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The growth of stable and efficient catalysts is vital for the electrochemical hydrogen evolution reaction (HER). Metal–organic
frameworks (MOFs) have been recognized as ideal templates for fabricating efficient nanomaterial-based electrocatalysts for the
HER. In this study, nitrogen-containing Co-MOF (ZIF-67), Co-MOF-74, and cobalt chloride salt were selenized to create
various cobalt-selenide-based materials, i.e., cobalt selenide@nitrogen-doped carbon (CoSe2@NC), CoSe2@C, and CoSe2,
respectively. The core–shell structure of CoSe2@NC originated from ZIF-67 exhibited better HER catalytic activity than those
of CoSe2@C and CoSe2. CoSe2@NC exhibited a low overvoltage of 184mV at 10mA cm−2 and a small Tafel slope of 58.4mV
dec−1. In addition, this catalyst exhibited excellent durability while maintaining its performance after 12 h of testing. The high
catalytic activity is ascribed to the integrated effect of the core–shell architecture, N-doped carbon, and large surface area,
making protected active sites, high conductivity, and exposed active sites possible. The results demonstrate the efficiency of
using MOFs as precursors for cobalt selenide fabrication and provide a potential synthetic strategy for noble-metal-free
electrocatalysts for hydrogen production.

1. Introduction

The overuse of fossil fuels is undoubtedly taking a heavy
toll on the environment owing to carbon emissions and
chemical waste. Therefore, finding sustainable and envi-
ronmentally friendly energy sources is important [1, 2].
The electrochemical hydrogen evolution reaction (HER)
is a noncarbon pathway that produces hydrogen to replace
fossil fuels [3–6]. However, the high-energy requirement
for water splitting impedes hydrogen formation at a high
flow rate. Traditionally, catalysts have been applied for
water electrolysis to reduce the energy barrier and acceler-
ate reaction kinetics [7–9]. Pt-based materials are promis-
ing catalysts for HER [10–12]. For example, Chen et al.
prepared a ternary Pt-Ni-Co electrocatalyst with a very

small overvoltage [13]. Shen et al. created trimetallic Pt-
Cu-Ni nanograins embedded on carbon fiber as an
outstanding cathode, which exhibits an excellent HER per-
formance in both acidic and alkaline electrolytes [14].
However, they are expensive and unstable under reaction
conditions. Thus, the development of nonprecious electro-
catalysts with excellent activity and outstanding durability
is vital for industrial applications [15–17].

Transition-metal selenides, such as MoSe2, WSe2, CoSe2,
and NiSe2 [18–22], are Pt-free electrocatalysts with high per-
formance for water dissociation, as proved in theoretical and
experimental studies. Among these materials, CoSe2 exhibits
a remarkable performance and high stability in various solu-
tions. However, the agglomeration of CoSe2 nanograins,
which usually occurs during the synthesis process, decreases
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the catalytic activity [23]. As a result, different approaches
have been developed to increase the HER catalytic perfor-
mance of CoSe2. For example, Kong et al. deposited CoSe2
nanograins on carbon cloth as a binder-free and stable elec-
trode for accelerating HER activity [24]. Dai et al. fabricated
a hollow CoSe2 structure by means of the Kirkendall effect,
which exhibited a low overpotential [25]. Another strategy
is to create CoSe2 nanoparticles from cobalt-based metal–
organic frameworks (MOFs), which have the advantages of
a large surface area, good distribution of metal nodes, and
alterable chemical components [26]. For example, Zhou
et al. created CoSe2 anchored on carbon nanotubes from a
Co-based MOF for accelerating the HER [27]. Although sev-
eral studies have employed MOFs as sacrificial templates to
prepare CoSe2, no study has compared the HER perfor-
mances of various CoSe2-based materials synthesized from
multiple cobalt sources. Besides, Co-based MOF is usually
pyrolyzed to form Co metal at relatively high temperatures,
followed by selenization technique [28]. This process con-
sumes a lot of energy, and the inheriting of MOF morphol-
ogy is not well done. For example, Lu et al. pyrolyzed ZIF-67
into Co metal before converting it into CoSe2 nanograin
implanted in an N-doped carbon (NC) skeleton for overall
water dissociation [29].

In this study, three precursors (ZIF-67, Co-MOF-74, and
CoCl2.6H2O) were used to create CoSe2@NC, CoSe2@C, and
CoSe2, respectively, through one-step selenization at low
temperature. The CoSe2@NC polyhedrons inherited the reg-
ular morphological structure of ZIF-67, which had a larger
surface area than CoSe2@C and CoSe2. In addition,
nitrogen-doped carbon layers protect the CoSe2 nanograins

from electrolyte influences, maintaining their durability after
12 h of operation. As a result, the HER activity of CoSe2@NC
is higher than that of CoSe2@C and CoSe2, which is assigned
to the integrated strategy of the core–shell architecture and
nitrogen-doped carbon, as well as the high surface area.
The results of this study prove that using MOFs as precur-
sors is efficient for preparing cobalt selenide electrocatalysts
for hydrogen evolution.

2. Experimental

2.1. Chemical and Materials. Co(NO3)2.6H2O, CoCl2.6H2O,
2,5-dihydroxyterephthalic acid (H4DHBDC), 2-methylimi-
dazole, N, N-dimethylformamide, and 5% Nafion solution
were supplied by Sigma-Aldrich. Ethanol and methanol
were purchased from Alfa Aesar. Deionized (DI) water was
obtained from a Millipore Milli-Q machine.

2.2. Fabrication of ZIF-67 and Co-MOF-74

2.2.1. Fabrication of ZIF-67. 0.718 g of Co(NO3)2.6H2O was
stirred in 50mL of methanol to obtain solution X. Also,
1.622 g of 2-methylimidazole was stirred in 50mL of metha-
nol to obtain solution Y. Solution X was poured into solution
Y under magnetic stirring for 20h at 25°C. Purple crystals
were centrifuged four times with CH3OH and dried under
vacuum at 60°C for 12 h.

2.2.2. Fabrication of Co-MOF-74. First, 0.1mmol of Co(N-
O3)2.6H2O and 0.05mmol of H4DHBDC acid were added
to a mixed solvent containing 3mL of N, N-dimethylforma-
mide, 3mL of ethanol, and 3mL of DI water. The reaction
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Figure 1: Graphic illustration of the synthesis of CoSe2, CoSe2@C, and CoSe2@NC.
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mixture was then stirred for 30min and transferred to a
glass vial (10mL) before being placed in a furnace at
100°C. After 24 h, the glass vial is cooled to room tempera-
ture, and dark-purple crystals were obtained by centrifuga-
tion. These crystals were washed six times with methanol
and dried under vacuum at 250°C. The final sample was pre-
served in vacuum condition.

2.3. Fabrication of CoSe2@NC, CoSe2@C, and CoSe2. Here,
0.1 g each of cobalt-containing sources ZIF-67, Co-MOF-
74, and CoCl2.6H2O were mixed well with 0.1 g of selenium
powder in a crucible and then annealed for 4 h at 350°C to
create CoSe2@NC, CoSe2@C, and CoSe2, respectively.

2.4. Material Characterization. The morphological structure
of the as-synthesized products was confirmed using scan-
ning electron microscopy (SEM, Carl Zeiss), transmission
electron microscopy (TEM, JEOL), and high-resolution
TEM. X-ray diffraction (XRD) patterns were recorded using
a Bruker D8-Advance device with Cu Kα radiation. Raman
spectra of the composites were collected on a LabRAM-HR
Evolution with a 532nm laser. The elemental composition
was determined using a K-alpha X-ray photoelectron spec-
trometry (XPS) system.

2.5. Electrochemical Measurements. The working electrodes
were fabricated by coating 5 L of homogeneous suspension
onto glassy carbon electrodes (radius of 1.5mm) with a load-
ing of 0.30mg cm−2. This suspension was created by sonica-
tion of a mixture of 8mg of material, 0.9mL of DI water,
1mL of ethanol, and 0.1mL of Nafion. The electrochemical
HER properties were assessed using a device (Ivium 55630)
with a three-electrode system (Pt mesh as the counter elec-
trode and saturated calomel electrode as the reference and
working electrode) and 0.5-M H2SO4 solution. Polarization
plots were reported with IR compensation at a scan rate of
2mVs−1. Electrochemical impedance spectroscopy was
implemented in the frequency mode from 105 to 0.1Hz.
Cyclic voltammograms (CVs) utilized for electrochemical
double-layer capacitance (Cdl) determination were obtained

in the nonfaradaic potential region at 25, 50, 75, 100, 125,
and 150mVs−1. The durabilities of the electrocatalysts were
compared using chronoamperometric responses (12 h) at
specific potentials. The reported voltages were changed to
the reversible hydrogen electrode (RHE): ERHE = ESCE +
E0

SCE + 0:059 × pH.

3. Results and Discussion

A graphical illustration of the fabrication process is shown
in Figure 1. In the synthesis, the CoSe2, CoSe2@C, and
CoSe2@NC electrocatalysts were created from CoCl2.6H2O,
Co-MOF-74, and ZIF-67 precursors, respectively, through
a selenization process. In the ZIF-67 precursor, CoSe2
nanoparticles were anchored on the N-doped carbon
matrix, leading to good dispersion of the active sites. Co-
MOF-74 also has CoSe2 nanograins embedded on carbon
frameworks, whereas CoSe2 prepared from cobalt chloride
does not contain a carbon framework, which could cause
the aggregation of nanoparticles. The structural properties
of the Co-MOF-74 and ZIF-67 precursors were analyzed
using XRD, as shown in Figure S1. The typical peaks are
well matched with those reported previously, revealing
that Co-MOF-74 and ZIF-67 were successfully prepared
[30–34]. The XRD patterns of all samples (Figure 2(a))
can be attributed to orthorhombic CoSe2. The intensive
peaks at 28.97°, 30.78°, 34.52°, 35.96°, 47.72°, 50.23°,
53.48°, 56.95°, and 63.29° were indexed in the (011),
(101), (111), (120), (211), (002), (031), (131), and (122)
planes, respectively [35, 36]. Figure 2(b) shows the
Raman spectra of the various cobalt selenide materials.
CoSe2@NC and CoSe2@C showed peaks at 1345.5 and
1578.3 cm−1, attributed to the D and G bands of the
carbon moieties. In addition, the vibrational frequencies
of 174 and 667 cm−1 were indexed to the Ag and A1g
stretching modes of CoSe2, respectively [27, 35]. More
importantly, a high ID/IG ratio (1.02) implies that the
codoping of Co and N creates rich defects of carbon in
CoSe2@NC. They could introduce more active centers of
Co-Nx moieties, leading to accelerated HER activity.
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Figure 2: (a) Powder XRD patterns of CoSe2 (black line), CoSe2@C (red line), and CoSe2@NC (blue line) and (b) Raman spectra of CoSe2
(black line), CoSe2@C (red line), and CoSe2@NC (blue line).
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Figure 3: SEM images of (a, b) CoSe2, (c, d) CoSe2@C, and (e, f) CoSe2@NC.
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SEM was utilized to investigate the morphological archi-
tectures of various CoSe2 materials. Figures 3(a) and 3(b)
show the microsphere structure of CoSe2 with a size of
100nm, whereas CoSe2@C has a rod-like architecture
(Figures 3(c) and 3(d)), identical to Co-MOF-74
(Figure S2a). This phenomenon occurs with CoSe2@NC,
which has a polyhedron morphology and a uniform size of
300nm (Figures 3(e) and 3(f)), inheriting the ZIF-67
structure (Figure S2b). However, the surface of CoSe2@NC
is rough and slightly reduced in size. The excellent
inheritance of the morphology and porosity of the MOF
precursors helped CoSe2@NC (355.2m2 g−1) and CoSe2@C
(129.3m2 g−1) provide higher BET surface areas than that
of CoSe2 (38.7m2 g−1), as shown in Figure S3. This had
beneficial effects on CoSe2@NC in electron/mass transfer
[37–39]. TEM and HR-TEM analyses were performed to
analyze the morphology of the material further. As shown
in Figures 4(a) and 4(b), the CoSe2 nanograins were
implanted in N-doped carbon layers to produce a core–
shell architecture of CoSe2@NC. In addition, the d-spacing
of 0.306 nm was assigned to the (011) plane of CoSe2
(Figure 4(c)). Scanning transmission electron microscopy

and elemental mapping show a good distribution of Co, Se,
N, and C, as shown in Figure 4(d).

XPS was utilized to analyze the oxidation state and ele-
mental component of CoSe2@NC. The high-resolution XPS
spectra of Co 2p in Figure 5(a) show the binding energies
of Co2+2p3/2 and Co2+2p1/2 at 780.6 and 796.9 eV, respec-
tively [23]. Regarding the Se 3d spectra (Figure 5(b)), the
binding energies at 55.7 and 54.8 eV are indexed to Se 3d3/
2 and Se 3d5/2, respectively, indicating the presence of Se2

2−

in CoSe2@NC [40]. In addition, a broad peak at 59.2 eV is
indexed to SeOx [41]. The N 1s spectra in Figure 5(c) exhibit
peaks at 400.8, 399.5, and 398.4 eV, corresponding to pyrro-
lic, Co-Nx, and pyridinic [42, 43]. N-doped carbon materials
can enhance conductivity, leading to accelerated electro-
chemical catalytic activity [44–48]. A high-magnification
XPS spectrum of C 1s is shown in Figure 5(d). Peaks at
286.3, 285.5, and 284.3 eV are attributed to N-C, -N=C,
and C-C [49].

To prove that the use of MOF precursors to fabricate
cobalt selenides is efficient in enhancing the HER catalytic
activity, the electrochemical properties of CoSe2, CoSe2@C,
and CoSe2@NC were analyzed using a three-electrode

(a) (b)

(c)

Figure 4: (a) TEM images of CoSe2@NC, (b) HR-TEM of CoSe2@NC, and (c) scanning TEM image with elemental mapping of CoSe2@NC.
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system. Figure 6(a) depicts the current–voltage plots of var-
ious materials at the same scan rate. The CoSe2@NC sample
displayed the lowest overpotential (184mV), achieving a
current density of 10mAcm−2, indicating better HER cata-
lytic activity than CoSe2@C (220mV) and CoSe2 (289mV).
The HER performance of CoSe2@NC can be comparable
with the other CoSe2-based electrocatalysts (Table S1).
Furthermore, CoSe2@NC gives a low Tafel slope of
58.4mV dec−1, which are smaller values than those of
CoSe2@C (71.1mV dec−1) and CoSe2 (93.6mV dec−1)
(Figure 6(b)). These outcomes indicate that the HER
mechanism of CoSe2-based electrocatalysts follows a
Volmer–Heyrovesky reaction. Electrochemical impedance
spectroscopy was analyzed on CoSe2, CoSe2@C, and
CoSe2@NC at a voltage of −0.2V to confirm the HER
kinetics at the electrode–solution interface [50, 51]. As
displayed in Figure 6(c), the electron transfer resistance
(Rct) of CoSe2@NC (24.5Ω) is lower than those of
CoSe2@C (77.2Ω) and CoSe2 (149.2Ω), revealing that N-
doped carbon can improve the electron transfer in the
HER kinetics of CoSe2@NC. In particular, N-doping
creates Co-Nx phases and N-C species, which are favorable
for the adsorption of protons to create intermediate Hads
and produce H2 molecules on catalyst surfaces, thus
accelerating reaction kinetics [52–54]. Also, the N-doped
carbon skeleton facilitates the well-distribution of CoSe2
nanograins and protects them in reaction conditions [28,
55, 56]. This could maximize accessible active centers and
enhance the stability of the electrocatalyst. Moreover, the
electrochemical surface area (ECSA) was predicted using
the double-layer capacitance (Cdl) originated from the CV

measurements (Figure S4). As displayed in Figure 6(d), the
Cdl quantity of CoSe2@NC is 3.24 mF cm−2, which is
larger than those of CoSe2@C (1.87 mF cm−2) and CoSe2
(1.04 mF cm−2), implying a larger ECSA and more active
centers for hydrogen evolution (Table S2).

To compare the intrinsic activities of the electrocatalysts,
the turnover frequency (TOF) was determined at the HER
overpotential. TOF of cobalt selenide-based electrocatalysts
is determined according to a reported formula [57, 58].

TOF =
jA

nFm
, ð1Þ

where j is the current density at a voltage of −200mV (ver-
sus RHE) (A cm-2), A is the geometrical surface area of the
working electrode (cm2), n is the number of electrons trans-
ferred to form a molecule of the product (for H2, it is 2), F is
Faraday constant (C mol-1), andm is the number of moles of
catalyst coating on the working electrode. As depicted in
Figure 7(a), the TOF of CoSe2@NC exhibits a higher TOF
of 0.0895 s-1, compared to those of CoSe2@C (0.0197 s-1)
and CoSe2 (0.0045 s

-1). This implies that CoSe2@NC exhibits
a higher performance of the active centers in the electrocat-
alytic process. Furthermore, the chronoamperometric
responses indicated that the as-synthesized CoSe2@NC had
excellent stability (Figure 7(b)). CoSe2@NC had approxi-
mately 41% of the initial current density, whereas a 76% loss
in current density was observed for the CoSe2 catalyst. Also,
the decreased current density is attributed to the interference
of the hydrogen bubble on the surface of materials. Also, the
crystal architecture and morphology of CoSe2@NC did not
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Figure 5: X-ray photoelectron spectra of CoSe2@NC: (a) Co 2p, (b) Se 3d, and (c) N 1s; (d) C 1 s.
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change, which were verified by XRD and SEM after 12 h of
testing (Figure S5). The results prove the efficiency of the
core–shell structure in improving the stability of the
catalysts. Considering the above evaluations, the high HER
properties of result CoSe2@NC can be elucidated as
follows: (1) the integrating effect of core-shell structure and
high surface area of CoSe2@NC allow protecting CoSe2
nanograins, highly exposed active sites, and fast electron
transport; (2) N-doping illustrates rich Co-Nx and N-C
moieties, good conductivity, and more adsorbed protons,
thus accelerating HER performance.

4. Conclusion

The HER catalytic activities of cobalt selenides CoSe2@NC,
CoSe2@C, and CoSe2, synthesized using different precursors,
were compared. ZIF-67 was used as an N-containing cobalt
source to produce the core–shell architecture of CoSe2@NC.
The HER performance of CoSe2@NC was higher than those
of CoSe2@C and CoSe2, which were generated from Co-
MOF-74 and CoCl2.6H2O, respectively. In particular,
CoSe2@NC only required a low overpotential of 184mV to
achieve 10mAcm−2, whereas the values were 220 and
289mV for CoSe2@C and CoSe2, respectively. This outcome
was assigned to the integrated strategy of the core–shell
architecture, rich Co-Nx active centers, and high surface
area. In addition, the NC layers protected the CoSe2 nano-
grains from electrolyte influences, maintaining their durabil-
ity after 12 h of operation. The results imply that using
MOFs as sacrificial templates can efficiently prepare cobalt-
selenide-based electrode materials for hydrogen evolution.
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