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A B S T R A C T   

Carbon nanotubes (CNTs) are used as conduction materials for cathodes or anodes of secondary batteries. The 
dispersibility of CNTs in a solvent is a crucial property for producing high-efficiency CNT-based batteries because 
the battery performance depends on the CNT density in the electrodes. Measuring small changes in the dispersion 
state of CNTs in solution, depending on the dispersion method, is essential to obtain highly stable CNT disper
sions. The multiple light scattering can effectively characterize the CNT dispersibility, taking advantage of its 
ultrahigh-resolution light detection and time-dependent measurement abilities. Although some studies of CNT 
dispersibility using the multiple light scattering have been reported, a comprehensive review of these results is 
still lacking. This mini-review introduces the fundamental principles of the multiple light scattering. We sum
marize research trends on measuring CNT dispersibility using this method, focusing on the strategies used for 
preparing stable CNT dispersions.   

1. Introduction 

The various advantages of carbon nanotubes (CNTs), such as excel
lent mechanical properties, high electrical conductivity, and 
outstanding thermal properties, have attracted considerable attention in 
several application areas, such as novel sensors [1–6], memory or 
computing devices [7–13], fifth-generation (5G) antennae [14–19], and 
secondary batteries [20–29]. Their application as conductive additives 
for anode or cathode materials is of particular interest to engineers or 
researchers in the lithium-ion battery industry, owing to the potential 
for enhancing the energy density of batteries [30–34]. In addition, the 
excellent mechanical properties of CNTs reduce fractures in silicon an
odes during charge/discharge cycles, enhancing the stability of batteries 
based on these anodes [27,31,35,36]. 

The performance of batteries using CNTs is primarily governed by 
the densities of the CNTs in the total electrode volume [37–40]. A higher 
amount of CNTs in the electrodes leads to an improved battery effi
ciency. However, as the volume of the electrode is limited, the content of 
CNTs cannot be increased indefinitely. In addition, the CNTs have an 
intrinsic tendency to agglomerate in water or organic solvents, which 
reduces their performance and amount available for incorporation into 
electrode mass [41–45]. Effective dispersion methods enhance the 

formation of concentrated CNT dispersions. There is a direct relation
ship between concentration of CNT in a dispersion and density of CNT in 
the electrode. Thus, dispersion technologies that can facilitate the 
incorporation of CNT contents as high as possible are critical to achieve 
optimum battery performances, due to the limited volume of the elec
trodes. Various methods based on mechanical or chemical routes are 
available for reducing aggregation and improving the dispersion of 
CNTs in solvents [46–50]. 

The main approaches to disperse CNTs using mechanical methods 
include high-shear mixing [51–57] or ultrasonication [58–62]. The 
strong mechanical force fragments the CNTs, dispersing them 
throughout a solvent. However, the fragmented CNTs easily agglom
erate after removing the mechanical mixing force, resulting in a short 
shelf life of the CNT dispersion [63–66]. Other approaches involving 
chemical agents can effectively resolve the re-agglomeration issues after 
mechanical dispersion methods [63,67–76]. Chemical approaches are 
divided in two categories: chemisorption and physisorption methods 
[77–80]. In the chemisorption methods, the surface of the CNTs is 
modified or functionalized with various chemical moieties, enhancing 
the compatibility of the CNTs with a dispersion solvent [81–84]. How
ever, the chemical modification could degrade the electrical properties 
of the CNTs, because of newly formed defects on their surface or the 
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changed conjugation of π-electrons through the chemical process 
[85–88]. Physisorption methods modify or functionalize the CNT sur
face through the physisorption of molecules such as surfactants or 
polymeric additives which are adsorbed on the CNT surface through π-π 
interaction or van der Waals forces [88–91]. In physisorption methods, 
the electrical properties of the CNTs remain unchanged, because the 
π-electron cloud on the CNT surface is not altered [92–94]. In addition, 
the physisorption methods are time- and cost-effective; thus, they are 
widely used for many applications of CNTs, such as nanocomposites or 
dispersed CNT solutions [85,95–99]. 

A critical problem in studying CNT dispersions is the accurate eval
uation of the dispersion state and stability over time [100]. Slight 
changes in the dispersion state of CNTs greatly affect the performance of 
CNT-based batteries; thus, detecting small changes in the dispersion 
state or stability of one-dimensional nanoscale CNTs is an important 
task. Several methods have been proposed to measure the dispersion of 
nanomaterials, such as particle size analysis, UV–vis spectroscopy, zeta 
potential measurements [101,102], or the detection of transmitted or 
backscattered light [77,103,104]. Particle size analysis is widely used to 
evaluate the dispersion state by measuring the size and distribution of 
CNT agglomerates. A CNT dispersion with uniform size distribution can 
be considered an indication that the CNTs are well dispersed in the 
solvent. In case of UV–vis spectroscopy, the absorbance intensity de
pends on the dispersion state of the CNTs, which enables the charac
terization of the quality of the dispersion. The zeta potential is a 
parameter indicating the strength of the repulsive force between adja
cent CNTs dispersed in solvents. Thus, a CNT dispersion with a high zeta 
potential value is considered a stable state. Although these methods can 
effectively evaluate the dispersion state immediately after dispersion, 
they may suffer from limitations in the accurate evaluation of the 
dispersion stability over time. In addition, the above methods require 
the CNTs to be diluted in a solvent in order to precisely measure their 
dispersibility; this is another limitation, especially for industries where 
solutions with high concentrations of CNTs are widely used. 

The multiple light scattering is another effective method for 
measuring the properties of CNT dispersions [77,103,104]. The multiple 
light scattering can evaluate dispersion properties effectively and pre
cisely, owing to its high-resolution detection and time-dependent mea
surement ability [65,105–109]. This enables a more reliable evaluation 
of the dispersion stability. The combined signal of transmitted or 
backscattered light through samples provides comprehensive informa
tion on the dispersion state of samples as a function of the storage time 
[77,103,104]. Furthermore, unlike methods such as particle size anal
ysis and UV–vis spectroscopy, the multiple light scattering can be 
applied without any major limitations on the concentration of the par
ticles and the type of solvents. The measurable concentration range is 
0.0001–95% (v/v). Therefore, a major advantage of the multiple light 
scattering method is its ability to take samples in their natural 
(dispersed) state with no dilution or further treatment required. Addi
tionally, the multiple light scattering method can determine dispersion 
state in highly dilute through highly concentrated colloids. The other 
methods typically require dilution and are much more time-consuming. 

Owing to the importance of investigating CNT dispersions in solu
tion, various studies evaluated the dispersibility of CNTs using the 
multiple light scattering [64,65,84,107,110–112]. However, a compre
hensive review of these studies is still lacking. This mini-review in
troduces the fundamental theory and mechanism of the multiple light 
scattering. In addition, various studies on the dispersibility of CNTs 
using these methods are discussed and summarized. This review pro
vides a comprehensive understanding of the dispersibility of CNTs, 
especially for systems studied using the multiple light scattering. 

1.1. Fundamental principles of multiple light scattering 

1.1.1. Mechanisms 
Multiple light scattering is an optical measurement method that uses 

static multiple light scattering to evaluate the stability of a dispersion 
[113–116]. Slight changes in dispersion states, invisible to the naked 
eye, can be measured via time-dependent in situ light detection using a 
high-precision light detector. The measured data can be used to estimate 
particle migration parameters and size changes. 

The dispersion stability reflects changes in one or more physical 
characteristics over a certain period; the dispersion state is required 
information to evaluate the dispersion stability of a sample over time. 
Dispersion states are divided into four main stages: 1) stable state (Fig. 1 
(a)), 2) agglomerated state due to flocculation or coalescence (Fig. 1(b)), 
3) creamed state (Fig. 1(c)), and 4) sedimented state (Fig. 1(d)). Because 
the physical or chemical properties of the dispersions are critically 
governed by their dispersion state, understanding and characterizing the 
dispersion states of the samples is vital for obtaining stable samples. 

Fig. 2 illustrates the multiple light scattering, which typically use a 
light source capable of irradiating near-infrared rays with a wavelength 
of 880 nm [117–120]. There are two detectors: a transmission detector 

Fig. 1. Schematic illustration of the dispersed states of particles: (a) stable, (b) flocculated or coalesced, (c) creamed, and (d) sedimented.  

Fig. 2. Schematic illustration of experimental setup for multiple 
light scattering. 
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180◦ opposite the light source and a backscattering detector receiving 
the light scattered backward, at an angle of 45◦ from the incident beam. 
During the characterization process, near-infrared rays are irradiated on 
the sample and vertically scanned from the sample bottom to the top in 
40-μm steps using a pulse method. The detected light source signal at 
each detector is measured in situ during the selected time interval. The 
irradiated light interacts with the particles in the solution, and the 
scattering or backscattering of the photons is highly dependent on the 
angle of the incident light on the particle surface. The light that travels 
toward the detector on the opposite side of the light source is considered 
transmitted light, whereas that measured at the detector on the same 
side of the light source is considered backscattered light. The statistical 
analysis of the scattered or backscattered light provides valuable infor
mation, including the dispersion state, particle size, and sedimentation 
speed. Therefore, it is practical to characterize time-dependent changes 
in the dispersion states of samples. 

1.1.2. Phenomena in dispersions 
Shifts in the transmitted or backscattered light over time are due to 

changes in the photon transport mean free path, induced by variations in 
the dispersion state. As shown in the following equations, the photon 
transport mean free path is determined by the size and concentration of 
the dispersed particles, resulting in changes in the intensity of the 
transmitted or backscattered light: 

BS ≈

[
1
l*

]
1
2, T ≈ T0exp

[− ri

l

]
, l* =

[
2d

3Φ(1 − g)Qs

]

, l =
[

2d
3ΦQs

]

,

where BS denotes backscattering, T0 represents the transmittance of the 
continuous phase, g is the asymmetry factor, Qs is the scattering effi
ciency factor, d denotes the diameter, Φ represents the concentration, l* 
indicates the photon transport mean free path, l is the photon mean free 
path, and − ri is the internal radius of the measurement cell [121,122]. 

Fig. 3 shows representative BS profiles depending on the dispersion 
states of particles in a solution. The x and y axes correspond to the height 
of the sample bottle scanned in the measurement and the change in the 
intensity of the detected backscattered light, respectively. Stable sam
ples exhibit little to no changes in the intensity profile of the measured 
transmitted or backscattered light (Fig. 3(a)), whereas unstable samples 
exhibit dramatic changes over time (Fig. 3(b)-3(d)). Aggregation or 
agglomeration can occur in the unstable samples, altering the particle 
migration speed or changing the particle size. The degree and path of 
light scattering show substantial changes through the aggregated par
ticles, which can be easily detected using the multiple light scattering. 
Particle migration is divided into creaming and sedimentation stages. 
Creaming is a phenomenon where the particles move upward because 
their density is lower than that of the solvent. This generates a con
centration gradient between the top and bottom of the samples, result
ing in local differences between the transmitted and backscattered light 
(Fig. 3(b)). In the sedimentation case, the particles have higher density 
than the solvent, resulting in their settling (Fig. 3(c)). The aggregation of 
particles due to flocculation or coalescence results in an increase in their 
size, and the inhomogeneous distribution of the particle size causes a 
variation of the intensity of the transmitted or backscattered light (Fig. 3 
(d)); thus, this process can be effectively detected using the multiple 
light scattering. Flocculation is a process that can be reversed by 
agitation, whereas coalescence is irreversible. 

1.1.3. Factors considered in data analysis 
Understanding the effect of concentration and particle size changes is 

essential to analyze the light detection measurements. The photon 
transport mean free path is the distance traveled by the photon in a 
different direction from that of the initially incident light. This is a 
critical factor determining the intensity of the measured scattered or 
backscattered light. If the concentration of particles in the bottom region 
of the cell increases due to sedimentation, without changes in particle 
size through aggregation, the photon transport mean free path in that 
region is shortened; this is due to the increased probability of light 
scattering, which increases the intensity of the backscattered light 
(Fig. 4(a)). Such concentration of particles in a certain area is termed 
local concentration. In the opposite case, where the concentration of 
particles at the bottom of the cell decreases, the photon transport mean 
free path is extended, reducing the intensity of the backscattered light 
(Fig. 4(a)). In physical terms, “diluted” and “concentrated” regions can 
be distinguished based on the intensity of the transmitted light. A con
centration corresponding to a 0.2% decrease in the transmitted light 
intensity is considered a critical concentration, whereas a region with 
>0.2% decrease is considered a concentrated region. However, in a 
strongly diluted region, the light reflection at the glass wall of the 
sample bottle can result in a slight increase in the backscattered light 
(Fig. 4(b)); this phenomenon is denoted as second wall effect. In other 
words, the second wall effect corresponds to the increase in intensity 
caused by the reflection of light by the second wall of the measured cell, 

Fig. 3. Illustrations of dispersed particle states and multiple light scattering 
profiles of (a) stable, (b) creamed, (c) sedimented, and (d) flocculated/coa
lesced states. 
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rather than scattering by particles dispersed in the solvent; this effect 
should be considered when analyzing diluted sample results. 

Rayleigh and Mie scatterings must be considered in the analysis of 
particle size changes. Rayleigh scattering, representing elastic scattering 
at the molecular level, occurs because the particle size is much smaller 
than the wavelength of the irradiated light (Fig. 5(a)). As the probability 
of scattering between light and particles is low, the intensity of the 
backscattered light is also low. As the size of the particles increases due 
to aggregation over time, the scattering probability between light and 
particles increases, resulting in an increased backscattering intensity, as 
illustrated in Fig. 5(c). Mie scattering occurs when the particle size is 
larger than the wavelength of the irradiated light (Fig. 5(b)). In this 
region, the average interparticle distance increases with increasing 

particle size; hence, the probability of scattering decreases, with a 
gradual decline in the measured intensity of backscattered light (Fig. 5 
(c)). 

In addition, the optical properties of the particles, such as the 
refractive index and absorbency, affect the detected intensity of the 
transmitted or backscattered light. Significant light absorption occurs in 
highly colored samples; thus, the intensity of the initial backscattered 
light and the following changes during the measurement are low. Much 
longer measuring times are required to obtain sensitive results than for 
samples with other colors. 

Fig. 4. (a) Schematic illustration of relationships between backscattered light intensity and photon transport mean free path for different particle concentrations; (b) 
second wall effect of transmission and backscattered light profiles. 
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1.2. CNT dispersibility studies using multiple light scattering 

1.2.1. CNTs dispersed with chemisorption methods 
One of the main areas of study among chemical approaches to 

enhance the stability of CNT dispersions is the functionalization of CNTs 
using chemisorption methods. Various reports have focused on the 
dispersion stability of CNTs functionalized with chemisorption methods, 
which have been intensively studied using multiple light scattering ap
proaches [64,65,84,110,123,124]. 

Lee et al. [64] compared the dispersion stabilities of three types of 
MWCNTs: i) pristine MWCNTs, ii) acid-treated MWCNTs with carboxylic 
acid groups (-COOH), and iii) MWCNTs with carboxyl anion groups 
(carboxylate, -COO− ). The MWCNTs with different functionalities (0.01 
wt%) were dispersed in various nonpolar and polar solvents, including 
water, styrene, and toluene. The dispersion was performed using a tip 
sonicator. As shown in Fig. 6(a), the pristine MWCNTs dispersed in 
water displayed a rapid increase in transmission intensity for up to 1 h, 
which changed into a gradual increase up to 12 h, indicating significant 
dispersion instability. Moreover, the MWCNTs-COOH and MWCNTs- 
COO− dispersions in water presented no significant changes in 

transmission signals even after 12 h, indicating dispersion stability. The 
sedimentation of the MWCNTs-COO− dispersion was slower than that of 
the MWCNTs-COOH counterpart, owing to the stronger electrostatic 
repulsion forces between MWCNTs-COO− species [64,119,125]. 

As illustrated in Fig. 6(b), polar solvents (i.e., water) were found to be 
a little more beneficial for the dispersion stability of pristine MWCNTs 
compared to nonpolar solvents, such as styrene or toluene. For 
MWCNTs-COO− , the dispersion in polar solvents, such as methanol or 
water, exhibited much higher stability than that in styrene (Fig. 6(c)). 
Polar carboxylic anions groups (-COO− ) resulted in strong electrostatic 
repulsion forces between MWCNTs-COO− species, especially in polar 
solvents, leading to a greater dispersion stability in polar than nonpolar 
solvents. These findings indicated that the surface functionalization of 
MWCNTs to introduce strong electrostatic repulsion is an effective route 
for achieving dispersion stability in polar solvents; however, further 
efforts are required to enhance the dispersion stability in nonpolar 
solvents. 

Kim et al. [124] synthesized MWCNTs with long-chain alkyl groups 
produced by alkylation of carboxylate sodium salts (Fig. 7(a)). A 0.05 wt 
% amount of the fabricated MWCNTs with carboxyl ester alkyl groups 

Fig. 5. Illustration of (a) Rayleigh diffusion, (b) Mie diffusion, and (c) changes in backscattered light intensity according to particle size.  
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was dispersed in toluene by ultrasonication for 4 h. The authors 
measured the stability of the alkylated MWCNTs hourly for 10 days. The 
alkylated MWCNTs displayed much higher dispersion stability than the 
pristine MWCNTs even after 10 days of measurements, because the long 
alkyl chains enhanced the solubility of the MWCNTs in the solvents and 
prevented their aggregation (Fig. 7(b)). 

Wang et al. [110] synthesized MWCNTs grafted with an amphiphilic 
block copolymer via covalent bonds to achieve high MWCNT dispersion 
stability in various solvents. Poly(tert-butyl methylacrylate) (PtBMA) 

was reacted with polystyrene (PSt) to produce a block copolymer, which 
then reacted with MWCNTs via azide coupling to form PtBMA-b-PSt- 
MWCNTs (Sample C) (Fig. 8(a)). The hydrolysis of PtBMA-b-PSt- 
MWCNTs converted PtBMA to a polymethylacrylic acid (PMAA) block, 
which produced PMAA-b-PSt-MWCNTs (Sample B) (Fig. 8(a)). 0.05 wt% 
amount of MWCNTs with various functionalities were dispersed in 
various hydrophilic (e.g., water and ethanol) and hydrophobic (e.g., 
acetone and chloroform) solvents. The dispersion was performed using a 
sonicator for 2 min. 

Samples B and C presented a much better sedimentation behavior 
than pristine MWCNTs (Fig. 9(b– e)), indicating that functionalization 
using block copolymers is an effective method to enhance the sedi
mentation stability of CNTs. In comparison, Sample C exhibited a better 
sedimentation behavior than Sample B (Fig. 9(b–e)). The PMAA chain 
with carboxyl functional groups (-COOH) in Sample B resulted in a 
larger average size of the entangled MWCNTs, accelerating the sedi
mentation [110,126,127]. Consequently, the block copolymer without 
-COOH functional groups is beneficial to achieve a high dispersion 
stability. 

1.2.2. CNTs dispersed with physisorption methods 
As discussed in section 2.2.1, the chemisorption methods effectively 

enhanced the CNT dispersion stability. However, the generated surface 
defects on the CNT surface might degrade the electrical properties of the 
CNTs, which can in turn reduce the performance of devices based on 
them [86,91,101,128–130]. In addition, the functionalization process is 
relatively toxic and complicated. Thus, physisorption methods are the 
preferred option to enhance the stability of CNT dispersions. The precise 
characterization of the stability of CNTs dispersed using physisorption 
methods is also critical; thus, many studies have investigated the sta
bility of CNT dispersions using physisorption and multiple light 

Fig. 6. (a) Transmission profiles of pristine MWCNTs, MWCNTs-COOH, and 
MWCNTs-COO− dispersed in water. (b) Transmission profiles of pristine 
MWCNTs dispersed in styrene, toluene, and water. (c) Transmission profiles of 
MWCNTs-COO− dispersed in styrene, methanol, and water. Reproduced with 
permission from [64]. 

Fig. 7. (a) Fabrication procedure of alkylated MWCNTs and (b) transmitted 
light profiles of pristine and alkylated MWCNTs in toluene. Reproduced with 
permission from [124]. 
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Fig. 8. (a) Schematic diagram of the synthesis of PMAA-b-PSt-MWCNTs; (b–e) transmission profiles of A: pristine MWCNTs, B: PMAA-b-PSt-MWCNTs, and C: PtBMA- 
b-PSt-MWCNTs dispersed in (b) water, (c) ethanol, (d) acetone, and (e) chloroform. Reproduced with permission from [110]. 
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scattering. 
Kim et al. [107] dispersed MWCNTs in water and compared the 

stability of the dispersions using multiple light scattering. Various sur
factants, such as sodium dodecylbenzene sulfonate (NaDDBS) as anionic 

surfactant, cetyltrimethylammonium bromide (CTAB) as cationic sur
factant, and nonionic Triton-X-100 were used to disperse the MWCNTs. 
0.3 wt% of surfactants and 0.02 wt% of MWCNTs were mixed in water 
and sonicated at 25 ◦C at a power of 600 W and 28 kHz for 7 h. The 

Fig. 9. Transmission profiles of MWCNTs dispersed in water with (a) NaDDBS, (b) CTAB, (c) TX-100, and (d) no surfactants. (e) Comparison of transmittances of 
MWCNTs dispersed with different surfactants. Reproduced with permission from [107]. 
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authors analyzed the transmittance of each sample for 24 h at time in
tervals of 1 h. All surfactants were effective in enhancing the dispersion 
stability of the MWCNTs, and the sedimentation of MWCNTs dispersed 
with surfactants was much lower than that of pristine MWCNTs (Fig. 10 
(a–d)). Among the various surfactants, NaDDBS (anionic surfactant) was 
the most effective for MWCNT dispersion in water, due to strong elec
trostatic repulsion (Fig. 10(e)). 

Ponnamma et al. [131] studied MWCNTs dispersed in water using 
ionic surfactants with different surface charges, such as sodium dodecyl 
sulfate (SDS) and CTAB, as well as with a nonionic surfactant, Tween 20 
(TW). The dispersion stability of MWCNTs dispersed with different 
surfactants was systematically studied by detecting the amount of 

transmitted and backscattered light signals through sample bottles. The 
content of MWCNTs in the solvent was 0.1 wt%, which was then diluted 
by 100 times. The dispersion was performed using a bath sonicator for 3 
h, followed by magnetic stirring for 36 h at room temperature. The ratio 
of surfactants to MWCNTs was fixed at 5:1. To evaluate the sedimen
tation stability, the results were presented in terms of sedimentation 
indexes (Fig. 11), with a lower index indicating higher sedimentation 
and dispersion stabilities. The pristine MWCNTs had the highest sedi
mentation index. Use of CTAB and SDS reduced the sedimentation index, 
but the different charges of the cationic CTAB and anionic SDS caused 
the aggregation of the MWCNTs, when used in mixtures, resulting in 
relatively poorer stability compared to MWCNTs with a single 

Fig. 10. (a) Sedimentation index and (b) absorbance intensity (at a wavelength of 270 nm) of MWCNTs dispersed in water using various surfactants. Reproduced 
with permission from [131]. 

Fig. 11. (a) Fabrication of SWCNTs with poly(DMAEMA-co-St) in THF. Transmission profiles of (b) pristine SWCNTs and (c) SWCNTs with poly(DMAEMA-co-St) in 
THF; (d) comparison of transmittances of SWCNT dispersions with different DMAEMA/St ratios. Reproduced with permission from [111]. 
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surfactant. The cationic CTAB and the electrons of MWCNTs neutralized 
the surface charge, resulting in a higher stability compared with 
MWCNTs with CTAB and SDS. The anionic SDS or nonionic TW pre
sented similar excellent dispersion stabilities, maintaining a negative 
charge on the MWCNT surface. These results indicated that the charge of 
the surfactant is a critical property for achieving high dispersion sta
bility. In addition, the enhanced performance of TW is related to effi
ciency of binding of head group to CNT surface, where the molecular 
structure of TW is large and very efficient at binding. TW is a nonionic 
surfactant, with long hydrocarbon chains compared to SDS and CTAB. 
Thus, it does not disrupt the natural negative surface charge of CNT as it 
is a non-ionic surfactant. Therefore, TW would be stabilizer that oper
ates both sterically and electrostatically, which resulted in the high 
sedimentation stability. Furthermore, depending on the types of sur
factants, they also measured the UV–vis spectra of 0.1 wt% MWCNT 
dispersions with a further 1000 times dilution. They plotted the UV–vis 
absorption intensity at a wavelength of ~270 nm, because the high 
absorbance in the range of the 200–300 nm is one of the ways to measure 
the stability of well-dispersed CNTs [132]. Similar to the trends of the 
sedimentation index, the MWCNT dispersion with TW showed the 
highest absorbance, whereas the MWCNT dispersion without surfactant 
showed the lowest absorbance compared with other cases. These results 
also prove that adjusting the surfactant is an essential way to improve 
the stability of MWCNT dispersions. 

Kim et al. [111] investigated the dispersion stability of single-walled 
CNTs (SWCNTs) with a polymeric dispersant using the multiple light 
scattering. In this study, 3 mg of SWCNTs was dispersed in 20 mL of 

tetrahydrofuran (THF) with 30 mg of poly(2-dimethylamino)ethyl 
methacrylate-co-styrene (poly(DMAEMA-co-St) as a polymeric disper
sant (Fig. 12(a)). The dispersion was conducted using a bath-type son
icator for 3 h. To evaluate the sedimentation stability, the authors 
plotted the transmittance results by measuring 48 scans for 2 days. The 
polymeric dispersants were synthesized by controlling the monomer 
ratio of DMAEMA to St. The aromatic groups of St interacted with 
SWCNTs via physisorption π-π interactions. In addition, DMAEMA 
created a steric hindrance between the individual SWCNTs. Therefore, 
the combination of St and DMAEMA was effective in preventing SWCNT 
aggregation, enhancing the dispersion stability (Fig. 12(b) and 12(c)). 
The dispersant prepared with a DMAEMA/St mixing ratio of 7:3 (No. 4) 
exhibited the highest sedimentation stability, as illustrated in Fig. 12(d). 
Samples No. 2 and No. 3 were synthesized with DMAEMA/St mixing 
ratios of 20:80 and 46:54, respectively. The role of St in the mixture was 
to promote the adhesion of DMAEMA to the CNT surface. The dispersion 
stability was mainly due to the steric hindrance produced by DMAEMA. 
Therefore, increasing the content of DMAEMA resulted in better per
formances. However, DMAEMA alone (without St) showed the worst 
dispersibility, because it is impossible to anchor it on the CNT surface 
without St. Therefore, mixing DAMEMA and St was necessary to obtain 
the best dispersibility of the CNT solution. The St or DMAEMA single 
components displayed much faster sedimentation than the mixed sam
ples. These results indicated that the mixture of St and DMAEMA im
proves the dispersion stability of SWCNTs in THF. 

Lee et al. [112] dispersed SWCNTs in THF with poly((furfuryl 
methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) (p(FMA-co- 

Fig. 12. (a) Synthesis procedure of p(FMA-co-DMAEMA) polymeric dispersant. (b) Transmittance changes of SWCNTs in THF, depending on the ratio of FMA to 
DMAEMA. Reproduced with permission from [112]. 
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DMAEMA)) as a polymeric dispersant (Fig. 13(a)). 2 mg of SWCNTs was 
mixed with 20 mL of THF and the resulting solution was mixed with 20 
mg of the polymeric dispersant using a bath sonicator for 3 h. The ratio 
of FMA to DMAEMA was varied from 1:0, to 7:3, 5:5, 3:7, and 0:1, and 
the corresponding samples were labeled 1, 2, 3, 4, and 5, respectively. 

However, a critical range of mixing ratios exhibited optimized SWCNT 
sedimentation behavior in THF. The 7:3 (2) and 5:5 (3) FMA/DMAEMA 
mixing ratios led to excellent sedimentation behavior, as shown in 
Fig. 13(b). A further increase in DMAEMA content to 70% (4) resulted in 
a rapid deterioration of the sedimentation performance, as shown in 

Fig. 13. (a) Schematic illustration of the fabrication procedure of p(FMA-co-QDMAEMA). (b) Transmittance data for SWCNTs dispersed with p(FMA-co-QDMAEMA) 
in various solvents. (c) Optical images of SWCNT dispersions in EG, MeOH, water, and DMF (PD: SWCNT dispersion with p(FMA-co-DMAEMA), QD: SWCNT 
dispersion with p(FMA-co-QDMAEMA), QC: centrifuged QD solution). Reproduced with permission from [133]. 

Table 1 
Summary of various strategies to enhance CNT dispersion stability.  

Modification method CNT Solvent Dispersion method Dispersion 
stability 

Ref. 

Chemisorption 
method 

Acid treatment 0.03 wt% of 
MWCNTs 

Methanol Ultrasonication for 8 h Excellent [65] 
Ethanol Excellent 
Isopropanol Excellent 

Acid treatment and anionization of 
carboxylic acid group 

0.01 wt% of 
MWCNTs 

Styrene Tip sonication Poor [64] 
Methanol Excellent 
Water Excellent 

Alkylation 0.05 wt% of 
MWCNTs 

Toluene Ultrasound sonication for 4 h Excellent [124] 

Amphiphilic block copolymer 
modification 

0.05 wt% of 
MWCNTs 

Water Sonication for 2 min Fair [110] 
Ethanol Excellent 
Acetone Excellent 
Chloroform Excellent 

Physisorption 
method 

0.3 wt% of NaDDBS 0.02 wt% of 
MWCNTs 

Water Sonication at 600 W power and 28 kHz for 7 h Excellent [107] 
0.3 wt% of CTAB Excellent 
0.3 wt% of Triton-X-100 Excellent 
0.005 wt% of TW 0.001 wt% of 

MWCNTs 
Water Bath-type sonication for 3 h followed by 

magnetic stirring for 36 h 
Excellent [131] 

0.005 wt% of SDS Excellent 
0.005 wt% of CTAB Fair 
0.005 wt% of CTAB + SDS Fair 
0.17 wt% of poly(DMAEMA-co-St) 0.017 wt% of 

SWCNTs 
THF Bath-type sonication for 3 h Excellent [111] 

0.11 wt% of poly(FMA-co-DMAEMA) 0.011 wt% of 
SWCNTs 

THF Bath-type sonication for 3 h Excellent [112] 

0.09 wt% of poly(FMA-co-QDMAEMA) 0.009 wt% of 
SWCNTs 

EG Bath-type sonication for 3 h Excellent [133] 

0.12 wt% of poly(FMA-co-QDMAEMA) 0.012 wt% of 
SWCNTs 

MeOH Excellent 

0.1 wt% of poly(FMA-co-QDMAEMA) 0.01 wt% of 
SWCNTs 

Water Excellent 

0.11 wt% of poly(FMA-co-QDMAEMA) 0.011 wt% of 
SWCNTs 

DMF Excellent  
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Fig. 13b, due to fast phase separation. 
Lee et al. [133] also reported the enhanced dispersibility of SWCNTs 

using modified p(FMA-co-DMAEMA). The tertiary amine p(FMA-co- 
DMAEMA) was modified to quaternary ammonium (p(FMA-co- 
QDMAEMA)) using iodomethane, as illustrated in Fig. 14(a). The p 
(FMA-co-QDMAEMA) compound had a positive charge center, making 
the SWCNTs soluble in ethylene glycol (EG), dimethylformamide (DMF), 
water, and methanol (MeOH). 4 mg of SWCNTs was dispersed in 40 mL 
of solvent along with 40 mg of the dispersants, using a bath sonicator for 
3 h. Changes in the transmitted light through the sample bottles were 
measured using the multiple light scattering for 2 days at time intervals 
of 2 h. The SWCNTs dispersed with p(FMA-co-QDMAEMA) displayed 
excellent sedimentation behavior, with a transmittance change below 
2% over 2 days (Fig. 14(b)). The SWCNTs with the unmodified disper
sant (p(FMA-co-DMAEMA)) exhibited poor sedimentation in EG, MeOH, 
water, and DMF systems (Fig. 14(c)). These results indicate that the 
modification of the polymeric dispersant is another suitable strategy to 
further enhance the sedimentation stability of SWCNTs. 

Table 1 summarizes the literature described in section 2.2 of this 
mini-review; the different studies are classified according to modifica
tion method, CNT content, type of solvent, mixing method, and 
dispersion stability evaluated from the characterization results using the 
multiple light scattering. Overall, the dispersibility of dispersions of 
various CNTs and additives was successfully characterized using the 
multiple light scattering. The dispersibility of CNTs was mainly deter
mined by the modification method and solvent; thus, selecting appro
priate chemicals that are effective to the target solvent system was 
shown to be crucial to obtain highly stable CNT dispersions. 

2. Summary 

This mini-review discusses the trends observed in CNT dispersibility 
studies using the multiple light scattering. The initial part of the review 
described the operation mechanism of the method and the factors 
considered in the data analysis. This light detection method rapidly and 
accurately measures the dispersion stability of complex dispersed sam
ples such as CNT samples by detecting changes in backscattered and 
transmitted light According to the literature results described in this 
mini-review, physisorption methods are relatively easier to apply than 
chemisorption methods. The dispersion stability was highly dependent 
on the interaction between the CNT surface and the solvent; thus, 
different strategies will be required to achieve an optimized dispersion 
stability of CNTs with different solvents. Although this mini-review 
provides some indications of the strategies that could be used for CNT 
dispersion, there are many unexplored materials or methods that can 
further enhance the dispersion stability of CNTs. In addition, the relation 
between the dispersion stability of CNTs and the performance of batte
ries has not been intensively studied yet. Owing to its ability to precisely 
detect dispersion states in situ, the transmitted and backscattered light 
detection method is expected to support future studies aimed to enhance 
the CNT dispersion stability, especially in secondary battery 
applications. 
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