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Abstract: Indium tin oxide (ITO) is currently the most widely used material for transparent electrodes;
however, it has several drawbacks, including high cost, brittleness, and environmental concerns.
Silver nanowires (AgNWs) are promising alternatives to ITO as materials for transparent electrodes
owing to their high electrical conductivity, transparency in the visible range of wavelengths, and
flexibility. AgNWs are effective for various electronic device applications, such as touch panels,
biosensors, and solar cells. However, the high synthesis cost of AgNWs and their poor stability to
external chemical and mechanical damages are significant challenges that need to be addressed. In
this review paper, we discuss the current state of research on AgNW transparent electrodes, including
their synthesis, properties, and potential applications.
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1. Introduction

Transparent electrodes are crucial components in various electronic devices such as
displays [1,2], solar cells [3,4], and energy harvesters [5,6]. Indium tin oxide (ITO) shows
high optical transmittance and electrical conductivity, as well as excellent chemical stability,
which makes it a leading material system for the transparent electrodes of various electronic
devices. However, ITO is intrinsically brittle under harsh deformation, which limits its
use for flexible/wearable devices [7,8]. Furthermore, ITO needs the post-annealing pro-
cess under high temperatures to enhance electrical conductivity, which is not suitable for
polymer-based flexible substrates. The cost of indium is also relatively high [7,8]. Hence, in
recent years, there has been significant research interest in developing alternative transpar-
ent electrode materials. One promising candidate is silver nanowires (AgNWs) [9–11]. In
this review paper, we discuss the current state of research on AgNW transparent electrodes,
including their synthesis, properties, and potential applications.

AgNWs are cylindrical in shape with diameters in the order of tens of nanometers and
lengths in the order of micrometers [12,13]. AgNWs can be synthesized through various
methods, including chemical synthesis [14,15], electrodeposition [16,17], and physical va-
por deposition [18]. Chemical synthesis methods, such as the polyol reduction process, are
effective in producing high-quality AgNWs with high aspect ratios [14,15]. The electrical
and optical properties of AgNW transparent electrodes are significantly dependent on the
aspect ratio of individual AgNWs and the density of the deposited networks [14,15]. To
achieve high electrical conductivity with optical transparency, long and thin AgNWs are
required because they can make sufficiently percolated networks with a low density of
AgNWs that provide sufficient vacant spaces through which light can transmit without a
severe reflection at the surface of AgNWs [14,15]. However, AgNWs have several draw-
backs that need to be addressed. One of the main challenges is the high synthesis cost of
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AgNWs and the lack of scalability of the process. Additionally, AgNWs have poor stability
to external chemical and mechanical damages [19,20]. To overcome these limitations, var-
ious hybrid systems have been proposed such as AgNW metal oxide [11,20–22], AgNW
polymer [7,23], and AgNW graphene [24,25]. Each hybrid system has certain pros and
cons; thus, appropriate integration of different materials systems is required depending on
the application. In this review, different material systems used for different applications
(Figure 1) are discussed.
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2. Synthesis of AgNWs

The synthesis of AgNWs is challenging owing to the difficulty of controlling their
size, shape, and morphology. In this review paper, we discuss various synthetic meth-
ods of AgNWs, their pros and cons, and the detailed procedures and materials used in
each method.

2.1. Chemical Reduction Method

The chemical reduction method is one of the most widely used ways to synthesize
AgNWs [14,15,27]. Silver ions are reduced in a solution such as water or ethanol using a
reducing agent such as sodium borohydride or hydrazine (Figure 2) [27]. The mixture is
then heated to ~90 ◦C, for 1~3 h. The synthesized AgNWs are then purified and collected
through centrifugation or filtration.
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Figure 2. Growth mechanism of AgNWs via chemical reduction process. Reproduced from Ref. [27]
under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

The advantages of the chemical reduction method include its simplicity, low cost, and
the quality of the produced AgNWs with a high aspect ratio [14,15]. However, the difficulty
in controlling the size and shape of the synthesized AgNWs and the contamination with
impurities limit their use in the industry [14,15]. In addition, the chemical reduction method
often leads to the formation of Ag nanoparticles (AgNPs) along with AgNWs, which can
cause a hazard issue [14,15].

2.2. Template-Assisted Method

Another method for the synthesis of AgNWs is the template-assisted method [26,28].
This method involves the use of a template, such as a porous anodized alumina (PAA)
template or a polycarbonate (PC) template, to guide the growth of AgNWs (Figure 3) [26].
The procedure involves coating the template with a thin layer of AgNWs using a chemical
reduction method or a physical vapor deposition method, followed by the removal of the
template by etching or dissolution [29].
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Figure 3. A schematic illustration of the growth process of nanowires via a hard template. Reproduced
from Ref. [26] under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

The template-assisted method allows control over the size and shape of the AgNWs
and yields AgNWs with a high aspect ratio [29]. However, the disadvantages of this method
include the high cost of the template materials and the difficulty of removing the template
from the AgNWs after the growth process [30]. Additionally, the template-assisted method
may lead to the formation of AgNPs along with AgNWs, which can prevent one from
solely investigating the role of AgNWs.
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2.3. Template-Assisted Electrodeposition Method

The third method for the synthesis of AgNWs is the electrodeposition method [31,32].
This method involves the electrodeposition of AgNWs on an electrode surface using
an electric current. An electrode is immersed in a solution containing silver ions and
a supporting electrolyte, and an electric current is applied to the electrode that creates
AgNWs (Figure 4). The AgNWs are then collected by removing the electrode from the
solution. The electrodeposition method can also control the size and shape of the AgNWs
by adjusting the conditions of electrodeposition [31]. However, the surface of the AgNWs
synthesized by electrodeposition is rough, which can lead to light reflection. In addition,
mass production is also limited.
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3. Applications of AgNWs
3.1. Touch Screens

AgNW transparent electrodes have high optical transmittance and electrical conductiv-
ity, which make them suitable for use in touch screens for electronic devices (Figure 5) [33,34].
Touch panels using AgNW electrodes utilize AgNWs as transparent electrodes. Different
types of electrodes have been used for AgNW-based touch screens [35]. The AgNW network
is a simple system where only AgNWs are used to form transparent electrodes. The touch
panel works by measuring the change in electrical resistance at the point of contact. How-
ever, the limited chemical stability of the bare AgNW networks restricts their use in the
industry. To overcome the stability issues, AgNW-ITO hybrid types are proposed [36]. ITO
provides increased electrical conductivity as well as enhanced chemical stability. However,
the brittleness of ITO degrades the mechanical flexibility of the AgNW networks. Another
strategy is using AgNW-printed electrodes [37]. AgNW ink formulated for enhanced chemi-
cal resistance is printed on flexible substrates. The stability of AgNWs can be tuned by the
type of ink formulation. However, the cost of the ink formulation is high and the minimum
pattern size is micron-scale; these factors limit their use for state-of-the-art miniaturized
devices. AgNW-embedded electrodes have high chemical and mechanical stabilities while
maintaining the excellent optical and electrical properties of AgNWs [7]. AgNWs are em-
bedded in the surface of the flexible polymeric matrix, which protects AgNWs from external
mechanical and chemical damage [7]. However, the embedding process is complex, and
it can reduce the mass production of AgNW electrodes. The specific technology depends
on the requirements of the application, including the level of transparency and electrical
conductivity required, as well as the cost and durability of the touch panel.
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structure and performance of touch sensing panel between selectively calendered (upper) and full
area calendered (bottom) Ag NW-PVP TCF with a mesh pattern. Reproduced from Ref. [33] under
the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

3.2. Solar Cells

There have been many reports on using AgNW electrodes in solar cells [38]. The re-
ports showed that AgNW electrodes have a high power conversion efficiency, which is
attributed to their high transparency and electrical conductivity [39,40]. This makes them
suitable for use as transparent electrodes in solar cells. Several different technologies
can be used to create solar cells using AgNW electrodes, including dye-sensitized solar
cells (DSSCs) [41,42], organic solar cells (OSCs) [43,44], and hybrid perovskite solar cells
(HPSCs) [45,46]. These solar cells work by absorbing light with photovoltaic materials,
which leads to the formation of an electron hole pair. The AgNW electrode is used to
collect the electrons and transfer them to an external circuit. All these technologies have
certain advantages and limitations. Dye-sensitized solar cells (DSSCs) have high efficiency
but relatively low stability. Organic solar cells (OSCs) have relatively high stability but
low efficiency. Hybrid perovskite solar cells (HPSCs) have high efficiency and stability
(Figure 6), but further research is ongoing. The specific technology used depends on the
requirements of the application, including the efficiency, stability, and cost of the solar cell.
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3.3. Transparent Heaters

AgNWs have high thermal conductivity and can be used as transparent heaters in
various electronic devices, such as smartphones and tablets, as well as in automotive and
building applications [48,49]. Transparent heaters require high optical transparency to be
used for various transparent substrates, such as glass windows or transparent heating
films [48–50]. In addition, high electrical conductivity is also important to achieve a uniform
and efficient heating performance. Thus, AgNWs with a high optical transmittance and
electrical conductivity are attractive for the conductive layer of the transparent heater. For
example, Bobinger et al. formed the highly transparent AgNW layer on the glass substrate,
as shown in Figure 7a, which resulted in a uniform and efficient heating performance
(Figure 7b) [51]. Several different technologies can be used to create transparent heaters
using AgNW electrodes [48,49,52]. Transparent resistive heater technology involves the use
of AgNWs as transparent electrodes in the resistive heating element [48,49]. An electrical
current is passed through the AgNWs, causing them to resist the flow of electricity and
generate heat. Transparent near-infrared (NIR) heaters involve the use of AgNWs as
transparent electrodes in NIR heaters [52]. AgNWs are used to absorb and convert NIR light
into heat. In transparent microwave heaters, AgNWs are used to convert microwave energy
into heat [53]. All these technologies have certain advantages and limitations. Transparent
joule heating gives a high temperature but relatively low efficiency [48,49]. Transparent NIR
heaters have high efficiency but relatively low temperature [52]. Transparent microwave
heaters have a high temperature but relatively low efficiency [53]. The specific technology
used depends on the requirements of the application, including the temperature, efficiency,
safety, and cost of the transparent heater. AgNWs have the advantage of being highly
transparent and conductive, making them well-suited for use in transparent heaters.
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3.4. Anti-Counterfeiting Materials

AgNWs have unique optical and electrical properties, which can be used to create anti-
counterfeiting labels and tags that are difficult to be replicated [54,55]. Anti-counterfeiting
technologies use AgNW electrodes as a key component in the design of security features for
products (Figure 8). AgNWs are highly conductive and can be used to create transparent
electrodes with high conductivity, which can be used in several anti-counterfeiting appli-
cations. One example of an anti-counterfeiting technology that uses AgNW electrodes is
the creation of transparent security tags [54,55]. These tags use AgNW electrodes to create
unique electrical signatures, which can be used to authenticate the product. The electrical
signature can be read by a handheld device, such as a smartphone, to verify the authen-
ticity of the product. Another example of an anti-counterfeiting technology using AgNW
electrodes is the creation of holographic images, which can be incorporated into packaging
or labels. These images use AgNW electrodes to create a unique pattern of light and dark
areas, which can be used to authenticate the product.Micromachines 2023, 12, x FOR PEER REVIEW 8 of 13 
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3.5. Biomedical Applications

AgNWs have excellent biocompatibility and can be used in various biosensors [16,56,57].
In electrochemical biosensors, AgNWs are used to create the working electrode and the
reference electrode. The biological molecules are immobilized on the working electrode
(AgNWs), and the changes in the electrochemical activity of the biological molecules are
detected and measured. Optical biosensors utilize the unique plasmonic resonance that occurs
on the surface of AgNWs [56,57]. The AgNWs detect the changes in the optical properties
of the biological molecules (Figure 9). The field-effect biosensor utilizes AgNWs as the gate
electrode in the biosensor [16]. The biological molecules are immobilized on the gate electrode,
and the changes in the electrical properties of the biological molecules are detected and
measured. All these technologies have certain advantages and limitations. Electrochemical
biosensors have high sensitivity but relatively low selectivity. Optical biosensors have high
selectivity but relatively low sensitivity. Field-effect biosensors have high sensitivity and
selectivity but have a relatively high cost.
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3.6. Triboelectric Nanogenerators

Triboelectric nanogenerators (TENGs) convert mechanical energy into electrical en-
ergy [58–60]. They consist of two different materials—one positively charged and the other
negatively charged (Figure 10b). When these materials come in contact and are separated,
an electrical charge is generated. This principle can be used to convert various types of
mechanical energy, such as vibration or pressure, into electrical energy.

Recently, TENGs using AgNW electrodes have been researched as promising technolo-
gies for harvesting energy from various sources (Figure 10) [58–60]. AgNWs are effective for
TENG electrodes owing to their high electrical conductivity and high mechanical strength.
Additionally, AgNWs have high flexibility, which is critical for TENGs that need to be
flexible to convert mechanical energy into electrical energy. Several techniques have been
proposed for fabricating AgNW TENGs, which include using a substrate coated with
AgNWs as one of the electrodes in a TENG, using AgNWs as the active material in a
TENG by growing AgNWs directly on the triboelectric material, or coating AgNWs on
the triboelectric material (Figure 10a), which can enhance the performance of the TENG
by increasing the contact area between the triboelectric material and the AgNWs. AgNW
TENGs have a high output power density, which is a measure of the amount of electrical
power that can be generated per unit area. Additionally, AgNW TENGs have a high energy
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conversion efficiency, which is a measure of the amount of mechanical energy that can be
converted into electrical energy.
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Figure 10. The fabrication and characterization of the TE-skin. (a) A schematic diagram of the
experimental process for fabricating the TE-skin. (b) The sandwich structure of the TE-skin. (c) Pho-
tograph of the Ag NW electrode layer that is deposited on the TPU fiber substrate. (d) Photograph
of the TE-skin with a total thickness of 120 µm. (e) Photographs of the TE-skin in the original, bent,
twisted, and stretched states. Reproduced from Ref. [60] under the Creative Commons Attribution
4.0 International (CC BY 4.0) License.

4. Conclusions

AgNWs are a promising alternative to traditional materials for transparent electrodes.
The large aspect ratio of AgNWs results in high electrical conductivity and high optical
transmittance, which allowed them to be used for various electronic or energy devices.
Several synthesis methods have been reported for AgNWs, including chemical reduction
or template-assisted methods. Although each method has specific advantages, the high
cost of synthesis and limited mass producibility is required to be resolved in the future.
The most critical problem of using AgNWs for the transparent electrode is their poor
stability to external chemical or mechanical damage. To overcome these limitations, various
hybrid systems have been proposed, such as AgNW metal oxide, AgNW polymer, and
AgNW graphene. Each hybrid system needs to be appropriately integrated based on the
applications, and further research is needed to address the challenges in the production
and application of AgNW transparent electrodes in a simple and scalable manner. In
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addition, there is still room for AgNWs in various application areas, such as electrocatalysts
or electromagnetic shielding. Ag nanowires can produce high-efficiency electrochemical
hydrogen production and CO2 reduction, as well as electromagnetic shielding, due to their
large surface area and excellent electrical conductivity. Such new application areas are
required to be studied further.
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