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Abstract

Purpose

To propose a neural network (NN) that can effectively segment orbital tissue in computed

tomography (CT) images of Graves’ orbitopathy (GO) patients.

Methods

We analyzed orbital CT scans from 701 GO patients diagnosed between 2010 and 2019

and devised an effective NN specializing in semantic orbital tissue segmentation in GO

patients’ CT images. After four conventional (Attention U-Net, DeepLab V3+, SegNet, and

HarDNet-MSEG) and the proposed NN train the various manual orbital tissue segmenta-

tions, we calculated the Dice coefficient and Intersection over Union for comparison.

Results

CT images of the eyeball, four rectus muscles, the optic nerve, and the lacrimal gland tis-

sues from all 701 patients were analyzed in this study. In the axial image with the largest

eyeball area, the proposed NN achieved the best performance, with Dice coefficients of

98.2% for the eyeball, 94.1% for the optic nerve, 93.0% for the medial rectus muscle, and

91.1% for the lateral rectus muscle. The proposed NN also gave the best performance for

the coronal image. Our qualitative analysis demonstrated that the proposed NN outputs pro-

vided more sophisticated orbital tissue segmentations for GO patients than the conventional

NNs.

Conclusion

We concluded that our proposed NN exhibited an improved CT image segmentation for GO

patients over conventional NNs designed for semantic segmentation tasks.
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Introduction

The orbit of the eye is a complex anatomical region, which can be evaluated by a variety of

radiological modalities. Computed tomography (CT) is the most widely used diagnostic imag-

ing modality for diagnosing orbital pathologies. Moreover, recent technical advances in the

three-dimensional analysis of CT images have enabled the quantitative measure of extraocular

muscles, lacrimal glands, and orbital fat [1]. For example, Graves’ orbitopathy (GO) is a well-

known orbital disease with extrathyroidal features of dysthyroidism [2]. Using CT to quantita-

tive analyze orbital tissue has become essential for the clinical assessment of GO activity or

severity [3]. Currently, however, the manual segmentation of orbital tissues from the CT images

remains a labor-intensive and time-consuming process and can be observer-dependent [4, 5].

Previous studies have used neural networks (NNs) to identify, discriminate, and grade vari-

ous diseases [6–8]. In ophthalmology, NNs are used in the grading of diabetic retinopathy [9],

age-related macular degeneration [10], and glaucoma screening [11]. Semantic segmentation

of the orbital area using NNs can be a successful application of machine learning techniques

because tissues with different Hounsfield units are clustered within a narrow orbit. Recently,

several attempts have been made to segment orbital bones, orbital fat, or eye globes in both

orbital CT and magnetic resonance imaging using NNs [12–14]. However, due to the architec-

ture of conventional NNs, the restoration performance of the decoder can be limited, which

can result in output segments with rough boundaries, particularly when the analyzed CT

images contain deformed orbital tissue.

In this study, we propose an effective NN based on encoder-decoder architecture to

improve tissue segmentation quality in GO patients. To validate the superiority of the pro-

posed NN, we compare the performance of our proposed NN against four conventional NNs:

Attention U-Net [15, 16], DeepLab V3+ [17], SegNet [18], and HarDNet-MSEG [19]. The five

NNs are applied to orbital CT images to segment the eyeball, optic nerve, lacrimal gland, and

extraocular rectus muscles. We also conduct an in-depth analysis by comparing the segmenta-

tion results given by the proposed NN and conventional NNs.

Materials and methods

This study is a retrospective comparative effectiveness research study. The protocol was

approved by the institutional review board of the Chung-Ang University Hospital (IRB No.

2112-013-19395) and complies with the tenets of the Declaration of Helsinki. The requirement

for informed consent was waived by the institutional review board because of the retrospective

nature of the study.

Participants

We obtained the orbital CT images (Philips Brilliance 256 Slice iCT, Philips Healthcare Sys-

tems, Andover, MA, USA) from 701 GO patients diagnosed between January 2010 and Octo-

ber 2019. Continuous axial scanning was performed with the patient’s head positioned parallel

to the Frankfort plane while looking at a fixed point. The scanning parameters were 120 kV,

150 mAs, 64 x 0.625 mm detector configuration, 1.0 mm slice thickness, and 1.0 mm slice

increment. Patients with orbital tumors, orbital bone fractures, other orbital structural defor-

mities, or ocular muscle surgery histories were excluded from the study.

Image acquisition and manual segmentation

Two axial slices and one coronal slice from the respective CT images were selected for each

subject. The axial slice displaying the largest eyeball volume was selected and designated as
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Axial 1; the axial slice expressing the largest lacrimal gland amount was selected and desig-

nated as Axial 2. The coronal slice image exhibiting the area located halfway between the eye-

ball-optic nerve junction and the inner exit of the optic nerve within the orbit was selected and

designated as Coronal.

The boundaries of the eyeball, optic nerve, medial rectus muscle, and lateral rectus muscle

are outlined in the Axial 1 image, and the boundary of the lacrimal gland is outlined in the

Axial 2 image. The boundaries of the optic nerve, medial, lateral, superior, and inferior rectus

muscles are outlined in the Coronal image (Fig 1). Manual segmentation was performed by a

single observer using ImageJ software ver. 1.46 (National Institutes of Health, Bethesda, MD,

USA; http://rsbweb.nih.gov/ij/).

Proposed and conventional neural networks

A Fully Convolutional Network (FCN) is a base NN with an architecture that can influence addi-

tional NNs for semantic segmentation [20], as FCN variations share a similar architecture with

some modifications. For example, U-Net [21], one of the most successful NNs in medical image

segmentation, is a modified version of an FCN that strengthens the symmetricity of encoder-

decoder architecture. Motivated by this point, we devised our NN for the semantic orbital tissue

segmentation in GO patients’ CT images based on the encoder-decoder architecture (Fig 2).

The goal of a five-block encoder is to extract features that contain important information,

such as orbital tissue location and boundary. The first two and last three blocks contain two

and three convolution layers, respectively. The convolution layer sequentially performs convo-

lution, batch normalization, and rectified linear unit operations. After the convolution layer,

one max pooling operation filters out unnecessary information. Because of convolution and

max pooling operations, the image size reduces gradually as the original image passes through

all five blocks.

Extracted features of each block encompass the image’s varying pixel numbers or area size.

For example, the features extracted from the first block cover a small area of the original

Fig 1. Manual orbital tissue segmentation from (A–E) axial and (F–J) coronal cuts. (A) eyeball, (B) optic nerve, (C) medial rectus muscle, (D)

lateral rectus muscle, (E) lacrimal gland, (F) optic nerve, (G) medial rectus muscle, (H) lateral rectus muscle, (I) inferior rectus muscle, and (J)

superior rectus muscle.

https://doi.org/10.1371/journal.pone.0285488.g001
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image; hence, these lowest-level features can help capture the detailed boundary of orbital tis-

sues with complicated shapes, such as the optic nerve. In contrast, the highest-level features

extracted from the last block cover a large area of the original image. They can locate the

orbital tissue in the image and resist the local noise caused by any deformities. Therefore, low-

level features can achieve high-quality tissue segmentation and refine the segmentation bound-

ary by starting from where the highest-level features indicate. In addition, since each block

extracts features from the reduced image, the decoder can be designed with counterpart blocks

against each encoder block to ensure the compatibility of feature coverage.

The five-block decoder has symmetrical architecture to the encoder, but the max pooling

layer of the encoder is replaced with an un-pooling layer for restoring the reduced image to its

original size [18]. Initially, the decoder applies an un-pooling operation to the highest-level

features delivered from the last block of the encoder. Because up-pooling operation does not

require any additional parameters to be trained, more refined values for other trainable param-

eters can be obtained within a limited number of training epochs. Based on the max pooling

indexes used in the pooling layer of the counterpart block in the encoder, image size can be

restored by duplicating the feature value to the corresponding location and padding the

remaining locations to zero. Next, the features extracted from the counterpart blocks of the

encoder are delivered through the skip connection to refine the rough boundary generated

through the un-pooling process or alleviate the original boundary’s information loss from the

encoding process [21]. These processes are repeated five times until the input image is restored

to its original size. As a result, the proposed NN maintains multi-level information to improve

the segmentation quality of the orbital tissue of GO patients. The source code of the proposed

NN is available at https://github.com/tkdgur658/OTSNet.

This study used four NN semantic segmentation types to verify the proposed NN’s perfor-

mance: Attention U-Net, DeepLab V3+, SegNet, and HarDNet-MSEG. Attention U-Net, Dee-

pLab V3+, and SegNet are the medical field’s most widely used FCN variants, and HarDNet-

Fig 2. Proposed neural network architecture based on convolution (Conv), batch normalization (BN), rectified linear unit (ReLU), and max pooling

operation.

https://doi.org/10.1371/journal.pone.0285488.g002
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MSEG is a medical image segmentation model equipped with the latest NN design techniques.

Attention U-Net is a recently improved U-Net variant [22–24] and the most widely used

model for medical image segmentation tasks, including orbital structure segmentation. Dee-

pLab V3+, the latest version in the DeepLab series [17, 25, 26], is frequently used for medical

image segmentation because of the Atrous convolution’s effectiveness [27–30]. DeepLab V3

+ delivers fewer extracted feature types from the encoder than the proposed NN, resulting in a

rough segmentation boundary from information loss. Although SegNet was initially developed

for road scene images, many variants are certified for medical imaging [31–34]. We used the

parameter settings for SegNet suggested by Chandra et al. [34]. Contrasting the proposed NN,

SegNet does not exploit additional encoder information except for max pooling indexes during

the decoding process. HarDNet-MSEG uses HarDNet as its backbone network and incorpo-

rates both received field blocks and cascaded partial decoders for segmentation tasks. HarD-

Net-MSEG demonstrated promising medical image segmentation performance owing to the

receiver field block [35, 36], which is why it was chosen as a compared method in this study.

However, unlike the proposed NN, HarDNet-MSEG does not pass low-level feature maps to

the decoder.

Experimental settings

Fig 3 illustrates the flowchart of the overall training and test process. The size of the CT images

was 512 x 512, and the output was the same size. Before preprocessing, each integer pixel value

ranged from -1024 to 3071. The pixels were normalized from 0 to 1 through VOI LUT opera-

tion with a Window center of 0 and a Window width of 200. The predicted output value was

transformed to 0 for the background and 1 for the orbital tissue by the sigmoid function with a

threshold of 0.5. We used Tversky Focal Loss and conducted the tests using a weight with a

minimum validation loss value out of 50 epochs. We implemented the five NNs with the

Pythorch (1.10.1) library and conducted all experiments in a Geforce RTX 3090 24 GB envi-

ronment. Hyperparameters comprised batch size, optimizer, learning rate, and weight decay,

which were set to 16, AdamW optimizer, 1e-3, and 1e-4, respectively.

Evaluation

Manually segmented images were used as the ground truth to compare training and perfor-

mance with the results of the five NNs. For training and evaluation, we randomly split the 701

datasets into training, validation, and test sets with a ratio of 0.7 (training) to 0.15 (validation) to

0.15 (test). Training test sets were repeated ten times for statistic calculations. Overall segmenta-

tion performances were evaluated using the Dice coefficient and Intersection over Union (IoU).

Dice ¼
2� TP

2� TP þ FP þ FN

IoU ¼
TP

TP þ FPþ FN

This evaluation suggests that both positive and negative predictive powers are accurate. In the

equations, TP indicates the number of true positives, FP indicates the number of false positives,

and FN indicates the number of false negatives.

Statistical analysis

The Dice coefficient and IoU were compared between the five NNs. The values were repre-

sented as the mean value with standard deviations. The four remaining NNs’ value distance
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from the highest segmentation performance criterion (Dice coefficient and IoU) was statistically

analyzed using a paired t-test. All statistical analyses were performed using the Python library

SciPy (https://www.scipy.org), with a p-value of< 0.001 denoting statistical significance.

Results

The age and sex of the 701 participants are shown in Table 1. The number of female partici-

pants (503, 71.8%) was much higher than male participants.

Comparisons of the performance of the five NNs, based on the Dice coefficient and IoU for

each of the three images, are shown in Tables 2 and 3. In the Axial 1 and 2 images, all the Dice

coefficients and IoU values for the segmentation of the five target tissues, including the eyeball,

Fig 3. Flowchart of overall training and test process.

https://doi.org/10.1371/journal.pone.0285488.g003

Table 1. Characteristics of participants.

Age (years, range) Sex Total (n, %)

Male (n, %) Female (n, %)

29 and under 59 (8.4) 164 (23.3) 223 (31.7)

30–39 57 (8.1) 170 (24.3) 227 (32.4)

40–49 47 (6.7) 82 (11.7) 129 (18.4)

50–59 26 (3.7) 60 (8.6) 86 (12.3)

60 and over 9 (1.3) 27 (3.9) 36 (5.2)

Total 198 (28.2) 503 (71.8) 701 (100)

https://doi.org/10.1371/journal.pone.0285488.t001
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optic nerve, medial rectus muscle, lateral rectus muscle, and lacrimal gland, were highest in

the proposed NN (mean values: 98.2%/96.5%, 94.1%/89.5%, 93.0%/88.1%, 91.1%/86.0%, and

87.2%/78.7%, respectively), followed by Attention U-Net (Table 2). The Dice coefficients and

IoU values for the five tissues were lowest in the HarDNet-MSEG. In the Coronal image, the

Dice coefficient and IoU value for the segmentation of the optic nerve were highest in the pro-

posed NN, followed by SegNet (Table 3). The Dice coefficients and IoU values for the segmen-

tation of the four rectus muscles were also highest in the proposed NN, followed by Attention

U-Net (Table 3).

We conducted a qualitative analysis to demonstrate the superiority of our proposed NN

over conventional NNs. We chose SegNet as the counterpart of the proposed NN because of

its effectiveness and simple architecture. Fig 4 shows the comparison results between the pro-

posed NN and SegNet. The figure’s first column indicates the input images with the target

orbital tissue and the ground truth boundary. The second and third columns signify the seg-

mentation results of SegNet and the proposed NN with white pixels in the ground truth

boundary. Thus, perfect orbital tissue segmentation can be confirmed if the ground truth

region is fully filled with white pixels. Our results indicated that the proposed NN provides bet-

ter segmentation results than SegNet, possibly because SegNet does not exploit the multi-level

features extracted from the encoding process, except for the max pooling indexes, and also

fails to produce sophisticated orbital tissue boundaries.

Table 2. Comparison of the performance of semantic segmentation using five neural networks in the Axial 1 and 2 images.

Target Model mDice p-value mIoU p-value

Eyeball (Axial 1) Proposed 98.2 ± 0.1 96.5 ± 0.2

HarDNet-MSEG 96.9 ± 0.5 < 0.001 94.2 ± 0.7 < 0.001

Attention U-Net 97.5 ± 0.2 < 0.001 95.3 ± 0.4 < 0.001

DeepLab V3+ 97.0 ± 0.3 < 0.001 94.5 ± 0.5 < 0.001

SegNet 97.8 ± 0.1 < 0.001 95.7 ± 0.2 < 0.001

Optic nerve (Axial 1) Proposed 94.1 ± 0.6 89.5 ± 0.8

HarDNet-MSEG 87.5 ± 2.9 < 0.001 79.0 ± 3.3 < 0.001

Attention U-Net 93.6 ± 0.7 0.005 88.7 ± 1.0 0.006

DeepLab V3+ 91.4 ± 0.7 < 0.001 84.8 ± 0.9 < 0.001

SegNet 91.8 ± 0.8 < 0.001 85.4 ± 1,1 < 0.001

MRM (Axial 1) Proposed 93.0 ± 0.7 88.1 ± 0.8

HarDNet-MSEG 87.3 ± 1.0 < 0.001 78.6 ± 1.5 < 0.001

Attention U-Net 92.6 ± 0.7 0.105 87.7 ± 1.1 0.231

DeepLab V3+ 91.0 ± 0.7 < 0.001 84.7 ± 1.3 < 0.001

SegNet 90.6 ± 1.0 < 0.001 83.9 ± 1.5 < 0.001

LRM (Axial 1) Proposed 91.1 ± 1.1 86.0 ± 1.2

HarDNet-MSEG 81.1 ± 2.5 < 0.001 71.1 ± 2.8 < 0.001

Attention U-Net 90.2 ± 1.3 < 0.001 85.0 ± 1.5 0.008

DeepLab V3+ 86.9 ± 0.9 < 0.001 79.2 ± 1.0 < 0.001

SegNet 88,1 ± 0.9 < 0.001 80.8 ± 0.8 < 0.001

Lacrimal gland (Axial 2) Proposed 87.2 ± 1.9 78.7 ± 2.5

HarDNet-MSEG 79.7 ± 3.7 < 0.001 68.1 ± 4.7 < 0.001

Attention U-Net 81.3 ± 12.2 0.161 71.8 ± 13.5 0.141

DeepLab V3+ 84.0 ± 1.7 < 0.001 73.8 ± 2.2 < 0.001

SegNet 82.5 ± 1.2 < 0.001 71.8 ± 1.4 < 0.001

MRM; medial rectus muscle, LRM; lateral rectus muscle, mDice; mean Dice, mIoU; mean Intersection over Union.

https://doi.org/10.1371/journal.pone.0285488.t002
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Discussion

Several studies have attempted to segment and measure various orbital component areas and

volumes using artificial intelligence in orbital CT images (Table 4) [13, 14, 37–41]. However,

the model best suited for semantic orbital tissue segmentation in GO patients’ CT images

remains unknown. Therefore, it is necessary to determine what NN characteristics are suitable

for semantic segmentation. Finding a proper network for semantic segmentation is not only

applicable for orbital CT images but essential for supervised learning in many fields of ophthal-

mology. For example, NNs have been used to segment intraretinal fluid cysts or subretinal

fluid on retinal images [42]. Concepts discussed in this study may also apply to other fields of

ophthalmology if developed further. NN application in ophthalmology is currently nascent but

has many potential clinical uses.

One study proposed a predictive tool for reliable segmentation for patient-specific orbital

reconstruction in blow-out fractures. The mean Dice coefficient was 88.1% for the automated

segmentation of orbital volume using CT scans compared with manual segmentation [43].

Another study attempted three-dimensional reconstruction by automatically segmenting the

extraocular muscle and the optic nerve, reporting an 82.1% IoU [38]. In our study, the pro-

posed NN performed well for the various CT planes, with at least an 87.2% Dice coefficient.

Table 3. Comparison of the performance of semantic segmentation using five neural networks for the Coronal image.

Target Model mDice p-value mIoU p-value

Optic nerve Proposed 93.2 ± 0.7 88.3 ± 1.0

HarDNet-MSEG 85.6 ± 1.8 < 0.001 75.5 ± 2.4 < 0.001

Attention U-Net 81.7 ± 25.0 0.193 75.7 ± 24.9 0.157

DeepLab V3+ 89.3 ± 0.9 < 0.001 81.4 ± 1.2 < 0.001

SegNet 91.2 ± 0.9 0.00004 84.9 ± 1.2 0.00002

MRM Proposed 92.5 ± 1.0 87.1 ± 1.4

HarDNet-MSEG 80.3 ± 3.1 < 0.001 68.2 ± 3.9 < 0.001

Attention U-Net 90.2 ± 3.8 0.108 83.5 ± 5.4 0.087

DeepLab V3+ 87.7 ± 1.0 < 0.001 79.1 ± 1.3 < 0.001

SegNet 89.3 ± 1.2 < 0.001 81.8 ± 1.6 < 0.001

LRM Proposed 94.9 ± 0.5 90.9 ± 0.9

HarDNet-MSEG 85.6 ± 2.7 < 0.001 76.3 ± 3.4 < 0.001

Attention U-Net 94.1 ± 0.6 0.003 89.5 ± 0.9 0.00164

DeepLab V3+ 90.6 ± 2.3 < 0.001 83.8 ± 2.2 < 0.001

SegNet 92.6 ±0.5 < 0.001 86.7 ± 0.9 < 0.001

SRM Proposed 93.3 ± 0.9 88.2 ± 1.3

HarDNet-MSEG 85.1 ± 1.6 < 0.001 74.9 ± 2.3 < 0.001

Attention U-Net 92.2 ± 0.9 0.030 86.2 ± 1.4 0.017

DeepLab V3+ 90.3 ± 0.8 < 0.001 83.0 ± 1.1 < 0.001

SegNet 90.7 ± 0.9 < 0.001 83.7 ± 1.5 < 0.001

IRM Proposed 94.5 ± 0.6 90.1 ± 0,8

HarDNet-MSEG 83.9 ± 1.9 < 0.001 73.2 ± 2.4 < 0.001

Attention U-Net 92.4 ± 1.7 0.004 86.8 ± 2.6 0.004

DeepLab V3+ 89.6 ± 0.6 < 0.001 81.7 ± 0.8 < 0.001

SegNet 91.4 ± 1.4 < 0.001 85.2 ± 2.0 < 0.001

mDice; mean Dice, mIoU; mean Intersection over Union, MRM; medial rectus muscle, LRM; lateral rectus muscle, SRM; superior rectus muscle, IRM; Inferior rectus

muscle.

https://doi.org/10.1371/journal.pone.0285488.t003
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These results were similar to those of comparable studies and have shown the potential for

NNs to replace manual segmentation.

In this study, semantic segmentation of the eyeball showed a high level of accuracy com-

pared with other tissues in CT axial images, probably due to the high contrast of the Houns-

field units for the vitreous cavity and the surrounding fats in the CT images. Since the eyeball

contour was always automatically drawn well, developing three-dimensional images of the eye-

ball using CT imaging will soon be possible. Lacrimal gland size can be affected by various lac-

rimal tumors and inflammatory conditions, such as GO or pseudotumors [44]. However,

there have been no reports of semantic lacrimal gland segmentation using CT images. The

Dice coefficient of the lacrimal gland was 87.2% with the proposed NN, which was lower than

that of other tissues. This may be caused by the limitations of the CT images, as the lacrimal

gland is indistinguishable from the eyeball and periocular tissues. Nevertheless, the resulting

accuracy could be applicable in clinical practice.

Fig 4. Comparison results between the proposed NN and SegNet. (A) The original images with the boundary of the

target tissue are drawn. The visualized segmentation results show the details of the segmentation boundary of the

medial rectus muscle given by SegNet (B) and the proposed NN (C), respectively. We visualized the three test images

with the largest performance difference in the first experiment iteration.

https://doi.org/10.1371/journal.pone.0285488.g004

PLOS ONE Effective neural networks for orbital tissues segmentation in computed tomography

PLOS ONE | https://doi.org/10.1371/journal.pone.0285488 May 10, 2023 9 / 13

https://doi.org/10.1371/journal.pone.0285488.g004
https://doi.org/10.1371/journal.pone.0285488


We established the possibility for diverse semantic orbital tissue segmentation using a NN

exhibiting a high agreement level with manual segmentation. Specifically, we devised a NN for

semantic segmentation by referencing the architecture and operations to help obtain sophisti-

cated orbital tissue segments in CT images potentially deformed due to GO. Our proposed NN

differed from conventional NNs as it specializes in semantically segmenting orbital tissues in

GO patients’ CT images. For example, considering multi-level feature exploitation, Attention

U-Net’s highest-level features are lower than the proposed NN. Attention U-Net’s minimum

feature map is 1/8 of the input size, whereas the proposed NN is 1/16. This difference results

from convolution block numbers, including multiple convolutions and poling layers. There-

fore, the proposed NN is more efficient regarding orbital tissue size changes due to GO by add-

ing high-level information to the decoder. Similarly, DeepLab V3+, SegNet, and HarDNet-

MSEG deliver features extracted from 1/4 and 1/8, with no information, and 1/4, 1/8, and 1/16

of the input size, respectively. In contrast, the proposed NN delivers 1, 1/2, 1/4, 1/8, and 1/16

of the input image to the decoder through the skip connection. DeepLab V3+ and HarDNet-

MSEG ignore delivering low-level features to the decoder. Concerning SegNet, the multi-level

features’ information loss is intense because it adopts the pooling indexes approach, which is

covered qualitatively in Fig 4. This encoder’s strong exploitation power complements the un-

pooling technique simplicity, remedying parameter turning difficulties, and improving the

segmentation performance. Consequently, the proposed NN outperformed conventional NNs

and could reduce the time and effort required for complex manual segmentation. Moreover,

the proposed NN (34 million) has a slightly larger parameter size than SegNet (29 million) due

to its multi-level skip connection. However, while they have similar architecture, the proposed

NN still has a minimal parameter size compared to DeepLabV3+ (59 million).

Although we could investigate orbital tissue segmentation performance using various NNs

in multiple CT planes, there were some limitations. First, the manual segmentation of the

images was confirmed by a single ophthalmologist and was taken as ground truth. For more

reliable semantic segmentation, multiple specialists should be consulted regarding the segmen-

tation of orbital tissues to reduce segmentation errors. Since CNN-based deep learning

requires considerable data, a larger dataset can further improve segmentation performance.

Additionally, there was potential bias in the manual axial and coronal cuts representation

choice. For example, the Axial 2 image is a slice of the maximum lacrimal gland area. However,

the selection of the slice could differ among individuals. Considering technology, the proposed

NN’s naïve skip connection use may be a possible limitation. Existing works have proposed

Table 4. Literature review of segmentation using artificial intelligence in orbital CT images.

Authors Study purpose Dataset Performance Limitation

Umapathy et al.

(2020)

Globe segmentation for volume

quantification

80

subjects

Dice = 0.95 Limited globe injury or contour distortion

detection

Hamwood et al.

(2021)

Bony orbit segmentation 9 subjects Dice = 0.813 (orbit) and 0.975

(boundary)

Not feasible for orbital entrance or fractured orbit

segmentation

Fu et al. (2021) Orbital abscess segmentation 67

subjects

Dice = 0.78

Jaccard = 0.65

Image augmentation implemented during

training, small dataset

Zhu F et al. (2021) Total extraocular muscle and optic nerve

segmentation

97

subjects

Overall IoU = 0.827 Small dataset, no fixed slice thickness

Li et al. (2022) Bony orbit segmentation for aging

characteristics analysis

595

subjects

Dice = 0.9755 Uses skull CT, not orbital CT

Pan et al (2022) Bony orbit segmentation for aging

parameters

595

subjects

IoU = 0.954 Uses facial skull CT, not orbital CT

Shanker et al.

(2022)

Extraocular muscle segmentation 210

subjects

Dice = 0.92

IoU = 0.87

Only uses coronal imaging

https://doi.org/10.1371/journal.pone.0285488.t004
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various skip connection approaches, such as convolution in skip connection and connecting

multi-level features from multiple encoders to one decoder. Thus, future research should focus

on multi-level feature use in decoding, and the detailed design for their effective combination

must be investigated more thoroughly.

In conclusion, we introduced an effective encoder-decoder NN of orbital tissue segmenta-

tion in GO patients’ CT. The proposed encoder delivers low- and high-level features to the

decoder for capturing clear boundaries and concurrently resisting local noise. Then, the

decoder exploits these features with an un-pooling operation and skip connection for effective

image size restoration. The experimental results indicated that the proposed architecture sig-

nificantly outperformed four conventional NNs types designed for semantic segmentation.

Technically, the proposed model encourages using multi-level decoding features to obtain

sophisticated target boundaries potentially deformed due to GO. This study provides a funda-

mental basis for automatic GO evaluation, which could replace manual CT image evaluation if

developed further.
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