.53 0.4885 66.19 13.81 0.1940
Case C 68.51 27.82 0.5314 70.55 33.98 0.6302 70.32 33.48 0.6018 68.01 26.85 0.4915 66.20 13.68 0.1788
Resolutio Reconstructed HDR
Ground truths
ns maps
- _
- _
48%192

FIGURE 10. Images of a given scene captured with five exposure values,
and the corresponding synthesized HDR map (the last row).

TABLE 8. Histogram distance comparison for HDR maps reconstructed
from bracketed images (CAU dataset).

bracketed images (CAU dataset).
CAU dataset
CAU dataset EM dist. H. dist.
HDR-VDP- HDRCNN [17] 0.09231 6.542
2.2 PSNR SSIM SingleHDR [18] | 0.08323 5.778
HDRCNN [17] 64.68 13.56 0.1699 SingleHDR* 0.06949 5.010
SingleHDR [18] | 65.76 13.68 0.1786 Proposed 0.06232 4.018
SingleHDR* 66.05 13.80 0.1920
Proposed 66.20 13.68 0.1788

Ground-truth HDR  images were generated by
merging these five LDR images using Photomatix soft-
ware. The CAU dataset we used in these experi-
ments consists of 505 LDR images and 101 HDR
images. The CAU dataset and implemented source code
are available at https://github.com/ShinY wings/HDR-Map-
Reconstruction-From-a-Single-LDR-Sky-Panoramic-Image-
For-Outdoor-Illumination-Estimation.

17370

The HDR maps in the Laval dataset were synthesized from
images of 7 different exposure values. However, due to the
absence of an appropriate neutral-density (ND) filter, HDR
images in the CAU dataset were synthesized from images
of just five exposure values. This implies that the CAU
dataset images have two missing exposure values (1/8,000
and 1/4,000 with an ND filter), resulting in higher luminance
values in synthesized HDR maps. Figure 11 shows the HDR
maps generated by the proposed method and the previous
methods from the CAU dataset inputs. Tables 7 and 8 show
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FIGURE 11. Qualitative comparison of HDR maps generated using different HDR reconstruction methods on the CAU dataset.
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FIGURE 12. Qualitative comparison of images rendered from reconstructed HDR maps on the Laval dataset.

the results of evaluating our proposed method against various C. RENDERING RESULTS
HDR reconstruction methods on the CAU dataset using three The rendering engine in Blender 2.93, an open-source 3D
metrics and histogram distances. computer graphic toolset, was used to generate rendering
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FIGURE 13. Qualitative comparison of images rendered from reconstructed HDR maps on the CAU dataset.

images from the reconstructed HDR maps. In Blender, the
reconstructed HDR images from the Laval dataset and CAU
dataset were used as environment maps to relight the Stanford
bunny models with a diffuse shader. These were ultimately
rendered into 256 x 256 images.

Figures 12 and 13 show a qualitative comparison between
images rendered using the HDR maps generated by vari-
ous methods on the Laval and CAU datasets, respectively.
Figure 12 shows that the proposed method is robust and
produces the most accurate rendering for various weather
conditions (clear, cloudy and overcast). Images in the CAU
dataset have high luminance values and therefore result in
very bright rendered images, as shown in Figure 13.

V. CONCLUSION

In this paper, we introduced a deep learning model for HDR
reconstruction from a single LDR sky panoramic image. This
model estimated the illumination distribution of sun and sky
regions separately and used a blending operator to merge
the results into an HDR map. In our deep learning model,
an encoder considers coherence of the sun region and sky
as well as luminance gradation in the sky region to build a
multi-dimensional latent representation of the entire lumi-
nance distribution in a sky panoramic image, and the two
decoders consider the heterogeneous luminance properties
of the sky and the sun region separately. The position and
intensity of the sun are estimated from an input LDR sky
panoramic image using Sunpose-Net and Sunrad-Net, which
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are proposed in this study. The performance of the proposed
method was evaluated using the Laval Sky HDR database
(Laval dataset) and the CAU dataset.

The proposed method has three main limitations. The first
is an assumption that the sun is horizontally centered in
all input panoramic images. This means that the proposed
method only regresses the angle of elevation and not the
azimuth. Since the position of the sun in the sky varies
through the day, we need to transform input images so that
the sun is horizontally centered in the panoramic images. The
second is that we did not consider temporal continuity when
estimating the sun position and radiance. This implies the
HDR maps reconstructed using the proposed method cannot
consistently render a virtual object over sequential frames.
In this case, unwanted light flickering effects may arise
in real-time rendering applications. The third limitation is
reduction of the LDR input resolution because of the limited
computational resources. In order to represent more precise
outdoor illumination, we need to use input images of higher
resolution. More specifically, since the sharp variations in
the sun image region are low pass filtered in lower resolu-
tion images, the luminance distribution of the sun region is
diminished. This implies that we may not be able to generate
rendering outputs that accurately reflect the effect of bright
sun light. The experimental results showed that the proposed
method’s performance improves as the resolution increases.
Therefore, a patch-based training approach is to be explored
in order to handle large input panoramic image.
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