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It is crucial to develop a low-cost hybrid electrocatalysts for hydrogen production. Due to their layered structure and strong
electrical conductivity, MXene-based materials have been lately used more and more in energy storage devices. Herein,
heteroatom- (boron and sulfur-) doped MXene (B, S-Ti3C2Tx) nanosheets are developed as efficient electrocatalysts for the
hydrogen evolution reaction (HER). The synthesized B, S-Ti3C2Tx has a large surface area and exhibits excellent
electrocatalytic activity in acidic media. The prepared B, S-2-Ti3C2Tx catalyst exhibits a low overpotential of −110mV vs.
reversible hydrogen electrode for the HER and a low Tafel slope of ∼54mV dec−1. Furthermore, B, S-2-Ti3C2Tx shows a
double-layer capacitance of 1.05 mF/cm2 and maintains a steady catalytic activity for the HER for over 1000 cycles.

1. Introduction

In recent years, hydrogen generation from renewable
sources, such as water, has been the focus of research to sat-
isfy the increasing demand for clean energy [1–7]. Electro-
chemical water splitting is a method used for hydrogen
production [8–11]. Because of their excellent hydrogen
adsorption, platinum, and its compounds are among the
greatest catalysts for hydrogen evolution reaction (HER).
This is because of the Gibbs-free energy that they possess
[12–14]. However, their high cost and scarcity limit their
large-scale applications. Therefore, various materials, includ-
ing graphene, carbon nanotubes [15], transition-metal dichal-
cogenides (TMDs) [16–22], transition metal oxides [23, 24],
transition-metal carbides (TMCs) [25–29], transition-metal
phosphides [29–32], organic polymers [33, 34], and nitrides,

have been extensively investigated for replacing expensive
Pt-based materials in HER.

Researchers have recently become interested in MXenes,
a family of two-dimensional TMCs, notably Ti3C2Tx (where
the Tx represents the surface functionalization, such as –O, –
OH, and –F). Due to the fact that MXenes have a high sur-
face area, great electrical conductivity, and strong chemical
and mechanical stabilities [35–37], MXenes have been
extensively investigated for use in electrochemical applica-
tions such as lithium and sodium ion batteries [38], flexible
electrodes [39, 40] as well as supercapacitors [41–43]. Sev-
eral studies have also been conducted on MXenes as efficient
catalysts for HER [44–51]. However, the intrinsic catalytic
activity of MXenes is not nearly as strong as that of Pt and
TMDs. To further enhance catalytic performance, MXenes
have been nanocomposited with various materials, such as
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carbonaceous materials, oxides, and metal-organic frame-
works [52, 53].

Heteroatom doping of MXene is a promising method for
developing efficient electrocatalysts for HER. Recently, Le
et al. synthesized nitrogen-doped Ti3C2Tx, with enhanced
electrocatalytic activity toward HER, via heat treatment in
an ammonia atmosphere [54]. With an overpotential of
198mV and a Tafel slope of 92mV dec-1, the catalyst in its
as-obtained state demonstrated strong catalytic activity.
Ding et al. studied the HER activities of Ti2C and Mo2C
doped with nonmetallic heteroatoms such as N, B, P, and S
by making use of DFT simulations in their research [55].
All the samples showed a lower Gibbs-free energy than pris-
tine Ti2C and Mo2C, indicating their significant potential as
HER active catalysts. N-Ti2CO2 showed a very small ΔGH of
0.087 eV and abundant active sites.

Herein, we report Ti3C2Tx codoped with boron and sul-
fur (B, S-Ti3C2Tx) as an efficient catalyst for electrocatalytic
HER. We investigated the catalytic performance of the as-
prepared samples at different amounts of the boron precur-
sor. The introduction of boron and sulfur modified the
conductivity and increased the active surface area. Specifi-
cally, the B, S-2-Ti3C2Tx sample exhibited the highest HER
performance with a low overpotential of 110mV compared
to the other samples (B, S-1-Ti3C2Tx and B, S-3-Ti3C2Tx).
This improved performance was attributed to the synergistic
contributions of boron- and sulfur-coordinated species.

2. Experimental

2.1. Materials. Boric acid (99.5%), thiourea (99.0%), LiF,
H2SO4 (98%), and Nafion solution (5wt%) were purchased
from Sigma-Aldrich. Pristine Ti3AlC2 (99.8%, 300 mesh)
was purchased from Forsman Scientific Beijing Co., Ltd.,
China. HCl was supplied by Daejeong.

2.2. Synthesis of Ti3C2Tx. To obtain Ti3C2Tx MXene, the
starting material Ti3AlC2 (MAX) was subjected to an etching
process where the Al layer was removed using a LiF/HCl
solution. A solution for etching was prepared by adding
0.8 g of LiF to a 30mL HCl solution, followed by stirring.
1 g of Ti3AlC2 (MAX) powder was then added to the etching
solution at 40°C and reacted for 24 hours until the Al layer
was completely removed. The bulk Ti3C2Tx MXene was col-
lected by centrifugation, washed with deionized (DI) water
to achieve a final pH of about 6, and then dried under vac-
uum overnight at 60°C.

2.3. Synthesis of B-Doped Ti3C2Tx. A simple hydrothermal
procedure was used to fabricate B-doped Ti3C2Tx speci-
mens. 100mg Ti3C2Tx and various concentrations of boric
acid (0.75, 1.5, and 3 g) were typically added to 60mL of
DI water and mixed for 1 hour at room temperature. The
solution was then placed into a Teflon-lined autoclave reac-
tor and hydrothermally heated for 24 hours at 180°C. The
centrifuged suspension was rinsed with DI water and dried
at 80°C for 12 hours. The as-prepared B-doped specimens
were labeled B-1-Ti3C2Tx, B-2-Ti3C2Tx, and B-3-Ti3C2Tx,

corresponding to 0.75, 1.5, and 3 g of boric acid precursor,
respectively.

2.4. Synthesis of S-Doped Ti3C2Tx. S-doped Ti3C2Tx was syn-
thesized using thiourea as the sulfur source. 100mg of
Ti3C2Tx powder and 1.2 g of thiourea were added to 60mL
of DI water and mixed at room temperature for one hour.
The solution was then placed into the Teflon-lined autoclave
reactor and hydrothermally heated for 24 hours at 180°C.
S-Ti3C2Tx was collected by centrifugation, rinsed with DI
water, and dried in a vacuum oven at 80°C for 12 hours.

2.5. Synthesis of B, S-Ti3C2Tx. B, S-Ti3C2Tx was successfully
synthesized through a single-step reaction. Ti3C2Tx
(100mg), thiourea (1.2 g), and different amounts of boric
acid (0.75, 1.5, or 3 g) were dissolved in 60mL of DI water
with continuous magnetic stirring for 1 h at room tempera-
ture. The solution was then placed into an autoclave reactor
coated with Teflon and hydrothermally heated at 180°C for
24 hours. The resulting specimens (designated as B, S-1-
Ti3C2Tx, B, S-2-Ti3C2Tx, and B, S-3-Ti3C2Tx) were obtained
via centrifugation and drying at 80°C for 12 h.

2.6. Materials Characterization. The crystal structure of the
synthesized specimens was studied via X-ray diffraction
(XRD; Bruker New D8-Advance, Seoul, Korea) using Cu
Kα radiation (λ = 0:154nm). Raman spectra were obtained
using a Raman spectrometer (LabRAM-HR Evolution).
Field-emission scanning electron microscopy (FE-SEM;
Zeiss 300 VP, Seoul, Korea) images were obtained at an
acceleration voltage of 10 kV to study the morphology of
the as-prepared samples. Transmission electron microscopy
(TEM; JEOL-2100F) was conducted to further confirm the
morphology. The X-ray photoelectron spectroscopy (XPS)
technique was applied to verify the elemental build of the
catalysts as well as the oxidation states of the constituent
elements.

2.7. Electrochemical Measurements. All electrochemical mea-
surements were carried out at room temperature using an
Ivium potentiostat V55630 and a typical three-electrode
electrolytic setup. As the reference, counter, and working
electrodes, respectively, the saturated calomel electrode
(SCE), graphite rod, and B, S-Ti3C2Tx on a glassy electrode
were used. At a scan rate of 5mVs1, linear sweep voltamm-
etry (LSV) was used to measure the HER activity. Each and
every measurement was carried out in 0.5M H2SO4 while iR
compensation was used. To determine the level of stability,
continuous cyclic voltammograms were obtained at a scan
rate of 50mVs-1 for a total of 1000 cycles. In addition, elec-
trochemical impedance spectroscopy, known as EIS, was
carried out at a potential of -230mV vs. RHE and at fre-
quencies ranging from 100 kHz to 0.1Hz. Using the follow-
ing equation, each potential was correlated to the RHE to
ensure accuracy:

E RHEð Þ = E SCEð Þ + 0:2V + 0:059 pH: ð1Þ
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3. Results and Discussion

Figure 1(a) shows the procedure for preparing B, S-Ti3C2Tx.
Ti3AlC2 was used as the precursor in the preparation of
Ti3C2Tx. The B, S-Ti3C2Tx hybrid was fabricated through a
simple hydrothermal method. The crystal structure of the
bare Ti3AlC2, Ti3C2Tx MXene, and B, S-Ti3C2Tx was ana-
lyzed using XRD (Figure 1(b)). The peaks of the bare
Ti3C2Tx corresponding to (002), (006), (008), and (001)

were observed, consistent with previous finding [42]. The
basal plane peaks of Ti3C2Tx shifted to 5.8° from 9.4° for
the Ti3AlC2 precursors, indicating a widening of d-
spacings due to Al removal [56, 57]. These peaks slightly
shifted to lower angles after the addition of B and S, but
other peaks remained, albeit with decreasing intensities as
the doping concentration increased. Raman spectroscopy
(Figure 1(c)) was utilized to determine the chemical compo-
sition of B, S-Ti3C2Tx and the origin of disordered carbon.
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Figure 1: (a) Schematic illustration of the synthesis procedure of B, S-Ti3C2Tx. Ti3AlC2 was used as the precursor for the preparation of
Ti3C2Tx, of which was then autoclaved to result in B, S-Ti3C2Tx. (b) X-ray diffraction (XRD) data showing the crystal structures. (c, d)
Raman spectra showing the chemical compositions as well as the origin of disordered carbon of as-synthesized Ti3C2Tx and B, S-Ti3C2Tx
samples.
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In addition to the D and G bands at 1352 cm-1 and 1562cm-1,
respectively, all B, S-Ti3C2Tx MXene samples and pristine
MXene exhibited signals of nonstoichiometric titanium car-
bide and anatase phases of titanium oxide at 199, 381, and
642 cm-1 (G band) [58]. The ID/IG ratio, which compares the
intensities of the D and G bands, is commonly used in order
to conduct an assessment of the defect formation. The ID/IG
gradually increases (from 0.92 to 0.98) as the boric acid dosage
increases from 0.75 to 1.5 g (Figure 1(d)), indicating larger
defects and the substitution of carbon atoms in Ti3C2Tx by
boron/sulfur, which could improve the performance of elec-
trochemical measurement of the material.

The morphology of Ti3AlC2, Ti3C2Tx, B-2-Ti3C2Tx, and
B, S-2-Ti3C2Tx was observed using FE-SEM at high and low
magnifications (Figures 2(a)–2(f)). The successful etching of
aluminum was confirmed by the observation of multilayered
Ti3C2Tx in Figure 2(b). Figure 2(g) shows a high-resolution
TEM image of B, S-2-Ti3C2Tx at 200 nm magnification, with
the dashed frames indicating the aggregated B and S doped
on the Ti3C2Tx nanosheet.

To verify the morphology and interlayer distance as well
as the corresponding plane, TEM analysis was carried out.
The high-resolution TEM image of B, S-2-Ti3C2Tx is shown
in Figure S1(a-c) (supporting information), with a
magnification range of 50 to 200 nm. Crystal defects were
observed in B, S-2-Ti3C2Tx enclosed by a yellow dashed
line, which can be explained by the substitution of B and S

for the C sites. To confirm the successful preparation of B,
S-2-Ti3C2Tx, EDX elemental mapping was taken of a
specific area (Figure 2(h)). The elements B, S, Ti, C, and O
were uniformly dispersed.

We used XPS to verify the successful synthesis of
Ti3C2Tx as well as the existence of constituent atoms in B,
S-2-Ti3C2Tx and B-2-Ti3C2Tx (Figures S2 and S3). The fact
that the survey scan revealed the presence of titanium,
carbon, oxygen, and boron is evidence that the Ti3C2Tx
and B, S-2-Ti3C2Tx MXenes were successfully prepared.
This is illustrated in Figure 3(a). On the other hand, S is
not easily discernible in the survey scan, which leads one
to believe that the amount of S that was doped into the
sample was quite low. As a result of this, high-resolution
XPS scans were carried out in order to obtain additional
confirmation that B and S were present in the sample.
High-resolution Ti 2p spectra of Ti3C2Tx can be divided
into four peaks at 455.3, 456.1, 457.3, and 458.8 eV, which
are attributed to Ti−C, Ti2+, Ti3+, and Ti−O, respectively
(Figure 3(a)), as previously reported [59]. Compared with
the Ti3C2Tx sample, a smaller-intensity peak of Ti−C at
454.9 eV and a peak shift of 0.4 eV are observed, whereas a
stronger peak of Ti−O appears at 458.7 eV in the B-
Ti3C2Tx MXene sample (Figure. S4(a)). Based on previous
reports, the presence of Ti3+ in B-Ti3C2Tx, which is formed
through the reduction of Ti4+, leads to electron transfer
from Ti to B and produces a B–Ti–O substitutional site

Ti3AIC2

1 𝜇m

(a)

1 𝜇m

Ti3C2Tx

(b)

B-2-Ti3C2Tx

Low mag.

2 𝜇m

Low mag.Low mag.

(c)

500 nm

B-2-Ti3C2Tx

500 nm500 nm

High mag.

(d)

B,S-2-Ti3C2Tx

Low mag.

1 μm

Low mag.Low mag.

(e)

B,S-2-Ti3C2Tx

300 nm

High mag.

(f)

200 nm

B,S-2-Ti3C2Tx

(g)

O

Ti C

SB

B,S-2-Ti3C2Tx

(h)

Figure 2: Field-emission scanning electron microscopy (FE-SEM) images showing the morphologies of (a) Ti3AlC2 parent phase, (b)
pristine Ti3C2Tx, (c) B-2−Ti3C2Tx in low magnification, (d) B-2−Ti3C2Tx in high magnification, (e) B, S-2-Ti3C2Tx in low
magnification, and (f) B, S-2-Ti3C2Tx in high magnification. (g) Transmission electron microscopy (TEM) images and (h) high-
angle annular dark field scanning TEM (HAADF-STEM) as well as energy dispersive X-ray spectroscopy (EDX) elemental maps of
B, S-2-Ti3C2Tx.
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[60–62]. The Ti 2p spectra of B, S-Ti3C2Tx confirm the
presence of Ti2+ and Ti−O at 457.8 and 458.8 eV,
respectively. Moreover, the Ti–C peak is difficult to
distinguish from the Ti–S signal because of spectral overlap
at ~455.1 eV [63]. The C−Ti, C−C, and C−O bonds of
Ti3C2Tx are observed in the high-resolution C 1 s spectrum
at 282.1, 284.9, and 285.9 eV, respectively (Figure 3(b)).
The C−C component of B, S-Ti3C2Tx is observed at
284.8 eV, which is ~0.2 eV higher than the energy of the
C−C component of B-Ti3C2Tx (Figure. S4(b)) possibly
because of the chemical interaction between S and the
surrounding atoms in B-Ti3C2Tx.

Additionally, the C 1 s spectra exhibit the presence of
C−Ti (281.1 eV), C−C (284.7 eV), and C−O (285.8 eV)
bonds (Figure 3(b)). Moreover, the high-resolution C 1 s
XPS spectrum of B-Ti3C2Tx shows peaks at 281.1, 284.6,
285.9, and 283.9 eV, which are assigned to C−Ti, C−C,
and C−B bonds, respectively (Figure. S4(b)). For O 1 s
spectra, a single peak appears at 529.9 eV for B-Ti3C2Tx,
which can be deconvoluted into four peaks for O–Ti–C
(530.1 eV), H–O–Ti (531 eV), O–C (532.2), and B–O–B
(533.1 eV) bonds (Figure S5). Only three peaks belonging
to O–Ti, H–O–Ti, and O–C are observed in Ti3C2Tx,
implying the presence of B–O in B-Ti3C2Tx. Boron
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Figure 3: Successful synthesis of Ti3C2Tx confirmed by (a) high-resolution X-ray photoelectron spectroscopy (XPS) spectra of Ti 2p and (b)
high-resolution XPS spectra of C 1 s in Ti3C2Tx. Successful synthesis of B, S-2-Ti3C2Tx was confirmed via (c) XPS spectra of B 1 s and (d)
XPS spectra of S 2p in B, S-2-Ti3C2Tx.
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Figure 4: (a) LSV curves and (b) Tafel plots of the as-prepared catalysts. (c) Comparison of the overpotential required to achieve a current
density of 10mA/cm2. (d) EIS spectra of B, S-Ti3C2Tx at −0.3V vs. RHE in 0.5M H2SO4 (inset: equivalent circuit). (e) double-layer
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doping is confirmed in the B 1 s spectra at 190.6 eV
(Figure 3(c)). The boron content in B, S-2-Ti3C2Tx is
approximately 5% with a sulfur content of less than 1%
in atomic ratio. The S 2p spectrum reveals the binding
energy of S2- by showing two peaks of S2-1/2 at 168.7
and S 2p3/2 at 162.7 eV (Figure 3(d)). Additionally, in
the B 1 s spectra of B-Ti3C2Tx (Figure. S6), peaks are
observed at binding energies of 192 and 193.3 eV,
corresponding to B–O–Ti and B–O–B, respectively [64, 65].

The electrochemical analyses were conducted using a
three-electrode system to evaluate the HER catalytic proper-
ties of the Ti3C2Tx, B-Ti3C2Tx, and B, S-Ti3C2Tx electrocata-
lysts in 0.5M of H2SO4. The commercial Pt/C catalyst was
employed as a reference, and it demonstrates the highest
HER activity, with practically zero onset potential and low
overpotential (at10mAcm-2), in contrast to the pristine
Ti3C2Tx catalyst, which demonstrates a significantly lower
level of catalytic activity [66]. Initially, the B-doped Ti3C2Tx
catalysts were examined for their properties (Table S1).
The B-2-Ti3C2Tx catalyst displayed a level of activity that
was noticeably higher than that of the other catalysts.
Specifically, B-2-Ti3C2Tx shows an overpotential of 170mV
(at 10mAcm−2), whereas B-1-Ti3C2Tx and B-3-Ti3C2Tx
exhibit overpotentials of 250 and 220mV, respectively
(Figure. S7(a)). Their electrocatalytic performances are
compared in Figure. S7(b) based on the potential obtained at
a constant current density of 10mAcm−2. We believe that
the synergistic effects of active sites on Ti–C, B–O–B, and B–
O–Ti species are responsible for the improvement in HER
reactivity that we observed following B-doping. The
corresponding Tafel slopes of the as-prepared catalysts,
which can provide information about the mechanism of
HER electrocatalysis, were calculated to be 112.2, 98, 64, and
80mV dec1 for pristine Ti3C2Tx, B-1-Ti3C2Tx, B-2-Ti3C2Tx,
and B-3-Ti3C2Tx, respectively; B-2- Ti3C2Tx has the lowest
Tafel slope (Figure. S8(a)).

We also investigated the S-doped Ti3C2Tx catalyst
(Table S2). S-Ti3C2Tx exhibits significantly higher activity
than pristine Ti3C2Tx (Figure S9(a)). Specifically, it shows
an overpotential of 230mV (at 10mAcm−2), whereas
Ti3C2Tx exhibits an overpotential of 300mV (Figure S9(b)).
The corresponding Tafel slopes are calculated to be 86.6mV
dec−1 (Figure S9(c)). Our goal was to achieve maximum
HER activity by adjusting the concentration of the boron
precursor on the surface of the MXene. It may come as a
surprise, but the overpotential of B-2-Ti3C2Tx at 10mAcm-2

is just 170mV. This value is significantly lower than that
of B-1-Ti3C2Tx. If the catalytic activity of B-doped
electrocatalysts was exclusively dependent on the B–O–Ti
composition, then B-3-Ti3C2Tx with a greater B-doping
content would demonstrate higher performance than
B-2-Ti3C2Tx. This finding, on the other hand, demonstrates
that additional interactions, such as O-Ti-C, also contribute
to the improvement in catalytic activity. This also suggests
that the optimal quantity of the B precursor is critical for
achieving the highest possible level of HER activity from the
catalyst.

To further enhance the HER kinetics of B-doped cata-
lysts, S was added to the as-prepared catalyst, and the cata-

lytic activity was investigated. The introduction of S
significantly improved the catalytic performances of the cat-
alysts. B-2-Ti3C2Tx shows an overpotential of 170mV at a
current density of 10mAcm−2; at the same time, B, S-2-
Ti3C2Tx catalyst exhibits a significantly lower overpotential
(110mV) than both B-Ti3C2Tx and S-Ti3C2Tx, demonstrat-
ing the synergistic effect of the dual-heteroatom doping of
2D Ti3C2Tx nanosheets (Figure 4(a)). Similarly, B, S-2-
Ti3C2Tx and B, S-3-Ti3C2Tx exhibit overpotentials (at
10mAcm−2) of 180 and 200mV, respectively, which are
lower than that of B-Ti3C2Tx. In their work, Le et al. inves-
tigated the kinetics and electronic behavior of doped MXene
[54]. DFT calculations were carried out, and the electronic
band structure and charge difference for hydrogen adsorp-
tion of the Ru@B-Mxene are illustrated. The calculated
values of ΔGH

∗ for atomic H adsorption on the Ru@B-
Mxene compared to the nondoped MXene are low, which
plays a crucial role in reducing the charge-transfer resistance
of the 2D MXene nanosheet for the HER. The Tafel slopes of
B, S-1-Ti3C2Tx, B, S-2-Ti3C2Tx, and B, S-3-Ti3C2Tx are 78,
54, and 77mV dec−1, respectively, which are lower than
those of the respective B-doped Ti3C2Tx specimens, signifying
faster HER kinetics (Figure 4(b)). The figure (Figure 4(c))
shows a comparison of overpotential at 10mA/cm2 with other
reported MXene electrocatalysts [54, 67–70]. In addition, the
electrocatalytic performance based on the potential obtained
at a constant current density of 10mAcm−2 of the prepared
catalyst is shown in Figure. S10.

EIS measurements were conducted to further study the
kinetics of the catalyst for HER. The EIS plots in
Figure 4(d) show that the charge-transfer resistance (Rct)
of an electrode, represented by the semicircle, significantly
decreases after B and S doping of Ti3C2Tx. Consequently,
the Rct of B, S-2-Ti3C2Tx is significantly smaller than that
of B-2-Ti3C2Tx. This confirms the higher rate of charge
transport in the B and S codoped MXenes.
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Figure 5: Schematic illustration of the HER catalysis mechanism
for B, S-Ti3C2Tx in an acidic medium.
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B, S-1-Ti3C2Tx and B, S-3-Ti3C2Tx samples exhibit resis-
tances of 70 and 40 Ω, respectively. Moreover, B-2-Ti3C2Tx
shows an Rct of 60Ω, which is lower than those of B-1-
Ti3C2Tx (80Ω) and B-2-Ti3C2Tx (100Ω), as shown in
Figure S9(b). This result is in perfect agreement with the
results obtained from the LSV and Tafel plots, which
suggest that HER possesses excellent electrocatalytic activity.

CV curves at scan rates of 20–150mVs−1 were used to
determine the Cdl (Figure S11). The Cdl of B, S-2-Ti3C2Tx
is 1.05 mF cm−2 (Figure 4(e)). The enhanced catalytic
performance of B, S-Ti3C2Tx can be attributed to the high
conductivity of B, S-Ti3C2Tx, which enables fast charge
transfer and increases the number of active sites, allowing
the faster reduction of adsorbed hydrogen ions.

Long-time stability is an important parameter for the
catalysts. Therefore, long-term cycling tests of B, S-2-
Ti3C2Tx were conducted for 1000 cycles in an acidic
medium. As shown in Figure 4(f), the sample does not show
significant differences before and after cycling, indicating
that the B, S-2-Ti3C2Tx catalyst has excellent HER activity
with long-term stability. Additionally, the electrochemical
surface area of the prepared samples was estimated using
double-layer capacitance (Cdl) to investigate whether the
number of active sites has increased after the incorporation
of B and S.

Based on the obtained HER performance of B, S-
Ti3C2Tx, an electrocatalytic mechanism has been proposed,
as shown in Figure 5. This process occurs at the surface.
Boron, sulfur, and Ti3C2, with their unique advantages, play
specific roles in different elementary reactions to synergisti-
cally improve the HER kinetics.

4. Conclusions

B, S-Ti3C2Tx MXenes were fabricated via a facile one-step
hydrothermal process. B, S-Ti3C2Tx showed excellent elec-
trocatalytic HER performance compared to pristine Ti3C2Tx.
Specifically, the B, S-2-Ti3C2Tx catalyst exhibited high cata-
lytic activity with a low overpotential of 110mV at
10mAcm−2 for HER and excellent stability over 1000 con-
tinuous CV cycles. Therefore, this study demonstrates a
promising strategy for the metal-free codoping of MXene
nanosheets.
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