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Abstract: Optimizing the coating conditions for a doctor blading system is important when seeking
to improve the performance of Ag nanowire electrodes. In this study, the effect of the blading height
and speed on the optical and electrical properties of Ag nanowire electrodes was investigated. Ag
nanowires were first spread on a PET substrate using a doctor blade with differing heights at a
fixed blading speed. An increase in the blading height resulted in the degradation of the optical
transmittance and stronger haze due to the higher probability of Ag nanowire agglomeration arising
from the greater wet thickness. When the blading speed was varied, the optical transmittance and
haze were unaffected up until 20 mm/s, followed by minor degradation of the optical properties at
blading speeds over 25 mm/s. The higher speeds hindered the spread of the Ag nanowire solution,
which also increased the probability of Ag nanowire agglomeration. However, this degradation was
less serious compared to that observed with a change in the blading height. Therefore, optimizing the
blading height was confirmed to be the priority for the production of high-performance transparent
Ag nanowire electrodes. Our study thus provides practical guidance for the fabrication of Ag
nanowire electrodes using doctor blading systems.
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1. Introduction

Transparent electrodes are an essential component for various state-of-the-art devices,
including flexible displays, solar cells, electrochromic windows, and film-type heaters [1–5].
The material conventionally employed for the fabrication of transparent electrodes is
indium tin oxide (ITO), but its use in flexible devices is limited due to the intrinsic brittleness
and high processing costs of the resulting electrodes [6–8]. Therefore, a considerable
volume of research has been devoted to seeking an alternative to ITO [9–12]. Of the various
candidates proposed to date, Ag nanowires are considered one of the most promising for
the fabrication of flexible transparent electrodes due to their low sheet resistance, high
optical transmittance, and excellent mechanical flexibility [13–16].

In the electrode fabrication process, Ag nanowires are generally suspended in a liquid
solvent such as deionized (DI) water, ethanol, or isopropyl alcohol (IPA), with the resulting
solution coated on a transparent substrate using various coating or printing technologies
such as doctor blading, spray coating, screen printing, or gravure printing [17,18]. Doctor
blading is particularly widely used because of its simple process and low equipment
costs [19–22]. A doctor blade is a blade sharpened to have a thin edge with a width below
~few microns. A sensitive jog controller enables control over the height of the doctor
blade from the substrate on a microscale. During the coating process, an actuator pushes
the doctor blade in the coating direction at a set speed, where inks ahead of the doctor
blade spread in the direction of the doctor blade with the wet thickness corresponding to
the height of the doctor blade. A typical coating method using a Mayer bar can produce
scratches on the samples, while there are concerns that the other widely used spray coating
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methods have toxic chemicals that can be inhaled by persons near the process facility.
Without such issues, doctor blading coating can deposit inks uniformly in a simple process
through the precisely controlled movement of the doctor blade. Several types of blades
such as lamella, bevel, or round blades are used for the doctor blade coating process, but
the bevel blade is mostly used for low viscosity ink such as the Ag nanowire solution. In the
doctor blading process, the Ag nanowire solution is dropped on one edge of the substrate
and then spread across the entire area of the substrate via the movement of the doctor blade,
with a specific gap maintained between the substrate and the blade tip. The quality of Ag
nanowire electrodes produced in this manner is largely dependent on the doctor blading
conditions, including the height of the blade and the blading speed. However, few studies
have investigated the effect of the blading conditions on the optical and electrical properties
of Ag nanowire electrodes [23–25]. For example, Krantz et al. prepared the Ag nanowire
transparent electrode on glass substrates by using a doctor blading method, which achieved
90% optical transmittance and 10 ohm/sq using a blading speed of 5 mm/s [23]. However,
the height of the doctor blade was not considered, which indicated that the effect of the
height of the doctor blade on the electrode properties was not considered. In the work
of Banica et al., Ag nanowire electrodes were deposited on polyethylene terephthalate
(PET) substrates using a doctor blading method [24]. The height of the blade was fixed
to have a ~30 µm gap from the PET substrates, which corresponded to ~180 µm for their
system. The optical transmittance and the sheet resistance of the sample showing the best
performance were ~87% and ~31 ohm/sq, respectively. However, the blading speed was
not considered for controlling the optical and electrical performance of the Ag nanowire
electrodes. Although those studies demonstrated Ag nanowire electrodes with high optical
transmittance and low sheet resistance through the doctor blade method, the effects of
blading speed and height were not considered in detail.

In this study, Ag nanowires suspended in IPA were spread on a PET substrate using
a doctor blading system. The height of the blade and the blading speed were varied
to confirm the influence of the doctor blading conditions on the Ag nanowire electrode
performance in terms of the optical transmittance and haze. It was found that the optical
properties were correlated with the sheet resistance. In addition, the figure of merit
(FoM) was determined in order to discover the optimal blading conditions. These results
provide practical guidance for the use of doctor blade systems in the fabrication of Ag
nanowire electrodes.

2. Experimental

A Ag nanowire suspension in IPA (0.15 wt%) was purchased from Nanopyxis and
used as received. Figure 1 presents a schematic of the coating process for Ag nanowire
electrodes on a PET substrate using a doctor blade system. First, 2 mL of the Ag nanowire
suspension was dropped in a line along one edge of the PET substrate. The doctor blade was
positioned at the desired height and moved at a fixed speed, spreading the Ag nanowire
solution across the entire area of the substrate along the direction of motion of the doctor
blade. The height of the blade was controlled through the micro jog controller equipped
within the system. The blading speed was controlled by pushing the speed in the system
operated by an automatic actuator. The coated Ag nanowire electrodes were then dried in
a convection oven at 80 ◦C for 20 min. The optical transmittance and haze were measured
using a UV−vis spectrometer (haze-grad I, BYK-Gardner Instruments) following the ASTM
D1003 standard (procedure A). The sheet resistance was measured using a four-point
resistance measurement system (FPP-2400, Dasol Eng Co., Ltd.). The morphology of the
Ag nanowire electrodes was also characterized using field-emission scanning electron
microscopy (FE-SEM, SIGMA, Carl Zeiss).
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Figure 1. (a–c) Schematics of the coating process for the production of transparent Ag nanowire
electrodes using a doctor blade system.

3. Results and Discussion

Figure 2a presents optical transmittance and haze values for the fabricated Ag nanowire
electrodes as a function of the blade height. The thickness of the PET was 125 µm; thus, the
blade height ranged from 150 µm to 350 µm. The doctor blade speed was fixed at 10 mm/s
for this case. The optical transmittance of the Ag nanowire electrodes decreased as the
height of the blade increased (91.6 ± 0.2% for a blade height of 150 µm and 90.2 ± 0.4% for
a blade height of 350 µm). The haze exhibited a similar trend to that of the optical transmit-
tance, with the Ag nanowire electrode coated with a blade height of 150 µm recorded at
~1.23 ± 0.03% and that coated with a blade height of 350 µm recorded at 1.48 ± 0.06%.
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Figure 2. (a) Optical transmittance and haze, (b) sheet resistance, and (c) figure of merit (FoM) as a
function of the blade height.

Figure 2b displays the sheet resistance as a function of the doctor blading height. There
was no significant change in the sheet resistance, which may be because the same amount
of Ag nanowire suspension volume was used for the tests. Figure 2c presents the FoM
calculated using the optical transmittance and sheet resistance. The FOM is calculated
based on the equation, FoM = T10/RS, where T and RS are the optical transmittance and the
sheet resistance, respectively. The highest FoM was obtained for the Ag nanowire electrode
coated at a blade height of 150 µm. The greater blade height lowered the FoM due to the
degradation of the optical transmittance. A smaller gap between the blade and substrate
resulted in a uniform distribution of the Ag nanowires over the entire area of the PET
substrate. On the other hand, when the gap was widened, the larger wet thickness of the
Ag nanowire solution increased the probability of nanowire agglomerates due to the coffee
ring effect [26,27]. In a coated layer, the solution at the edge evaporates faster than the inner
region. Due to the capillary flow, the evaporated edge is replenished from the solution in
the inner region, thereby forming high density layer of particles at the edge. In the case
of the large wet thickness, the differences in the evaporation speed between the edge and
the inner region become larger, which causes a more severe coffee ring phenomenon. In
such a case, the differences in the density of the Ag nanowires between the edge and the
inner region will be higher than those with smaller wet thickness, which might reduce
the optical properties of the Ag nanowire electrodes. The non-uniformity caused by the
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agglomerated Ag nanowires would have degraded the optical transmittance and haze, as
seen in Figure 2a. However, it was rather difficult to see the differences in agglomeration
depending on the coating condition as shown in Figure 3. The Ag nanowire electrodes
in the different coating conditions showed a similar distribution of Ag nanowires. There
might be small differences in the degree of agglomeration, but differences in the optical
properties were too small to be observed clearly in the global SEM images.
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Doctor blading speed is another vital parameter that determines the properties of
coated Ag nanowire electrodes. To confirm the effect of the doctor blading speed on Ag
nanowire electrode performance, the Ag nanowire solution was spread on the PET substrate
at different blading speeds with a fixed height of 150 µm. Figure 4a presents the optical
transmittance and haze values of the Ag nanowire electrodes as a function of the blading
speed. Up to a speed of 20 mm/s, the optical transmittance and haze demonstrated no
significant change. Over 25 mm/s, however, the optical transmittance decreased, with a
loss of 1% observed at a blading speed of 30 mm/s. The results for the haze were similar,
with no significant change for blading speeds up to 20 mm/s. However, the haze increased
from 1.23 ± 0.03% at a speed of 10 mm/s to 1.32 ± 0.05% at a speed of 30 mm/s.
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Figure 4. (a) Optical transmittance and haze, (b) sheet resistance, and (c) FoM as a function of the
blading speed.

There was no significant change in the sheet resistance as a function of the blading
speed (Figure 4b). The FoM was similarly consistent at blading speeds below 20 mm/s and
decreased at higher speeds (Figure 4c). The spread of the Ag nanowire solution was limited
by the fast movement of the doctor blade, leading to the relatively larger agglomeration
of Ag nanowires. With the fast movement of the doctor blade, the solution might be
rather difficult to spread out across the substrate but instead just pushed out in the coating
direction due to the surface tension. However, the deterioration in the optical properties
of the Ag nanowire electrodes coated with higher blading speeds was less severe than
observed for the increase in the blade height. There were also no significant differences
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in the SEM images of the Ag nanowire electrodes coated with blading speeds of 10 mm/s
and 30 mm/s (Figure 3a,c, respectively). Therefore, optimizing the blade height for doctor
blade coating systems should be the priority to obtain Ag nanowire electrodes with the
optimal optical and electrical performance.

4. Conclusions

In this study, the effect of the doctor blading conditions on the optical and electrical
properties of transparent Ag nanowire electrodes on a PET substrate was investigated.
The Ag nanowire electrodes were coated on the PET substrate using a doctor blade at
different blading heights and speeds. When the blading height was increased from 150 µm
to 350 µm at a fixed speed of 10 mm/s, the optical transmittance of the Ag nanowire
electrodes decreased and the haze increased. The sheet resistance exhibited no significant
change with the blading height, while the FoM decreased as the blading height increased.
A greater blade height resulted in an increase in the wet thickness, leading to Ag nanowire
agglomerates, as confirmed by the SEM images, which resulted in the degradation of the
optical properties of the Ag nanowire electrode.

The effect of the change on the blading speed was also investigated. Ag nanowires
were coated at blading speeds from 10 mm/s to 30 mm/s. Up to 20 mm/s, there was no
significant degradation in the optical and electrical properties. Over 25 mm/s, however,
minor degradation was observed because the fast movement of the blade hindered the
sufficient spread of the Ag nanowires, leading to their agglomeration. Therefore, the best
optical and electrical properties of the Ag nanowire electrodes were achieved at a height
of 150 nm and a speed of 10 mm/s. However, the change in the optical properties due
to changes in the blading speed was less serious than for changes in the blading height.
The blading height was confirmed to be the most important factor in fabricating high-
performance Ag nanowire electrodes using a doctor blade system. The lower the blading
height, the higher the electrode performance, which will be an interesting topic for our
future study if we can obtain a new doctor blading machine that can control the height
more precisely under 150 µm. Our results thus provide useful guidelines for the use of
doctor blades in the coating of Ag nanowire electrodes.
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