
Citation: Yu, S.; Kim, Y.; Shin, E.;

Kwon, S.-H. Dynamic Beam Steering

and Focusing Graphene Metasurface

Mirror Based on Fermi Energy

Control. Micromachines 2023, 14, 715.

https://doi.org/10.3390/

mi14040715

Academic Editors: Francesco

Ceccarelli, Simone Atzeni and

Francesco Morichetti

Received: 14 February 2023

Revised: 16 March 2023

Accepted: 21 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Dynamic Beam Steering and Focusing Graphene Metasurface
Mirror Based on Fermi Energy Control
Sanghyeok Yu †, Youngsoo Kim † , Eunso Shin and Soon-Hong Kwon *

Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea; shyu9922@gmail.com (S.Y.);
youngsoo.kim94@gmail.com (Y.K.); ensoshin21@gmail.com (E.S.)
* Correspondence: shkwon@cau.ac.kr; Tel.: +82-02-802-5844
† These authors contributed equally to this work.

Abstract: Beam steering technology is crucial for radio frequency and infrared telecommunication
signal processing. Microelectromechanical systems (MEMS) are typically used for beam steering in
infrared optics-based fields but have slow operational speeds. An alternative solution is to use tunable
metasurfaces. Since graphene has gate-tunable optical properties, it is widely used in electrically
tunable optical devices due to ultrathin physical thickness. We propose a tunable metasurface
structure using graphene in a metal gap structure that can exhibit a fast-operating speed through bias
control. The proposed structure can change beam steering and can focus immediately by controlling
the Fermi energy distribution on the metasurface, thus overcoming the limitations of MEMS. The
operation is numerically demonstrated through finite element method simulations.

Keywords: metasurface mirror; metamaterial mirror; graphene; beam steering; focus control

1. Introduction

Beam steering technology is one of the most important topics in the field of radio
frequency (RF) signals [1,2] or 5G mobile communication signal processing [3,4] using
gigahertz optics. The beam steering in an optical system can be easily implemented by
changing the relative phase of a wave, which can be easily obtained by changing the
refractive index or controlling diffraction grating [5–8]. Infrared (IR) frequencies from
300 GHz to 400 THz (wavelengths from 1 mm to 700 nm) have been applied in many
industrial, scientific, military, and commercial fields that include imaging [9], sensing [10],
and biomedical applications [11]. Therefore, the need for beam steering technology has also
increased in these infrared optics-based fields, and recently, ultra-thin and fast optical de-
vices have been in demand. For this purpose, the microelectromechanical system (MEMS),
in which micromirrors are swiveled by electrostatic forces, is typically used for steering
infrared-frequency beams [12,13]. However, an immediate response was not obtained due
to the slow operational speed of MEMS [14,15]. As an alternative to structural tuning,
metasurfaces with tunable properties are widely studied [16,17].

Two-dimensional (2D) materials, graphene, or transition metal dichalcogenides (TMDCs),
such as molybdenum disulfide (MoS2) and tungsten selenide (WSe2), have atomic thick-
nesses and various mechanical, chemical, and optical properties [18,19]. In the case of
graphene, a gate-dependent optical transition [20] could be generated under an electric
field by simply controlling a current [20] to control the light transmitted from a source.
Because of this gate-tunable property with a thin structure, graphene is widely used in
electrically tunable optical devices [16,21,22].

Surface plasmon polaritons (SPPs) are quasi-particles generated by the interaction of
light with free electrons on a metal surface. SPPs can propagate along the subwavelength
scale metal surface [23]. They are actively used in nanocavity [24] and metasurface [25]
research owing to their strong interactions with light. In addition, the strong interaction
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characteristics of SPPs allow light to interact with 2D materials that show limited optical
interactions with light inherently due to their atomic thickness.

Metamaterials are artificial materials that can optically control electromagnetic waves.
They have been actively researched because they have permittivity and permeability that
do not exist in natural materials [26–28]. The metasurface, as a 2-dimensional applica-
tion of metamaterials, has the unique artificial optical properties of deep subwavelength
thickness. On the other hand, it was reported that metasurfaces with all-metal or all-
dielectric structures could be fabricated [29–32]. Metasurfaces have been proposed for
various applications, including antenna-sensor antenna [33], electromagnetic filtering [34],
environmental sensing [35], and gain enhancement [36]. Antenna-sensor antenna have
been demonstrated as tunable terahertz filters/antenna-sensors using graphene-based
metamaterials [33]. Electromagnetic filtering has been observed in the all-metal wideband
frequency-selective surface bandpass filter for different polarizations [34]. Thanks to smart
metasurfaces, environmental sensing has been also studied through the advancement and
artificial intelligence approaches in antennas [35]. In many antennas using different types
of metasurfaces, gain enhancement has been reported [36]. Various forms of research have
been studied to combine graphene with the surface plasmon of metals by placing metal
structures on top of graphene [37–39].

Accordingly, we propose a tunable metasurface structure that could exhibit a fast-
operating speed through voltage bias control using graphene in the metal gap structure.
The proposed structure shows the operations of an electrically tunable metasurface mirror
for dynamic beam steering and controlled focusing with a designed spatial distribution
of the Fermi energy on the graphene, which is demonstrated by finite element method
(FEM) simulations. It is possible to react at high speed [40,41] and immediately change the
beam steering and focus by controlling the graphene bias. We anticipate that the proposed
structure can overcome the limited operational speed of MEMS.

2. Structure Design

The metasurface has been demonstrated to enable beam steering by using the concepts
of phase-shifting surfaces [42] and leaky waves [43]. The structure we propose is a tunable
metasurface mirror that controls beam steering through the tuning of graphene’s Fermi
level based on a phase-shifting surface. We propose a tunable metasurface consisting of 1D
arrayed metal (gold) strips and graphene in the thin gap between the strips, as shown in
Figure 1. The gold strips with a thickness of 30 nm and a width of 1200 nm are periodically
placed along the x-axis with 25 nm gaps between the strips. Underneath the gold strips,
graphene is placed on a dielectric spacer with a thickness of 1000 nm, and the backside of
the spacer is covered by gold. The backside gold substrate functions as a light reflector as
well as a common electrode. Each top gold strip is biased so that the electric field can be
applied to the graphene below the strip. For mechanical support, an additional substrate
structure is required under the gold substrate. However, if the gold substrate is thicker
than hundreds of nanometers, the electric fields cannot penetrate the gold substrate, and
the additional substrate does not affect the optical property. Therefore, the additional
substrate is neglected to estimate the optical performances of the proposed structure in
the simulation.

The top Au strips act as an optical resonant scatterer, in which a metal–insulator–metal
(MIM) plasmonic resonance gap mode appears at the gap between two Au strips [44]. The
electric field enhanced in the gap is overlapped with the graphene layer. The gap mode
provides a strong interaction channel in which the incident light can be more interactive
with the graphene layer.
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Figure 1. Schematic of the (a) electrically tunable metamaterial mirror and (b) unit cell of the
metamaterial structure. Black dashed square in (a) represent the unit cell of mirror, which is shown
in detail in (b). Au strips form a 1D array along the x-axis with a 25 nm gap. The single-layer
graphene is placed between the arrayed Au strips and a dielectric spacer. The spacer has a thickness
of 1000 nm and a refractive index of 1.45. The bottom, covered by Au, acts as a mirror as well as a
common electrode.

The dielectric function of the graphene layer can be expressed by ε = 1 + iσ/ωd,
where σ, ω, and d are the optical conductivity, angular frequency of light, and thickness of
graphene, respectively. The optical conductivity (σ) for the graphene layer is calculated
according to the local random phase approximation (RPA) method, with an assumption
carrier mobility µ that is 10,000 cm2/V · s [37,45]. According to the local RPA method, σ
can be expressed by the following equation:
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τ is the Drude relaxation rate, EF is the Fermi energy level, T is the temperature, kB
is the Boltzmann constant, and } is the Dirac constant. Because the Drude relaxation
rate τ = ev2

F/µEF, is actually EF-dependent, σ can be tuned by the Fermi energy EF at
stationary ω [46,47]. In other words, the dielectric function of a graphene layer can be
controlled by the Fermi energy. Additionally, the Fermi level in Graphene EF can be

expressed in EF = }νF(πn2D)
1
2 with n2D for the carrier density of graphene, which is

linearly proportional to electric bias on graphene [48]. Hence, in practical devices, the
electric bias can adjust the Fermi energy of graphene and, thus, its dielectric function [49,50].
In this structure, bias voltage in the graphene layer is applied by a gold strip with a back
gold substrate as a common ground [16].

The simulations were performed using the 2D finite element method (FEM) tool(COMSOL
Multiphysics). We constructed a metasurface mirror consisting of infinite unit-cell arrays
(Figure 1b) with periodic boundary conditions. On the unit cell of Figure 1b, the 4λ thickness
air domain was placed for mode profile observation. For beam steering and focusing, in
Section 3.2, we used 20-unit cell arrays for steering and 51-unit cell arrays for focusing.
Additionally, we included a 3000 nm thickness PML layer around the finite cell arrays. A
linearly x-polarized plane wave was assumed to be the incident light normal to the surface
of the proposed structure. When simulating a photonics device with a mono or a few layers
of graphene—the cause of the atomic level thickness of the graphene—the macroscopic
optical properties cannot be applied to the simulation directly. We modeled graphene using
surface current density, and the graphene was treated as a 2D layer without any thickness.
When the thickness of graphene, 0.34 nm, was much smaller than the wavelength, the
model produced exactly the same optical behavior. The current density can be controlled
by bias voltage [51,52].
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3. Results

First, we investigated the reflectance and phase shift of the reflected light in the
proposed infinitely periodic metasurface as a function of the wavelength and different
Fermi levels at infrared wavelengths. Next, we showed the operation of beam steering in
the metasurface by applying different bias voltage sets on each strip as suggested by the
spatial phase change. In addition, the metasurface could focus the reflected light at the
on-demanded focal point.

3.1. Reflectance and Phase Shifting in a Unit Cell of the Proposed Metasurface

When an Ex-linearly polarized light was normally incident on the metasurface, a
strong resonance could be observed at the gap between the gold strips (Figure 2a), called
the MIM plasmonic gap mode [23]. The gap mode shows a broad dip near 16.8 µm in the
reflectance spectrum (black curve) shown in Figure 2b, because the resonance increased
the metallic absorption of the incident light. Although the atomic thickness of graphene
limits the interaction with light because of the MIM gap mode, the graphene placed
at the gap can change the resonant wavelength, linewidth, and reflectance of the MIM
gap mode. Moreover, the proposed metasurface structure consisting of the gold strip,
graphene film, and gold substrate could be considered an effective ultrathin film with
deep subwavelength thickness. Meanwhile, the deep-subwavelength ultrathin highly lossy
film can cause a loss-induced large phase shift [53]. In the proposed structure, graphene
provides strong absorption at the target wavelength by combining the metal gap structure;
thus, a strong absorption-induced phase shift can be exhibited. When the Fermi level of
graphene was 300 meV, the resonant dip (red curve) could be observed at 9.3 µm, and
the lowest reflectance was 0.80. The reflectance peaks blue-shifted as the Fermi Energy
(EF) increased.
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Figure 2. (a) Normalized electric field intensity profile of the MIM plasmonic mode in the XZ plane.
The electric field is strongly confined in the gap between two gold strips. (b) Reflectance spectra for
different Fermi levels on graphene and the structure without graphene (black). (c) Phase changes of
the reflected light as functions of the Fermi level (EF) for different wavelengths of the incident light,
8 µm (red), 8.5 µm (black), and 9 µm (blue). (d) Normalized electric field intensity profiles of the
standing wave of the incident and reflected lights (with a wavelength of 8.5 µm) for different Fermi
levels from 0.3 eV to 0.45 eV.
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To confirm the properties of the reflected light, we investigated the phase change of
the reflected light as a function of the Fermi energy for three wavelengths, 8 µm (red),
8.5 µm (black), and 9 µm (blue), corresponding to the dips of the MIM plasmonic mode
with the biased graphene, as shown in Figure 2c. As EF changed from 300 meV to 500 meV,
the phase change of the incident light with a wavelength of 8.5 µm was covered from 0 to
360◦. For the incident wavelengths of 8 µm and 9 µm, phase changes of 320 degrees were
estimated as the Fermi energy was controlled. Since the phase change of the 8.5 µm light
could be controlled fully over 360 degrees by manipulating the Fermi energy, the required
reflected phase change ϕ could be determined according to the specific Fermi energy on
the graphene.

Figure 2d shows that the electric field antinode of the standing wave between the
incident and reflected lights moved away from the surface of the proposed metasurface
as the Fermi energy increased from 300 meV to 450 meV because the phase change of the
reflected light increased with the Fermi energy in Figure 2c. According to the mode profiles,
the phase of the reflected light changed continuously with the Fermi energy of graphene.
The Fermi energy could be controlled by applying a proper external bias onto the graphene.

3.2. Constructing a Metasurface Mirror with a Finite Unit Cell Array

By applying a certain Fermi energy on the graphene in the unit cell of the proposed
metasurface, the phase change of the reflected light could be controlled over 360 degrees
as required. Here, we limited the target wavelength to 8.5 µm. The target wavelength,
which can cover the phase change of 360 degrees, can be adjusted by tunning the pro-
posed metasurface.

Accordingly, we constructed the electric tunable metasurface mirror consisting of
finite numbers of unit cell arrays, such as Figure 3a, which is functionally similar to the
optical phased array mirror. By applying different biases on each unit cell and, thereby,
different Fermi energies, the reflection angle became electrically tunable. Figure 3b–d
shows the relation of the shifted phase and Fermi level by position, as well as propagating
the electric field profiles of the steered beam after reflection for the steered angle of −60, 30,
and 10 degrees, respectively.

For controlling the reflected beam direction, the reflected phase per each unit cell
should be calculated. As a beam steering modulation, all reflected beams from each
cell should propagate the same reflection angle, θ, from the incident light angle. So, in
a continuous structure, the steered light phase ϕ(x) can be expressed in the following
equation [54].

ϕ(x) = (2π/λ)x sin θ (2)

In this case, however, unit cells barely act as a direct beam reflector but as a reflection
phase shifter. Since reflected light in the unit cell was assumed to propagate in a normal
direction, we constructed beam steering through an array of shifted phases.

Meanwhile, Figure 2c shows that the reflected light phase shift can correspond to
certain graphene biases. The result in Figure 2c, ϕshi f t at 405 meV is ϕshi f t = 360◦, which
becomes the starting point of the whole beam steering structure. Next to the point, the fol-
lowing cells have the specific Fermi levels corresponding to the next equation. The steering
angle θsteer and shifted phase ϕshi f t, ϕshi f t can be expressed in the following equation.

ϕshi f t = (2π/λ)x tan(θsteer) (3)

By constructing the successive, tilted mode profile on the arrayed cell, beam steering
could be implemented.

Therefore, the reflected beam can be propagated as intended (see Figure 3b–d) by
applying a bias corresponding to ϕ(x). In order to maintain the plane-like shape of the
wavefront of the reflected light, the maximum steering range is expected to be ±60◦, which
is a range large enough to be applied as a tunable concave mirror, similar to Figure 4.
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for the wavelength of 8.5 µm. The dotted line is the normal axis of the unit cell array.
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From the structural limitation of the optical phased array, the missing phase range,
which causes interference between nearby unit cells, deteriorates the beam steering ability
by constructing side lobes [55]. However, each unit cell in the proposed structure is nearly
λ/7 the size of the target wavelength, much smaller than λ/2, which is small enough to
operate as a continuous phase modulator based on Fraunhofer diffraction [56,57].

As a beam-focusing modulation, all the reflected beams from each unit cell must
propagate to the focal point (focal length: f ). Therefore, the reflected light phase ϕ(x) can
be expressed as follows [54]:

ϕ(x) = (2π/λ)
√

x2 + f 2 − f (4)

To modulate beam focusing as expected, the shifted phase should also be placed as
parabolic. Hence, ϕshi f t can be expressed in the following equation.

ϕshi f t(x) =

( 2π
λ

)(√
f 2 − x2 − f

)
· f√

f 2 + x2
(5)

Furthermore, by applying a different Fermi energy, corresponding to Equation (5),
beam focusing can be achieved, as shown in Figure 4, for different focal lengths of 3l and l.

4. Conclusions

In this paper, we propose a graphene-based electrically tunable metasurface mirror
for dynamic beam steering and focusing. In this approach, the Fermi energy of graphene in
each unit cell in the metasurface was designed to realize beam steering and focusing.

For the incident light, two gold strips, placed on a low-index dielectric with nanogaps
of 25 nm, confined the electric field due to the MIM plasmonic gap resonance, resulting
in an absorption dip of the reflectance spectrum at infrared wavelengths. The graphene
between the gold strips experienced a strong field such that the change in the Fermi energy
induced a resonant wavelength shift. For an incident light with a wavelength of 8.5 µm,
the phase of the reflected light could be tuned from 0 to 360◦ by controlling the Fermi
energy from 300 meV to 500 meV. Further, the reflectance was larger than 80% for the
operating wavelength.

Based on the phase change property of the reflected light on the proposed metasurface
unit cell, the reflected light of a normally incident light can be steered as required when
the spatial distribution of the Fermi energy of the whole metasurface is designed to induce
a phase shift of the angled reflected light. Beam steering of −60◦, +10◦, and +30◦ was
demonstrated using this proposed approach. In addition, the reflected light could be
focused at one point, and the focal length could be tuned from one wavelength, λ, to three
wavelengths, 3λ.

The fabrication of metal-strip/dielectric/metal structures with graphene has been
reported by various researchers. According to Guo, Xuguang et al. (2021) [39], graphene
was attached under a metal grating using polymethyl methacrylate (PMMA), and two
benzocyclobutene (BCB) was used as a spacer. Although there is a difference in scale, the
process of our structure is expected to be sufficiently feasible. In addition, Gahoi, Amit et al.
(2016) [38] showed that it is possible to place graphene on a silica spacer and deposit metal
on top of it by using PMMA as a transfer medium with the same structure as a back gate
on a silicon substrate. Additionally, Naresh K. Emani et al. (2012) [37] showed that it is
possible to realize metamaterials by placing graphene on a dielectric spacer and placing a
metal scatterer of hundreds of micrometers on top of it. Therefore, the proposed structure is
also fully realizable by growing a dielectric spacer on a metal mirror, transferring graphene
through PMMA, and then depositing metal strips.

The 25 nm or smaller gap can be fabricated by various methods, such as focused ion
beam milling (FIB) [58,59], e-beam lithography (EBL) [60,61], and atomic layer deposition
(ALD) [62,63].
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Recently, Yazdi, G. Reza et al. (2013) and Wang, M et al. (2021) reported the fabrication
of 50 × 50 µm2 over large-scale monolayer graphene [64,65]. In the proposed structure,
the entire size of the metasurface for beam steering and focusing were 24 µm and 64 µm.
Hence, we expect that our proposed structure can be fabricated.

Although graphene is highly utilized due to its electrical tunability, thermal expansion
damage is likely to occur during the deposition process on the substrate. Therefore, it is
necessary to manufacture devices that consider the difference in thermal expansion.

Beam steering of the metasurface can be measured using the free-space Michelson
interferometer [66].

Table 1 is a comparison table between our structure and other tunable metasurfaces.
The proposed structure numerically confirmed that it could be applicable to beam steering
± 60 degrees with the electrical control of graphene’s Fermi level.

Table 1. Comparison table of the tunable metasurfaces.

Structure Mechanism Wavelength Material Function

Our Structure Electrical Tuning 8.5 µm Metal/Graphene Beam Steering
Atwater et al. (2016) [16] Electrical Tuning 1550 nm Metal/Dielectric Beam Steering

Zhou et al. (2019) [17] Temperature Tuning 25–60 µm Metal/Dielectric Reflectance Tuning
Lalbakhsh et al. (2021) [29] Mechanical Tuning 60 mm All Metal Gain Enhancement

In conclusion, we performed relatively straightforward numerical simulations and
demonstrated that dynamic beam steering and focusing can be implemented by applying
different spatial distributions of the Fermi energy of graphene in the proposed metasurface.
The proposed electrically tunable metasurface mirror can be applied to mid-IR optics and
photonics for astronomy, IR imaging, and chemical sensing owing to its fast response and
high reflectance [67,68].
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