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A B S T R A C T

This paper presents a convolutional neural network to automatically remove the haze distribution using a
single multispectral remote sensing image in the raw file format. To train the proposed dehazing network,
we synthesized multispectral hazy images using the haze thickness map (HTM) and relative scattering model
representing the wavelength-dependent scattering property of the haze distribution. Since the raw multispectral
hazy images have a low dynamic range, we cannot accurately estimate the haze distribution directly from them.
To differently impose a proper amount of attention to hazy and haze-free regions, we used the HTM from
the contrast-enhanced version of the input hazy image. The proposed dehazing network consists of four sub-
networks: (i) shallow feature extraction network (SFEN), (ii) cascaded residual dense block network (CRDBN),
(iii) multiscale feature extraction network (MFEN), and (iv) refinement network (RN). The densely connected
convolutional layers and local residual learning allow the residual dense block (RDB) to extract the abundant
local features, and the cascaded architecture further improves the propagation of the local information and
gradients. The MFEN is used to extract multiscale local features representing the hierarchical information for
the haze distribution and haze-free region. Experimental results demonstrated that the proposed method can
achieve improved dehazing performance on Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) multispectral
remote sensing imagery without undesired artifacts. In the sense of quantitative assessment, the proposed
method produced improved peak signal-to-noise ratio (PSNR) by 10%, structural similarity index measure
(SSIM) by 1%, and spectral angle mapper (SAM) by 19% compared with the existing best method.
. Introduction

As of 2021, more than 80 public domain government agency satel-
ites are active in orbit. Among them, notable Earth observation (EO)
atellites include the Landsat series by the National Aeronautics and
pace Administration (NASA) (Teluguntla et al., 2018), the Sentinel
eries by the European Space Agency (ESA) (Guzinski and Nieto,
019), the Gaofen series by the China National Space Administra-
ion (CNSA) (Xie et al., 2020), and the Korea Multi-Purpose Satel-
ite (KOMPSAT) series by the Korea Aerospace Research Institute
KARI) (Jeong et al., 2016), to name a few. Despite their versatility,
hese satellites have common challenging factors of image quality such
s unpredictable atmospheric conditions as well as sensor resolution
nd precision of registration in spectral, spatial, and temporal domains.

Specifically, atmospheric particles such as water vapor, gas, and
articulates scatter the incident sunlight and its reflected version from
he earth’s surface. Physical properties of the atmospheric particles

∗ Corresponding author at: Department of Artificial Intelligence, Chung-Ang University, Seoul, 06974, South Korea.
E-mail address: paikj@cau.ac.kr (J. Paik).

determine the amount of atmospheric scattering (Kaufman and Sendra,
1988). The atmospheric scattering degrades the visibility of remote
sensing imagery with low dynamic range and spectral distortion, and
finally results in poor performance of the post-processing step such as
object detection and segmentation (Rottensteiner et al., 2014), terrain
change detection (Hebel et al., 2013), and terrain classification (Pingel
et al., 2013). To solve this problem, various haze removal methods have
been developed in the remote sensing field over the past few decades.
Unlike normal RGB color images, dehazing of multispectral satellite
images may utilize an extended range of wavelengths to obtain a better
performance.

The simplest approach, called dark object subtraction (DOS), aims
to subtract the additive path radiance by the atmospheric scattering
from the total transmitted radiance at the sensor. DOS-based methods
assume that a few black pixels such as shadows having 0% reflectance
exist within a scene (Vincent, 1972; Chavez, 1988). Specifically, these
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methods regard the lowest radiance on the dark surface as the haze
thickness within a scene, and the atmospheric correction is performed
by subtracting the constant or different digital number (DN) values
from each spectral band (Chavez, 1988). The early DOS-based atmo-
spheric correction method aims to remove homogeneous haze com-
ponents. However, these methods cannot avoid over-dehazing and
spectral distortion since the dark region may not exist in the acquired
scene.

To extract more dark pixels, Kaufman et al. proposed a dense
ark vegetation (DDV)-based automatic haze thickness detection and
orrection method (Kaufman and Sendra, 1988). The long wavelength
and is less affected than visible spectrum bands by the haze particle
nd the vegetation index is calculated using red and near-infrared
ands (Kaufman et al., 1997). For this reason, Kaufman’s method finds
he vegetation pixels using the relationship of surface reflectance of
isible spectrum bands (blue and red bands) and near- and short-wave
nfrared bands (Kaufman and Sendra, 1988). Richter et al. proposed
n improved version of Kaufman’s DDV-based atmospheric correction
ethod using the surface reflectance of red and near infra-red (NIR)

ands (Richter et al., 2006). DDV-based methods regard the dark
egetation pixels as the dark surface, but this method is sensitive to the
ssumption of a fraction of the dark vegetation pixels within a scene.

Makarau et al. improved DOS-based haze removal method by con-
idering local dark objects (Makarau et al., 2014). Given an input
azy image, Makarau’s method estimates the initial haze thickness
ap (HTM) by searching the local minimum value on the extrapolated

pectrum band, which was synthesized using the short wavelength
ands of aerosol and blue bands. The haze removal was performed by
ubtracting the haze thickness map multiplied by the linear regression
oefficient, which represents the linear relationship between the initial
nd band specific HTMs from each spectral band. This method can
erform context-aware haze removal while DOS-based methods deal
ith only a homogeneous haze distribution. However, the regression

oefficient should be estimated according to the acquired remote sens-
ng image since it is sensitive to the amount of haze particles within a
cene.

Since the dehazing process is highly non-linear and data-dependent,
deep learning-based approach is a promising solution. Recent devel-

pment in convolutional neural network (CNN)-based model signifi-
antly improved the dehazing performance.

Li et al. proposed a CNN-based dehazing model called All-in-One
ahzing Network (AOD-Net), which directly generates the
aze-removed image through a light-weight end-to-end CNN model
nstead of separately estimating the transmission map and the atmo-
pheric light (Li et al., 2017). Chen et al. proposed Gated Context
ggregation Network (GCA-Net) for dehazing and deraining. The GCA-
et adopted smoothed dilation to remove the artifacts of dilated
onvolution, and used a gated sub-network to fuse the features from
ifferent levels (Chen et al., 2019). Qin et al. proposed Feature Fusion
ttention Network (FFA-Net) for single image dehazing (Qin et al.,
019). The FFA-Net proposed a feature attention (FA) module that
ombines channel and pixel attention mechanism, and adopted local
esidual learning and feature attention as the basic block to bypass
ess important information such as haze of low-frequency regions.
he adaptive feature weights used in FFA-Net gives more weight to

mportant features. As a result the FFA-Net produces the best dehazing
esult in the sense of image quality and color fidelity among existing
ethods.

In this paper, we propose a deep convolutional neural network to
emove the haze distribution of the multispectral remote sensing image
n the raw file format. The contributions of the proposed dehazing
ethod are summarized as follows:

• We present a novel dataset generation method that synthesizes
the multispectral hazy image using the scattering coefficient and
estimated HTM from the real hazy image to impose different

scattering properties according to the wavelength.

2

• The proposed dehazing network uses the dense connection and
residual architecture to fully utilize the local and global informa-
tion. In addition, the network takes as input the estimated HTM
from the contrast-enhanced version of the input multispectral
hazy image to impose different attention to the hazy and haze-free
regions in the low dynamic range of the raw file format.

• Experiments were conducted on multiscpectral remote sensing
images acquired by Korea Multi-Purpose Satellite-3 A (KOMPSAT-
3 A), and demonstrated that the estimation of haze distribution
instead of directly estimating the dehazed result can achieve
better dehazing performance for the multispectral hazy image in
the raw file format without undesired artifacts.

Although a clear, haze-free image is unknown in a general situa-
ion, a satellite repeatedly acquires the same scene with and without
aze. For this reason, existing haze removal methods use synthetic
azy images to assess the haze removal performance in the literature.
herefore, we compared the haze removal performance of the proposed
ethod using the synthetic hazy images in terms of qualitative and

uantitative assessments.
The purpose of this research is mainly to eliminate the interference

aused by haze in daily changes and information acquisition, not in
hree-dimensional geometric analysis such as the shape of the terrain.
his research was conducted under the guidance of Korea Aerospace
esearch Institute (KARI), the supporting institution for this research,

n order to reflect the professional user requirements such as color
reservation and avoiding brightness saturation.

Although remote sensing image should include both spatially vary-
ng haze distribution and haze-free region in the real-world case, the
orrespondingly acquired image in the raw file format looks like that
he haze is uniformly distributed due to narrow dynamic range. In
ddition, when the contrast is enhanced, the hazy remote sensing
mage is significantly degraded by amplified haze distribution with a
evere spectral distortion because the haze distribution usually has high
ntensity values, which makes the haze removal more difficult. For this
eason, this paper presents a deep CNN-based haze removal method to
utomatically remove the semi-transparent and spatially varying haze
istribution using a single multispectral hazy image, while preserving
he surface information of the haze-free region.

The remainder of the paper is organized as follows. Section 2 briefly
escribes the related work and background theory. Sections 3 and 4
espectively present the proposed multispectral hazy image synthesis
ethod and dehazing network. In Section 5, we demonstrate the perfor-
ance of the proposed dehazing method in the sense of both objective

nd subjective assessments. Section 6 analyzes the performance of the
roposed dehazing method for different combinations of the network
nput and modules, and Section 7 concludes this paper.

. Background theory and related work

.1. Related work

In this subsection, we briefly review existing dehazing methods
sing: (i) haze optimized transform (HOT), (ii) combined frequency and
avelet, (iii) atmospheric scattering model, and (iv) deep learning.

Zhang et al. first introduced HOT to detect the spatial haze distribu-
ion using a two-dimensional (2D) spectral space of red and blue bands
hich are highly correlated under a haze-free condition (Zhang et al.,
002). They demonstrated that a DOS-based haze removal method
ith the HOT better removed the haze distribution of Landsat images.
owever, this method requires manually pre-selected haze-free pixels
efore estimating the HOT, and cannot avoid over-dehazing by spurious
omponents in the HOT. Moro et al. minimized the spurious HOT
sing the mask for a water body and man-made features (Moro and
alounova, 2007). Jiang et al. proposed a semi-automatic HOT estima-
tion method by selecting the haze-free pixels based on 𝑅-squared and
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constant threshold values in a non-overlapping local window (Jiang
et al., 2016). Sun et al. proposed a fully automated HOT estimation
method using an iterative upper trimming linear regression (Sun et al.,
2017).

Many researchers have incorporated the atmospheric scattering
model into the dehazing of a remote sensing image. The model de-
scribes that an observed hazy image is acquired by the sum of an
airlight and attenuation irradiances (Narasimhan and Nayar, 2003).
The airlight irradiance represents the scattered light integrated into the
sensor along the path between the object and the camera. The attenu-
ation irradiance is the transmitted light received by the sensor except
for the scattered light by the atmosphere under the haze condition.

Motivated by the DOS-based haze removal approach, He et al.
proposed the atmospheric scattering model-based haze removal method
using the dark channel of an input hazy image (He et al., 2011).
This method statistically analyzed the histograms of haze-free non-
sky natural images, and derived the dark channel prior model, which
assumes that, in a haze-free image, at least one channel among the
red, green, and blue channels tends to have a low intensity value close
to zero. Based on the dark channel prior and atmospheric scattering
model, the haze removal methods for remotely sensed images have
been proposed.

Shao et al. proposed the linear regression-based transmission estima-
tion method using the haze relevant features of luminance, saturation,
and saliency components (Shao et al., 2019). Pan et al. analyzed the
histograms of haze-free remote sensing and common natural images
and derived that the remote sensing images have an offset with a
certain degree (Pan et al., 2015). For this reason, this method intro-
duced the additional translation term to the atmospheric scattering
model to make the dark channel of the remote sensing image have
a low DN close to zero. Li et al. described that the haze component
s related to the uneven illumination and spatially lower frequency
roperty (Li et al., 2019). They adopted the homomorphic filtering
o suppress the haze component and enhanced the detail component,
imultaneously. In addition, the sphere model was used to estimate
he improved transmission map, which is robust to the additive noise
omponent.

Huang’s method estimated the detail component in the frequency
omain, and removed the haze component in the spatial domain using
ultiscale retinex and histogram equalization (Huang et al., 2019).
hese intermediate results were combined in the wavelet domain. Du
t al. used the wavelet decomposition to detect the haze distribution
sing the difference between the low-frequency wavelet bands of the
azy and haze-free images (Du et al., 2002). The haze removal was
erformed by subtracting the estimated haze distribution from the
pproximation level of a hazy image. However, this method requires
he hazy-free image for the same scene to extract the haze distribution.
u et al. removed the haze component using the estimated scene albedo
y adjusting the gamma, but haze removal performance depends on the
ize of a patch to estimate the dark and bright channels (Ju et al., 2019).

To remove thin cloud, Liu et al. proposed the improved multi-scale
etinex method to enhance the visibility of the aerial images acquired
nder the hazy condition (Liu et al., 2017).

In recent years, many deep learning-based haze removal methods
ave been proposed in the literature. Li et al. proposed an encoder–
ecoder-based network with symmetric concatenation and residual
etwork architecture for real Landsat 8 images (Li et al., 2019). Li et al.

derived the physical model to decompose the transmission, reflection,
and constraint layers of the cloud image and used a generative adver-
sarial network (GAN)-based thin cloud removal method for Sentinel-2 A
multispectral imagery (Li et al., 2020).

Gu et al. proposed an encoder–decoder-based dense network using
the haze density map (Gu et al., 2019; Pan et al., 2016). However,
this method is only suitable for the RGB hazy image since the haze
density map is estimated by using red, green, and blue bands. Qin
et al. obtained the dehazed result using the weighted summation of
3

intermediate haze removed results via multiple residual networks (Qin
et al., 2018). Li et al. unified the airlight and transmission map of the
atmospheric scattering model to a new variable, which is estimated
using a convolutional neural network (Li et al., 2017).

Chen et al. used a smoothed dilated convolution to extract more
contextual information with the instance normalization (Chen et al.,
2019; Ulyanov et al., 2017; Wang and Ji, 2018). This method fused the
intermediate feature maps to impose the different weights from low-
to high-level features. Zhang et al. estimated the airlight, transmission
map, and dehazed result using U-net and a pyramid-based neural
network in a step-by-step manner (Zhang and Patel, 2018; Ronneberger
et al., 2015). Qin et al. proposed the attention module to differently
focus on the uneven haze distribution by imposing different weights to
the channel- and pixel-wise feature information (Qin et al., 2019).

2.2. Haze image degradation model

The total radiance at the sensor under cloudless, haze-free condi-
tions can be expressed as (Kaufman and Sendra, 1988)

𝐿sensor
𝑖 (𝑥, 𝑦) = 𝐿𝐷

𝑖 (𝑥, 𝑦) + 𝐿𝑆
𝑖 (𝑥, 𝑦) + 𝐿𝐴

𝑖 (𝑥, 𝑦), (1)

where 𝐿sensor
𝑖 (𝑥, 𝑦) represents the total radiance of the light integrated

into the satellite imaging sensor at a pixel coordinate (𝑥, 𝑦), 𝐿𝐷
𝑖 (𝑥, 𝑦)

the path radiance of the sunlight directly transmitted to the sensor
by the atmospheric scattering without the surface reflection, 𝐿𝑆

𝑖 (𝑥, 𝑦)
the radiance of the reflected light from the surface and integrated to
the sensor through the atmosphere, 𝐿𝐴

𝑖 (𝑥, 𝑦) the path radiance by the
atmospheric scattering of the reflected light from the surface, and 𝑖 the
band number.

In the haze condition, (1) can be rewritten by the sum of the
surface reflectance and the scattered path radiance by the haze com-
ponent (Vincent, 1972; Chavez, 1988; Makarau et al., 2014) as

𝐿sensor
𝑖 (𝑥, 𝑦) = 𝐿𝑆

𝑖 (𝑥, 𝑦) + 𝐿ℎ𝑎𝑧𝑒
𝑖 (𝑥, 𝑦), (2)

where 𝐿ℎ𝑎𝑧𝑒
𝑖 (𝑥, 𝑦) represents the total path radiance of the scattered sun-

light and reflected light from the surface by the atmospheric particles.
Using the linear relationship between the DN and radiance, (2) can be
rewritten as

𝑔𝑖(𝑥, 𝑦) = 𝑓𝑖(𝑥, 𝑦) +𝐻𝑖(𝑥, 𝑦), (3)

where 𝑔𝑖(𝑥, 𝑦) represent the DN values of the observed multispectral
hazy image, 𝑓𝑖(𝑥, 𝑦) the DN values of the latent haze-free image to be
estimated, and 𝐻𝑖(𝑥, 𝑦) the DN values of an additive haze component
or each spectral band.

.3. Atmospheric scattering

The atmospheric scattering is dependent on the relationship be-
ween the size of constituent molecules in the atmosphere, and the
avelength of incident sunlight (Olsen, 2007). To the best of the au-

hors’ knowledge, Rayleigh and Mie scattering models are most widely
sed to describe atmospheric scattering for different atmospheric con-
itions in the literature. Rayleigh and Mie scattering models describe
hat the amount of scattering is inversely proportional to the power of
he wavelength 𝜆 as (Chavez, 1988; Qin et al., 2018)

(𝜆) ∝ 1
𝜆𝛾

, (4)

where 𝛽(𝜆) represents the amount of scattering of wavelength 𝜆, and
𝛾 a positive parameter, which determines the atmosphere conditions,
and varies in [0, 4]. Chavez derived the relative scattering model of
varying 𝛾 for the different atmosphere conditions (Chavez, 1988). If 𝛾 is
close to 0, the atmosphere is heavily hazy or cloudy. For the haze-free
atmosphere, 𝛾 is set to 4 in the Rayleigh scattering model. For the haze
condition, since the haze distribution varies by the concentration and
size of haze particles, 𝛾 is in the range of [0.5, 0.7] by the Mie scattering
model.
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Table 1
A set of Landsat 8 OLI images used for a real hazy
patch extraction.

ID

LC08_L1TP_013032_20180608_20180615_01_T1
LC08_L1TP_013032_20180624_20180704_01_T1
LC08_L1TP_013032_20180726_20180731_01_T1
LC08_L1TP_013032_20190526_20190605_01_T1
LC08_L1TP_013032_20190627_20190705_01_T1
LC08_L1TP_013032_20190915_20190925_01_T1
LC08_L1TP_014031_20180717_20180730_01_T1
LC08_L1TP_014031_20181208_20181226_01_T1
LC08_L1TP_014032_20180919_20180928_01_T1
LC08_L1TP_018045_20181001_20181010_01_T1
LC08_L1TP_018046_20190716_20190721_01_T1
LC08_L1TP_018046_20190918_20190926_01_T1
LC08_L1TP_198026_20190118_20190201_01_T1
LC08_L1TP_198026_20190510_20190521_01_T1
LC08_L1TP_199026_20190415_20190423_01_T1
LC08_L1TP_199026_20190501_20190508_01_T1
LC08_L1TP_200026_20190406_20190422_01_T1
LC08_L1TP_200026_20190422_20190507_01_T1
LC08_L1TP_200026_20190524_20190604_01_T1

Specifically, when the size of molecules in the atmosphere is much
maller than the wavelength, the scattering of incident sunlight is
ighly dependent on the wavelength by Rayleigh scattering model. It
eans that the short wavelength light is scattered more than the longer
avelength light since the size of oxygen and nitrogen molecules is
uch smaller than the wavelength for the haze-free condition.

On the other hand, Mie scattering model is used to describe the
tmospheric scattering in the haze condition. Since the size and con-
entration of molecules, such as smoke, dust, and water vapor, tend
o become larger, the atmospheric scattering is more dependent on
he size of haze particles than the wavelength. For these reasons,
he different amounts of haze distribution should be added to each
pectral band in the multispectral hazy image synthesis. If the same
mount of haze distribution is added to the multispectral haze-free
mage, the correspondingly dehazed image might be degraded by the
ver-dehazing in the longer wavelength such as red and NIR bands.

. Multispectral hazy image synthesis

In this section, we present a wavelength-dependent haze simulation
ethod to synthesize artificial multispectral hazy images in detail. Haze
istribution in a real multispectral hazy image is determined by the
avelength of each spectral band and the size of constituent molecules

n the atmosphere (Olsen, 2007). In other words, the wavelength-
ependent hazy image synthesis is required to obtain better dehazing
erformance.

.1. Estimation of real haze distribution

To synthesize multispectral hazy images for training datasets, we
ollected real hazy and haze-free images acquired by Landsat 8 Oper-
tional Land Imager (OLI) (USGS, 2022) and KOMPSAT-3 A. The list
f Landsat images used for real hazy patches is given in Table 1, and
pectral bands of Landsat 8 OLI and KOMPSAT-3 A are given in Table 2.

The size of training data should be large enough to avoid overfitting
he model. Although the primary objective of this work is to process
OMPSAT-3 A images, it should work for general satellite images. For

his reason, we selected OLI images together with KOMSAT-3 A images
o synthesize multispectral hazy images.

An observed real hazy image contains not only a haze distribu-
ion but also a haze-free region that should be preserved without
ver-dehazing or radiometric distortion in the learning-based dehazing
rocess. For that reason, we selected the real image patches includ-
ng both hazy and haze-free regions in the spectral bands 1 to 5 of
4

Table 2
Spectral bands of Landsat 8 OLI and KOMPSAT-3A.

Spectral bands Wavelength range (μm)

Landsat 8 OLI KOMPSAT-3A

Band 1 - Coastal/Aerosol 0.433–0.454 ⋅
Band 2 - Blue 0.450–0.515 0.450–0.520
Band 3 - Green 0.525–0.600 0.520–0.600
Band 4 - Red 0.630–0.680 0.630–0.690
Band 5 - Near infrared 0.845–0.885 0.760–0.900
Band 6 - Short wavelength infrared 1.560–1.660 ⋅
Band 7 - Short wavelength infrared 2.100–2.300 ⋅
Band 8 - Panchromatic 0.500–0.680 0.450–0.900
Band 9 - Cirrus 1.360–1.390 ⋅

Landsat 8 OLI images. The haze-free patches were sampled from the
KOMPSAT-3 A images without overlapping in the spectral bands 2 to
5.

Based on the degradation model in (3), the multispectral hazy image
is synthesized using the wavelength-dependent haze distribution from
real hazy patches. The estimated haze distribution of each spectral band
is added to the haze-free patch. Given the real hazy patch, the haze
distribution of each spectral band is estimated using Makarau’s method
in three steps: (i) spectrum extrapolation using two shortest wavelength
bands, (ii) initial HTM estimation, and (iii) wavelength-dependent HTM
generation (Makarau et al., 2014).

The spectrum extrapolation step uses real hazy patches in the
shortest wavelength bands expressed as

𝑔EXT(𝑥, 𝑦) = 𝑔𝐵1(𝑥, 𝑦) + (1 − 𝛼)𝑔𝐵2(𝑥, 𝑦), (5)

here 𝑔𝐵1(𝑥, 𝑦) and 𝑔𝐵2(𝑥, 𝑦) respectively represent the aerosol/coastal
nd blue bands of a real hazy patch extracted from Landsat 8 OLI
mages, 𝑔EXT(𝑥, 𝑦) the extrapolated band which contains more haze
istribution than the coastal/aerosol band, and we experimentally used
= 0.95.

Given the extrapolated band 𝑔EXT(𝑥, 𝑦), the HTM, which is regarded
s a haze distribution, is estimated as a local minimum of the extrapo-
ated band as

HTM(𝑥, 𝑦) = min
(𝑚,𝑛)∈𝛺(𝑥,𝑦)

𝑔EXT(𝑚, 𝑛), (6)

here 𝑔HTM(𝑥, 𝑦) represents the estimated HTM, 𝛺(𝑥, 𝑦) the specified
indow centered at (𝑥, 𝑦), and (𝑚, 𝑛) the coordinate in 𝛺(𝑥, 𝑦). The HTM

s estimated by searching the minimum value in the local region with-
ut overlapping the specified window. The estimated HTM is enlarged
sing the bilinear interpolation to have the same size as the input hazy
mage.

Makarau et al. estimated the wavelength-dependent HTM for each
pectral band by multiplying different linear coefficients to the HTM
n (6) (Makarau et al., 2014). However, Makarau’s method requires
he computation of a linear coefficient for different hazy scenes due
o different haze distribution. Qin et al. synthesized the wavelength-
ependent hazy image using the ratio between the center wavelengths
f the coastal/aerosol and other spectral bands and the transmission
ap (Qin et al., 2018). If the remote sensing imagery does not have

he coastal/aerosol band, the transmission map might be inaccurately
stimated, and the resulting image is degraded by the radiometric
istortion.

To solve that problem, the proposed method uses the scattering
oefficient for each spectral band as a linear coefficient to be multiplied
y the estimated HTM in (6). Based on the relative scattering model
n Chavez (1988), the scattering coefficient for the 𝑖th spectral band is
omputed as

𝑖 =
(

𝜆1
)𝛾

, (7)

𝜆𝑖
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Fig. 1. Four spectral bands of a synthetic hazy image using the real hazy and haze-free scene of Landsat 8 OLI and KOMPSAT-3 A images, respectively: (a) a haze-free scene
of KOMPSAT-3 A image, (b) a real haze distribution of Landsat 8 OLI image, (c) a synthetic multispectral hazy image, (d) contrast-enhanced version of (c), and (e)–(f) HTMs
estimated from (c) and (d), respectively. At each column, RGB and NIR spectral bands are shown from top to bottom.
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where 𝑘𝑖 and 𝜆𝑖 respectively represent the scattering coefficient and
he center wavelength of the 𝑖th spectral band. Given the scattering

coefficient 𝑘𝑖, the synthetic multispectral hazy image is defined as

𝑔𝑖(𝑥, 𝑦) = 𝑓𝑖(𝑥, 𝑦) + 𝑘𝑖𝑔
HTM(𝑥, 𝑦), (8)

where the second term in the righthand side represents the haze
distribution for the 𝑖th spectral band.

Figs. 1(a) and 1(b) show the spectral bands of haze-free KOMPSAT-
3 A image in the raw file format and real haze distribution estimated
from Landsat 8 OLI image, respectively. Fig. 1(c) shows the synthetic
multispectral hazy image using (8). As shown in the figure, the amount
of haze distribution decreases as the wavelength of spectral bands
increases, which proves that the proposed method can synthesize the
wavelength-dependent hazy image for different hazy scenes.

4. Proposed multispectral dehazing method

4.1. Pre-processing

This subsection describes the pre-processing step to generate the
network input and the proposed dehazing network for a multispectral
hazy image in the raw file format.

4.1.1. Contrast enhancement
Since a raw multispectral hazy image has an extremely low dynamic

range, it is difficult to accurately separate the hazy and haze-free
regions without pre-processing. Fig. 2 shows histograms of spectral
bands 2 to 5 of KOMPSAT-3 A imagery. As shown in the figure, we
cannot exactly discriminate the hazy and haze-free regions from a low
dynamic range image.

To solve this problem, we first estimate the wavelength-dependent
HTM of each spectral band from the contrast-enhanced version of the
input multispectral hazy image. Next, we take the estimated HTM as
the input of the proposed dehazing network to impose more attention

on the haze distribution than the haze-free region. ℎ

5

The proposed method enhances the contrast by stretching the his-
togram, which is a straightforward way to enhance the contrast by
linearly spanning the histogram using the upper and lower threshold
values as

𝑔CE(𝑥, 𝑦) = 𝐿
(

𝑔(𝑥, 𝑦) − 𝑡𝑚𝑖𝑛
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

)

, (9)

here 𝑔(𝑥, 𝑦) and 𝑔CE(𝑥, 𝑦) respectively represent the input and its
ontrast-enhanced version using the histogram stretching method, 𝑡𝑚𝑖𝑛
nd 𝑡𝑚𝑎𝑥 respectively the lower and upper threshold values, 𝐿 the
aximum level of the bit range. 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are respectively set by the
N values at a certain percentage of the top brightest and darkest pixels
f an input image using the cumulative distribution function (CDF). The
N values are clipped into the linearly scaled range in [0, 𝐿].

However, if a bright object such as a cloud exists in an input
azy image, the histogram congregates to the bright region, and 𝑡𝑚𝑎𝑥
ecomes larger. As a result, the histogram stretching method more
nhances the brightness and contrast of the cloud regions than the mod-
rate haze distribution. To solve this problem, the proposed method
stimates the histogram using the binary mask to exclude the bright
bjects. The binary mask is estimated using the mean of the averaged
pectral band as

(𝑥, 𝑦) =

{

1, if 𝑀(𝑥, 𝑦) < 𝜇𝑀
0, otherwise,

(10)

here

(𝑥, 𝑦) = 1
𝑁

∑

𝑖∈{𝑅,𝐺,𝐵,𝑁}
𝑔𝑖(𝑥, 𝑦), (11)

(𝑥, 𝑦) and 𝑀(𝑥, 𝑦) respectively represent the binary mask and averaged
pectral band images, 𝜇𝑀 the mean value of 𝑀(𝑥, 𝑦), and 𝑁 the total
umber of spectral bands of the input multispectral hazy image. The
istogram of the 𝑖-th spectral band of the input multispectral hazy
mage is computed as

(𝑘) = 𝐜𝐚𝐫𝐝
{

(𝑥, 𝑦)|𝑔 (𝑥, 𝑦) = 𝑘, 𝑇 (𝑥, 𝑦) = 1
}

, (12)
𝑖 𝑖
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Fig. 2. Spectral bands and their histograms of a real multispectral hazy image acquired by KOMPSAT-3 A earth observation satellite: (a) blue, (b) green, (c) red, and (d) NIR
bands.
Fig. 3. Comparative results of the contrast enhancement using the histogram stretching method: (a) an input multispectral hazy image acquired by KOMPSAT-3 A, (b) an averaged
spectral band 𝑀(𝑥, 𝑦), (c) a binary mask 𝑇 (𝑥, 𝑦), (d) result of a conventional histogram stretching method, and (e) result of the proposed histogram stretching method. 𝑡𝑚𝑎𝑥 and
𝑚𝑖𝑛 were set by the top 0.01% brightest and darkest DN values.
Fig. 4. The block diagram of the network input generation process.
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here 𝐜𝐚𝐫𝐝{⋅} represents the cardinality of a set. The dynamic range of
ultispectral hazy image is enhanced using (9) and the CDF computed

rom the histogram ℎ𝑖 for 𝑘 ∈ [0, 𝐿 − 1]. The proposed method can
etter enhance the contrast than the conventional histogram stretching
ethod for the same 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 as shown in Fig. 3.

.1.2. HTM estimation
As mentioned above, the estimation of the haze distribution may

ecome inaccurate under a low-contrast condition without any pre-
rocessings. To solve this problem, the proposed method estimates
he HTM from the contrast-enhanced version of an input multispectral
azy image to give more attention to the haze distribution. Since the
OMPSAT-3 A imagery does not have a coastal/aerosol band as shown

n Table 2, the spectrum extrapolation is performed using blue and
reen bands of the contrast-enhanced input hazy image, respectively.
iven the extrapolated band, the proposed method estimates the HTM
sing (6) as shown in Fig. 4. We use a guided filter to provide the locally
onstant property of the HTM using the guidance image whose intensity
alues are all zero (He et al., 2013).

.1.3. Network input
Let 𝑔HTM

CE be the HTM of the contrast-enhanced version of the input
azy image. The wavelength-dependent HTM for the 𝑖-th spectral band
 t

6

s estimated by multiplying the scattering coefficient, 𝜆𝑖, of (7) to
he estimated HTM, 𝑔HTM

CE , as shown in Fig. 4. Fig. 1(d) shows the
ontrast-enhanced version of a synthetic multispectral hazy image of
ig. 1(c). Figs. 1(e) and 1(f) respectively show the estimated HTMs from
igs. 1(c) and 1(d) for each spectral band. As shown in Fig. 1(f), since
he wavelength-dependent HTMs of the contrast-enhanced version have
igher DN values than the haze-free region, the proposed dehazing
etwork can give different attention to the hazy and haze-free regions.

The input multispectral hazy image in the raw file format and
stimated HTM are concatenated to make 𝑔, which is the input of the
roposed dehazing network as

𝑔 =
[

𝑔𝑖, 𝑔
HTM
𝑖,𝐶𝐸

]

, (13)

here 𝑔𝑖 represents the 𝑖th spectral band of a multispectral hazy image
n the raw file format, and 𝑔HTM

𝑖,𝐶𝐸 the wavelength-dependent HTM of
he 𝑖th spectral band estimated from the contrast-enhanced version of
𝑖. We will compare the dehazing performance of the proposed method
ith and without HTM in Section 6.2.

.2. Network architecture

In this subsection, we describe the proposed dehazing network using
he residual learning between an input multispectral hazy image and its
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Fig. 5. The architecture of the proposed dehazing network.
Fig. 6. The inside details of the CRDBN in Fig. 5.
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haze distribution. In the proposed method, an observed multispectral
hazy image is obtained by adding the haze distribution to the haze-free
image. It means that we can predict the latent haze-free image by sub-
tracting the estimated haze distribution from an observed multispectral
hazy image.

For the denoising problem, Zhang et al. demonstrated that the
residual mapping, which learns the relationship between an input noisy
image and its noise component, can achieve better performance than
estimating the denoised image (Zhang et al., 2017). In the same man-
ner, we adopt the residual learning to estimate the haze distribution
𝐻𝑖(𝑥, 𝑦) ≈ 𝑘𝑖𝑔HTM (𝑥, 𝑦) in (8) from an input multispectral hazy image
instead of estimating the resulting dehazed image.

As shown in Fig. 5, the architecture of the proposed dehazing
network consists of four sub-networks: (i) shallow feature extraction
network (SFEN), (ii) cascaded residual dense block network (CRDBN),
(iii) multiscale feature extraction network (MFEN), and (iv) refinement
network (RN). The SFEN extracts the shallow feature maps from the
network input 𝑔 in (13) as

𝐹SFEN = SFEN(𝑔), (14)

here SFEN(⋅) represents three 3 × 3 convolutional layers. The shallow
eature 𝐹SFEN becomes the input of the cascaded RDBN.

The second sub-network is the CRDBN, which combines the local
esidual learning and dense skip connections of convolutional lay-
rs (Zhang et al., 2018b). Since the densely connected layers become
he shortcut connections to propagate the feature information and local
radients, we can achieve better performance in the image restoration
roblem (Zhang et al., 2018b; Ahn et al., 2018; Huang et al., 2017).

Unlike the original RDBN, the proposed CRDBN does not use the
lobal residual learning between the input and output features. Instead,
he proposed dehazing network has the dense connectivity to fully
tilize the locally extracted features from RDBs as shown in Fig. 6.
ince all the RDBs are densely connected, it can guarantee a further
mprovement in the flow of the information and local gradient in both
orward and backward propagations. In addition, we added a 1 × 1
onvolutional layer before the 3 × 3 convolutional layer in the RDB
o further reduce the network parameters than the original RDBN as
hown in Fig. 7.

To estimate the global features representing the hazy and haze-free
egion, the proposed CRDBN uses the compressed feature map. The
nput of the first RDB is obtained by compressing the shallow feature
sing a 3 × 3 convolution layer with a stride of 2 as

̃0
RDB = 𝐷

RDB
(

𝐹SFEN
)

, (15)

here 𝐹 0
RDB is the compressed version of 𝐹SFEN and becomes the input

f the proposed CRDBN, and 
RDB (⋅) the down-sampling layer to re-

uce the spatial resolution using the strided convolution. Consequently,

he proposed method can utilize the larger receptive field in RDBs. a

7

Let 𝐹 𝑝
RDB be the output feature map of the 𝑝th RDB for 𝑝 = 1,… , 𝑃 ,

hen 𝐹 𝑝
RDB can be formulated as

̃𝑝
RDB = 𝑝

RDB

(

𝐹 0
RDB

)

= 𝑝
RDB

(

𝑝−1
RDB

(

⋯
(

1
RDB

(

𝐹 0
RDB

))

⋯
))

= 𝑝
RDB

(

𝑝
LFF

([

𝐹 𝑝−1
RDB, 𝐹

𝑝
RDB,1,… , 𝐹 𝑝

RDB,C

])

+ 𝐹 𝑝−1
RDB

)

,

(16)

here

̂ 𝑝−1
RDB = 

([

𝐹 0
RDB, 𝐹

1
RDB,… , 𝐹 𝑝−1

RDB

])

, (17)
𝑝
RDB represents the 𝑝th RDB, 𝑝

LFF the local feature fusion using
× 1 convolutional layer, 𝐹 𝑝−1

RDB the input feature map of the 𝑝th
stimated RDB using the output feature maps of the preceding RDBs
nd 𝐹 0

RDB,
[

𝐹 𝑝−1
RDB, 𝐹

𝑝
𝑅𝐷𝐵,1,… , 𝐹 𝑝

𝑅𝐷𝐵,𝐶

]

the concatenation of 𝐹 𝑝−1
RDB and

he intermediate feature maps of the sequences of 1 × 1 and 3 × 3
onvolutional layers. The transition layer  using a 1 × 1 convolution
educes the dimensionality of the depth of the concatenated feature
ap.

Since the proposed CRDBN uses the dense connectivity of all the
DBs instead of global residual learning, the output feature map of the
RDBN is estimated using the concatenation of output feature maps of
ll the RDBs and the input feature map 𝐹 0

RDB. Let 𝐹 𝑃
RDB be the output

eature map of the CRDBN, then 𝐹 𝑃
RDB can be expressed as

𝑃
RDB = 

([

𝐹 0
RDB, 𝐹

1
RDB,… , 𝐹 𝑃−1

RDB , 𝐹
𝑃
RDB

])

. (18)

o restore the compressed feature map of the CRDBN, the proposed
ehazing network enlarges the feature map 𝐹 𝑃

RDB using the up-sampling
ayer. In addition, the up-sampled feature map is adaptively fused with
he shallow feature map 𝐹SFEN using the transition layer  as

RDBN = 
([

𝐹𝑆 ,𝑈
RDB

(

𝐹 𝑃
RDB

)])

, (19)

here 𝐹RDBN represents the final output feature map of the CRDBN,
𝑈
RDB (⋅) represents the up-sampling layer using bilinear interpolation

ollowed by a 3 × 3 convolutional layer.
Since an observed multispectral hazy image contains both hazy and

aze-free regions, the proposed dehazing network estimates an accu-
ate haze distribution using the multiscale feature extraction network
MFEN). In the earlier work of object detection and semantic segmen-
ation, the multiscale architectures were used to extract scale-invariant
eatures using the convolutional and pooling layers in series (Lin et al.,
017; Zhao et al., 2017; Zhang et al., 2018a). The extracted features
ierarchically represent the local and global low-level information for
he same object.

Based on this observation, the proposed method uses the multiscale

rchitecture to extract the hierarchical features from the output feature
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Fig. 7. The inside details of the 𝑝-th RDB in Fig. 6.
Fig. 8. The architecture of the proposed multiscale feature extraction network (MFEN).
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of the CRDBN at different scales having different receptive fields. Given
the output feature of the CRDBN, the proposed MFEN can be formulated
as

𝐹 𝑠
MFEN = 𝑈,𝑠

MFEN

(

𝐷,𝑠
MFEN

(

𝐹RDBN
)

)

, (20)

here 𝐹 𝑠
MFEN represents the output feature of the MFEN, for 𝑠 ∈

0, 1, 2, 3}, 𝐷,𝑠
MFEN (⋅) the down-sampling layer compressing the input

eature, 𝑈,𝑠
MFEN (⋅) the up-sampling layer enlarging the compact and

oded feature, and 𝑠 the scale level. The size of the stride is calculated
y 2𝑠 and it becomes the scale factor to compress and enlarge the spatial
esolution of the feature map at the down- and up-sampling layers,
espectively.

𝐷,𝑠
MFEN (⋅) consists of a strided convolution and two 3 × 3 convolu-

ional layers. 𝑈,𝑠
MFEN (⋅) consists of bilinear interpolation followed by a

× 3 convolutional layer. For 𝑠 = 0, the proposed MFEN performs a
× 1 and two 3 × 3 convolutions without the down- and up-sampling

ayers. The output feature of the MFEN is obtained by concatenating
he hierarchical feature maps followed by a 1 × 1 convolutional layer
s shown in Fig. 8.

Next, the output feature of MFEN is fed into the refinement network
RN) to estimate the haze distribution more accurately as

RN = RN
(

𝐹MFEN
)

, (21)

here 𝐹RN represents the output feature of the RN, and RN consists
f five 3 × 3 convolutional layers.

Finally, the output haze distribution is estimated using a 3 × 3
onvolutional layer. Let 𝐻̂𝑖(𝑥, 𝑦) be the estimated haze distribution of
he 𝑖th spectral band. The dehazed result is obtained by subtracting the
stimated haze distribution 𝐻̂𝑖(𝑥, 𝑦) from an input multispectral hazy
mage 𝑔𝑖 as

𝑖̂ (𝑥, 𝑦) = 𝑔𝑖 (𝑥, 𝑦) − 𝐻̂𝑖(𝑥, 𝑦), (22)

here 𝑓𝑖(𝑥, 𝑦) and 𝑔𝑖(𝑥, 𝑦) respectively represent the 𝑖th spectral band
f the dehazed and input multispectral hazy images.
8

.3. Loss function

The proposed dehazing network is trained by minimizing the dif-
erence between the predicted haze distribution and its latent version.
iven a training dataset of 𝑁 synthetic multispectral hazy images
𝑔𝑖
}

and latent haze-free images
{

𝑓𝑖
}

, an 𝓁2 loss function is used to
pdate the trainable network parameters. In addition, we adopted an
2-regularization term to prevent overfitting in the training process.
he objective function of the proposed dehazing method is defined as

(𝜃) = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

(

𝑔𝑖 − 𝑓𝑖
)

−𝑋
(

𝑔𝑖; 𝜃𝑋
)

‖

‖

‖

2

𝐹
+ 𝜆

2
‖

‖

𝜃𝑋‖‖
2
2 , (23)

where 𝑁 is the number of the training dataset, (𝑔𝑖 − 𝑓𝑖) the real haze
istribution to be estimated, 𝑋(⋅) the proposed dehazing network, 𝜆 the
egularization parameter, and 𝜃𝑋 the set of trainable parameters of the
roposed dehazing network.

. Experimental results

.1. Training dataset

To synthesize the multispectral hazy image, we extracted pairs of
he real hazy and haze-free patches from selected Landsat 8 OLI and
OMPSAT-3 A images. Given Landsat 8 OLI images, we manually
elected 661 cases of the real haze distributions of size 512 × 512 in-

cluding the haze-free region from the coastal/aerosol and blue bands. In
addition, we extracted about 10,000 haze-free images of size 512 × 512
from blue, red, green, and near-infrared bands. The extracted real haze
distribution and haze-free images were randomly cropped to the size
of 128 × 128, augmented via vertical and horizontal flips, and then
transposed during the training phase. The intensity of selected images
was normalized to [0, 1] by dividing the peak intensity value, 2𝐵 , where
𝐵 represents the bit depth. All the multispectral remote sensing images
of KOMPSAT-3 A were provided by the Korea Aerospace Research
Institute for only non-commercial use.

However, since Landsat 8 OLI and KOMPSAT-3 A images have 16-
bit and 14-bit ranges, the synthetic hazy image only shows the uniform
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Table 3
Hyper-parameters used in the experiment.

Hyper-parameters Values

Adam optimizer 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8

Learning rate 0.0001 decayed by 0.99 for every epoch
Number of minibatches 64
Number of epochs 30
Regularization parameter 𝜆 = 0.0001

haze distribution. To impose the non-uniformity and to match the
dynamic range between the haze distribution and haze-free images, we
adopted the conventional histogram stretching of (9) to the extracted
real haze distribution, where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were set to 0.0001 and
.9999, respectively. In addition, we multiplied the scale factor, which
as randomly selected in [0.1, 0.2], to match the range of DN values of

the extracted real hazy image with that of the haze-free image.
To generate the training dataset, the parameter 𝛾 in (7), which

etermines the amount of haze distribution in each spectral band, was
andomly set in [0.5, 1.5] for the multispectral hazy image synthesis.
n the pre-processing step, the parameter 𝛾 was fixed to 1 to generate

the network input. Among the training dataset, 9,000 images were
randomly selected for training, and the rest were used for validation.

5.2. Implementation details

In the proposed dehazing network, we used 10 RDBs and three pairs
of 1 × 1 and 3 × 3 convolutional layers. The growth rate of the RDB
was set to 32. In addition, we used 32 feature maps and the rectified
linear unit (ReLU) activation function was used after all convolutional
layers except the output convolutional layer (Nair and Hinton, 2010).

The network parameters were initialized using He’s method and
updated using Adam optimizer with parameters of 𝛽1 = 0.9, 𝛽2 =
0.999, 𝜖 = 10−8, and the learning rate of 0.0001 (Kingma and Ba,
2015; He et al., 2015). The learning rate was decayed by multiplying
0.99 after every epoch. The minibatch size was set to 64, and the
number of epochs was set to 30. The regularization parameter 𝜆 was
et to 0.0001. The proposed dehazing network was implemented with
ytorch framework and trained using two NVIDIA Titan RTX GPUs.

The list of hyper-parameters to train the proposed model is summa-
ized in Table 3.

.3. Objective assessments

In this subsection, we demonstrate objective performance of the
roposed method using PSNR, SSIM, and SAM (Wang et al., 2004;
uhas et al., 1992). Given a reference image 𝑓 and a test image 𝑓 ,

both of size 𝑀 ×𝑁 , the PSNR between 𝐵 bits gray-level images 𝑓 and
̂ is defined as

SNR(𝑓, 𝑓 ) = 10 log10
(2𝐵 − 1)2

MSE(𝑓, 𝑓 )
, (24)

where

MSE = 1
𝑀𝑁

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
(𝑓𝑖𝑗 − 𝑓𝑖𝑗 )2. (25)

The SSIM is used to measure the similarity in terms of luminance,
structure, and contrast between an input and reference images. It is
defines as

SSIM(𝑓, 𝑓 ) = 𝑙(𝑓, 𝑓 )𝑐(𝑓, 𝑓 )𝑠(𝑓, 𝑓 ), (26)

where

𝑙(𝑓, 𝑓 ) =
2𝜇𝜇̂ + 𝐶1

𝜇2 + 𝜇̂2 + 𝐶1

(𝑓, 𝑓 ) =
2𝜎𝜎̂ + 𝐶2 (27)
𝜎2 + 𝜎̂2 + 𝐶2
s
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𝑠(𝑓, 𝑓 ) =
𝜎𝑓𝑓 + 𝐶3

𝜎𝜎̂ + 𝐶3
,

and 𝜇̂ respectively represent mean luminance of 𝑓 and 𝑓 , 𝜎 and 𝜎̂
espectively represent standard deviations of 𝑓 and 𝑓 , and 𝜎2

𝑓𝑓
is the

ovariance between 𝑓 and 𝑓 . 𝐶1, 𝐶2, 𝐶3 are positive constants to avoid
null denominator (Hore and Ziou, 2010).

The SAM measures the angular difference between an input and
eference spectral vectors. The SSIM value close to 1 and higher PSNR
alue indicate better image quality, and the SAM value close to 0
ndicates better spectral similarity. Synthetic multispectral hazy images
f size 512 × 512 were used to evaluate the dehazing performance of
he proposed method.

The performance of the proposed method was compared with He’s
ethod (He et al., 2011), Tarel’s method (Tarel and Hautière, 2009),
an’s method (Pan et al., 2015), Zhu’s method (Zhu et al., 2015),
ODNet (Li et al., 2017), GCANet (Chen et al., 2019), and FFANet (Qin
t al., 2019). AODNet, GCANet, and FFANet were trained using the
raining dataset of synthetic multispectral hazy images generated by
he proposed method for red-green-blue (RGB) and near-infrared-green-
lue (NGB) bands. The hyperparameters were set as described in the
riginal works of AODNet, GCANet, and FFANet.

Specifically, the network parameters were initialized using He’s
ethod (He et al., 2015) for AODNet, GCANet, and FFANet, respec-

ively. The trainable parameters were updated using Adam optimizer,
nd AODNet was trained without the gradient clipping. The patch size
f the synthetic multispectral hazy image was set to 128 × 128, which
s the same as the proposed method. The epochs were set to 150, 50,
nd 30 for AODNet, GCANet, and FFANet, respectively. The number of
eature maps of the input and output convolutional layers was set to
he number of spectral bands.

Figs. 9 and 10 show the resulting dehazed images using the pro-
osed and existing dehazing methods for synthetic multispectral hazy
mages. In those figures, the odd rows show the input hazy and dehazed
mages in the raw file format. The even rows show the contrast-
nhanced version of the dehazed images using the conventional his-
ogram stretching method where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were respectively set to
.0001 and 0.9999.

The dehazing performance of atmospheric scattering model-based
ethods depends on the transmission and atmospheric light estimation.
hese methods estimate the transmission using the dark channel prior,
hich assumes that one of the intensity values in red, green, and blue
ixels is very close to 0. However, since the multispectral hazy image
as the offset with a certain degree as described in Pan et al. (2015),
t is difficult to estimate the accurate transmission from the dark
hannel. Consequently, the resulting dehazed image cannot avoid the
ver-dehazing and spectral distortion due to an inaccurately estimated
ransmission as shown in He’s and Pan’s methods.

Tarel’s method based on the visibility restoration function also
hows the color and contrast distortion since the contrast enhancement
nd tone mapping are performed in the dehazing process as shown
n Figs. 9(d) and 9(d). Zhu’s method reduces the haze distribution
sing the color attenuation prior (CAP), under the assumption that the
aturation and luminance components of a hazy image are inversely
roportional to each other as the distance from the camera increases
ith the loss of color information. Based on this observation, the CAP

emoves the haze distribution using the depth information estimated
rom the saturation and luminance components. However, the remote
ensing image has a constant depth since the distance between the
arth’s surface and the satellite is very far. For this reason, the CAP-
ased method cannot effectively remove the haze distribution as shown
n Figs. 9(f) and 10(f).

As a deep learning-based approach, Li’s method combined the trans-
ission and atmospheric light as a single parameter to be estimated

y CNN. As shown in Figs. 9(g) and 10(g), AODNet provided better
ehazing performance than non-deep learning-based methods as de-

cribed above, but this method shows limited dehazing performance
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Fig. 9. Comparative results of the dehazing performance on RGB and NGB bands of synthetic multispectral hazy images: (a) haze-free images, (b) synthetic hazy images, (c) He’s
method (He et al., 2011), (d) Tarel’s method (Tarel and Hautière, 2009), (e) Pan’s method (Pan et al., 2015), (f) Zhu’s method (Zhu et al., 2015), (g) AODNet (Li et al., 2017),
(h) GCANet (Chen et al., 2019), (i) FFANet (Qin et al., 2019), and (j) the proposed method (𝛾 = 0.1, 𝑡𝑚𝑖𝑛 = 0.1, 𝑡𝑚𝑎𝑥 = 0.9).
Table 4
Objective assessments of the dehazing performance of the proposed and existing methods on the synthetic multispectral hazy images using PSNR, SSIM, and SAM.

Input He’s method Tarel’s method Pan’s method Zhu’s method Li’s method Chen’s method Qin’s method Proposed

PSNR (dB) 28.8945 ± 3.8667 31.0961 ± 3.5645 24.7168 ± 4.6247 29.4150 ± 3.3948 28.6588 ± 4.6985 32.3628 ± 4.5641 32.5849 ± 5.0589 31.2741 ± 4.5387 35.7425 ± 4.6089
SSIM 0.9615 ± 0.0433 0.9665 ± 0.0251 0.9056 ± 0.0781 0.9339 ± 0.0676 0.9440 ± 0.0731 0.9767 ± 0.0320 0.9745 ± 0.0312 0.9730 ± 0.0345 0.9866 ± 0.0198
SAM 2.7093 ± 1.3483 3.3188 ± 1.1074 3.8565 ± 2.0142 7.6184 ± 4.3301 4.1397 ± 3.3439 2.0507 ± 1.0479 2.7080 ± 1.1086 2.1963 ± 1.1782 1.6673 ± 0.9341
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for a moderate haze distribution compared to the proposed method.
Although the GCANet gives better dehazing performance than AOD-
Net, it cannot completely avoid an imbalanced spectral amplification.
Furthermore, the resulting images of GCANet show the discontinuity in
mean brightness and spectral preservation between the blocks because
of the instance normalization as shown in Figs. 9(h) and 10(h).

Qin’s method utilizes the attention modules, which impose totally
different weights on the features in both channel- and pixel-wise man-
ners, to deal with unevenly distributed haze particles. As shown in
Figs. 9(i) and 10(i), FFANet provided improved dehazed results than
AODNet and GCANet. However, Qin’s method cannot effectively re-
move the haze distribution compared with the proposed method.

On the other hand, since the wavelength-dependent HTM for each
spectral band estimated from the contrast-enhanced input hazy image
gives different attention to the hazy and haze-free regions, the resulting
images of the proposed method show better dehazing performance than
existing dehazing methods without over-dehazing and spectral distor-
tion as shown in Figs. 9(j) and 10(j). In addition, the proposed dehazing
method can remove the haze distribution without the discontinuity
between blocks for a very high-resolution multispectral hazy image.
Fig. 11 shows the boxplots of PSNR, SSIM, and SAM values of the
proposed and existing dehazing methods summarized in Table 4.

We also performed statistical analysis of the differences in PSNR,
SSIM, and SAM values between the proposed and existing dehazing
 o

10
methods using a paired 𝑡-test (McDonald, 2014). In each paired 𝑡-test,
he null hypothesis assumed that PSNR, SSIM, and SAM values have no
ignificant difference for a pair of the proposed and existing dehazing
ethods. On the other hand, the alternative hypothesis was that PSNR,

SIM, and SAM values between the proposed and existing dehazing
ethods are significantly different. The null hypothesis is rejected for
< 0.05.

Table 5 shows the comparison of the 𝑝-values of a paired 𝑡-test
or a pair of the proposed and existing dehazing methods. As summa-
ized in Table 5, the low 𝑝-values over all existing methods indicate
hat the proposed method provided better dehazing performance for
ultispectral hazy images in the raw file format. It also implies that

he proposed dehazing method achieved significantly higher PSNR,
SIM, and lower SAM values with statistical significance than existing
ehazing methods.

.4. Subjective assessments

In this subsection, we evaluate the dehazing performance of the
roposed method on real multispectral hazy images of size 6000 × 6000
cquired by KOMPSAT-3 A. The experiments were conducted on two
VIDIA Titan RTX GPUs. Since the proposed network cannot infer the
ehazed output of size 6000 × 6000 due to the physical limitation

f GPU memory, we obtained the resulting image using block-based
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Fig. 10. Comparative results of the dehazing performance on RGB and NGB bands of synthetic multispectral hazy images: (a) haze-free images, (b) synthetic hazy images, (c) He’s
method (He et al., 2011), (d) Tarel’s method (Tarel and Hautière, 2009), (e) Pan’s method (Pan et al., 2015), (f) Zhu’s method (Zhu et al., 2015), (g) AODNet (Li et al., 2017),
(h) GCANet (Chen et al., 2019), (i) FFANet (Qin et al., 2019), and (j) the proposed method (𝛾 = 0.1, 𝑡𝑚𝑖𝑛 = 0.1, 𝑡𝑚𝑎𝑥 = 0.9).
Fig. 11. Boxplots of PSNR, SSIM, and SAM values of the proposed and existing dehazing methods: (a) PSNR, (b) SSIM, and (c) SAM.
Table 5
Comparison of 𝑝-values for the differences in PSNR, SSIM, and SAM values using a paired 𝑡-test for a pair of the proposed and existing dehazing methods at a significance level
of 5%.

Input He’s method Tarel’s method Pan’s method Zhu’s method Li’s method Chen’s method Qin’s method

PSNR (dB) 2.55×10−36 3.16×10−28 9.72×10−39 1.79×10−24 1.31×10−25 7.81×10−20 1.60×10−13 8.37×10−24
SSIM 3.54×10−15 2.39×10−31 2.48×10−20 1.95×10−15 1.18×10−8 8.98×10−9 9.60×10−13 1.65×10−11
SAM 2.42×10−17 1.19×10−28 4.84×10−24 8.97×10−26 2.16×10−10 2.04×10−8 2.17×10−27 1.13×10−9
0
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processing. We divided the test image into a set of patches of size
1280 × 1280 with overlapping of size 64 to reduce the artifacts and dis-
continuities between the adjacent patches. Finally, the dehazed patches
were merged into a full-sized image. Given the real test image of size
6000 × 6000, the proposed method took about 6.8975 s including the
pre-processing step.

Figs. 12 and 13 show the resulting dehazed images of the proposed
and existing dehazing methods. In Figs. 12 and 13, the odd rows show
the input hazy and dehazed images in the raw file format. The even

rows show the contrast-enhanced version using conventional histogram n

11
stretching method where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were respectively set to 0.02 and
.98.

As shown in Figs. 12(b) and 13(b), He’s method shows the halo
rtifact near edges with weak dehazing performance due to inac-
urately estimated transmission and atmospheric light value. Pan’s
ethod shows the over-dehazing in the resulting images since this
ethod globally subtracts a constant offset value with a certain degree.

or this reason, Pan’s method cannot control the over-dehazing and
pectral distortion as shown in Figs. 12(c) and 13(c). Zhu’s method can-

ot avoid spectral distortion, either. AODNet shows a weak dehazing
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Fig. 12. Comparative results of the dehazing performance on RGB and NGB bands of real multispectral hazy images: (a) input hazy images, (b) He’s method (He et al., 2011),
(c) Pan’s method (Pan et al., 2015), (d) Zhu’s method (Zhu et al., 2015), (e) AODNet (Li et al., 2017), (f) GCANet (Chen et al., 2019), (g) FFANet (Qin et al., 2019), and (h) the
proposed method (𝛾 = 0.3, 𝑡𝑚𝑖𝑛 = 0.001, 𝑡𝑚𝑎𝑥 = 0.999).
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erformance for a moderate haze distribution of a real multispectral
azy image as shown in Figs. 12(e) and 13(e).

For the dehazing of very high-resolution multispectral imagery, the
nput hazy image is divided into blocks of a certain size because of
he physical limitation of the GPU’s memory. If the network consists of
he normalization layer such as instance and batch normalization, each
lock is normalized using different local mean and standard deviation
alues.

As a result, the resulting dehazed images of GCANet show the
iscontinuity between adjacent blocks due to the brightness difference
nd spectral distortion since different normalization is performed using
ifferent local mean and standard deviation values in the instance
ormalization layer as shown in Figs. 12(f) and 13(f). FFANet provided
etter dehazing performance than other existing methods, but its per-
ormance is limited for a thick haze distribution compared with the
roposed dehazing method as shown in Figs. 12(g) and 13(g).

Since the multispectral hazy image in the raw file format has a low
ynamic range, we cannot accurately separate the hazy and haze-free
egions as shown in Figs. 12(a) and 13(a). Consequently, it results in
he over-dehazing in the haze-free region with spectral distortion as
hown in the dehazed results of existing methods. The atmospheric
cattering drastically changes the incoming light during haze weather,

hich affects the apparent colors of objects in the image. On the s

12
ther hand, since the HTMs estimated from an input hazy image and
ts contrast version give more attention to the haze distribution, the
roposed dehazing method can achieve better dehazing performance
han existing dehazing methods as shown in Figs. 12(h) and 13(h).

. Discussion

.1. Parameter setting

The proposed method estimates the wavelength-dependent,
ontrast-enhanced HTM by multiplying the scattering coefficient of (7)
or each spectral band. Fig. 15 shows the comparative results of the
ehazing performance of the proposed method using different 𝛾 with
he same 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 fixed to 0.0001 and 0.9999, respectively.

As shown in Fig. 15(b), the lower 𝛾 provides a strong dehazing
erformance. On the other hand, the higher 𝛾 shows a weak dehazing
erformance. The scattering coefficient is inversely proportional to
he 𝛾-th power of the ratio of the longer wavelength to the shortest
avelength. Consequently, since the lower 𝛾 results in a large scattering

oefficient, the network input using the contrast-enhanced HTM can
ive more attention to the heavy and moderate hazy regions.

We further evaluate the dehazing performance of the proposed
ethod using the haze-free image including the snow region. The atmo-
pheric scattering model-based methods remove the haze distribution
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Fig. 13. Comparative results of the dehazing performance on RGB and NGB bands of real multispectral hazy images: (a) input hazy images, (b) He’s method (He et al., 2011),
(c) Pan’s method (Pan et al., 2015), (d) Zhu’s method (Zhu et al., 2015), (e) AODNet (Li et al., 2017), (f) GCANet (Chen et al., 2019), (g) FFANet (Qin et al., 2019), and (h) the
proposed method (𝛾 = 0.3, 𝑡𝑚𝑖𝑛 = 0.001, 𝑡𝑚𝑎𝑥 = 0.999).
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sing the transmission map estimated from the dark channel of an input
azy image. Since the dark channel is estimated using the minimum
alue among the red, green, and blue pixels, it has a higher value in
he snow region, and it results in over-dehazing with spectral distortion
s shown in Fig. 14.

On the other hand, the proposed method can prevent over-dehazing
r spectral distortion under the haze-free condition and snow region.
n Figs. 14 and 15, the odd rows show the input and resulting mul-
ispectral images in the raw file format and the even rows show the
ontrast-enhanced versions using conventional histogram stretching,
here 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were respectively set to 0.02 and 0.98.

.2. Study of network input

This subsection analyzes the performance of the proposed dehaz-
ng method for different types of the network input. As mentioned
n previous subsections, the characteristic of the low contrast of an
bserved multispectral hazy image makes the estimation of the haze
istribution difficult. The proposed method solves this problem using
he HTM estimated from the contrast-enhanced input hazy image.

Let 𝑔𝑖 be an input multispectral hazy image, 𝑔HTM
𝑖 be the HTM of

𝑖, and 𝑔HTM
𝑖,CE be the HTM of the contrast-enhanced version of 𝑔𝑖. We
et the four combinations of the network input to evaluate the effect of a

13
he HTMs: (i) 𝑔𝑖, (ii) [𝑔𝑖, 𝑔HTM
𝑖 ], (iii) [𝑔𝑖, 𝑔HTM

𝑖 , 𝑔HTM
𝑖,CE ], and (iv) [𝑔𝑖, 𝑔HTM

𝑖,CE ].
able 6 shows the quantitative comparison of different combinations.
ase IV is a combination of the proposed dehazing network. As sum-
arized in Table 6, the results show that the combinations using either

n input hazy image or the concatenation to its HTM provided poor
ehazing performance.

Fig. 17 shows the comparative results of the dehazing performance
or different combinations of the network input. The odd rows show the
ultispectral images in the raw file format and the even rows show the

ontrast-enhanced versions using conventional histogram stretching,
here 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were respectively set to 0.02 and 0.98. These

ombinations cannot effectively remove the haze distribution as shown
n Figs. 17(b) and 17(c). On the other hand, the HTM estimated from
he contrast-enhanced version plays an important role in removing the
aze distribution of the multispectral hazy image in the raw file format
s shown in Fig. 17(e).

Fig. 18 shows the intermediate features of the proposed dehazing
etwork for different combinations of the network input using the input
azy image of Fig. 17(a). From top to bottom, each row shows the
ntermediate features for Cases I to IV, as summarized in Table 6. We
educed the dimensionality of the intermediate features by summing

long the depth dimension and adopted the sigmoid function.
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Fig. 14. Comparison of the dehazing performance for the haze-free image including the snow region: (a) input multispectral hazy image, (b) the proposed method (𝛾 = 0.1),
c) He’s method (He et al., 2011), (d) Pan’s method (Pan et al., 2015), and (e) Zhu’s method (Zhu et al., 2015).
Fig. 15. Comparison of the dehazing performance of the proposed method with different values of 𝛾: (a) the input multispectral hazy image, (b) 𝛾 = 0.1, (c) 𝛾 = 0.7, (d) 𝛾 = 1.4,
nd (e) 𝛾 = 2.
f
r

As shown in the first and second rows of Fig. 18, the network input
sing either an input hazy image or the concatenation to its HTM
annot extract the accurate haze distribution. Since the multispectral
azy image in the raw file format has a low dynamic range, the output
14
eatures of the RN for Cases I and II show low activation for the
egion of haze distribution. For this reason, the output 𝐻̂ of these

combinations shows the uniform haze distribution. It means that the
network input using only HTM of an input multispectral hazy image
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Table 6
Comparison of the synthetic multispectral hazy image for different combinations of the network input.

Case I Case II Case II Case IV

𝑔𝑖 ✓ ✓ ✓ ✓

𝑔HTM
𝑖 × ✓ × ✓

𝑔HTM
𝑖,𝐶𝐸 × × ✓ ✓

PSNR (dB) 32.0369 ± 3.8667 32.1673 ± 4.5586 34.0352 ± 5.0125 35.7425 ± 4.6089
SSIM 0.9757 ± 0.0326 0.9762 ± 0.0323 0.9820 ± 0.0245 0.9866 ± 0.0198
SAM 2.1108 ± 1.1281 2.0794 ± 1.0866 1.9356 ± 1.0947 1.6673 ± 0.9341
Fig. 16. Comparison of the learning curves for different combinations of the proposed CRDBN: (a) three sequences of 1 × 1 and 3 × 3 convolutional layers with different numbers
of RDBs and (b) six sequences of 1 × 1 and 3 × 3 convolutional layers with different numbers of RDBs. The dashed lines indicate the learning curves for validation.
Fig. 17. Dehazing results using different combinations of the network input on RGB and NGB bands: (a) an input hazy image, (b) without HTMs, (c) with HTM estimated from
a), (d) with HTMs estimated from (a) and its contrast-enhanced version, and (d) with HTM estimated from the contrast-enhanced version of (a).
annot give more attention to the haze distribution. As a result, the
esulting images show poor dehazing performance for the moderate and
eavy hazy regions as shown in Figs. 17(b) and 17(c).

The network input using the HTMs estimated from both the in-
ut multispectral hazy image and its contrast-enhanced version shows
igher activation in the output features of the SFEN and RDBN. How-
ver, the HTM of an input hazy image cannot estimate the accurate
15
activation for the haze distribution as shown in the second row of
Fig. 18. For this reason, the MFEN and RN cannot provide higher
activation for the haze distribution. Consequently, this combination
cannot improve the dehazing performance since the output feature of
the RN also shows the uniform distribution as shown in the third row
of Fig. 18.



S. Yu, D. Seo and J. Paik Engineering Applications of Artificial Intelligence 123 (2023) 106481

o
i

i
n
T
t
t
p
o

n
D
P
p
t
a
n

a
c
p
l

Fig. 18. Intermediate features of the proposed dehazing network for different combinations of the network input in Fig. 15: (a) the shallow feature 𝐹SFEN, (b) the output feature
f 𝐹RDBN, (c) the output feature of 𝐹MFEN, and (d) the output feature of 𝐹RN. The intermediate features are estimated using the red, green, blue, and near infrared bands of the
nput hazy image of Fig. 17(a).
Table 7
Comparison of 𝑝-values for the differences in PSNR, SSIM, and SAM values using a paired 𝑡-test for a pair
of Case IV and other combinations at a significance level of 5%.

Case IV-Input Case IV-Case I Case IV-Case II Case IV-Case III

PSNR (dB) 2.55 × 10−36 4.02 × 10−21 3.97 × 10−21 2.11 × 10−10

SSIM 3.54 × 10−15 6.29 × 10−10 1.55 × 10−9 2.18 × 10−9

SAM 2.42 × 10−17 3.12 × 10−9 1.81 × 10−8 1.98 × 10−7
6

o
t

On the other hand, the proposed combination of the input hazy
mage and the HTM of the contrast-enhanced input hazy image sig-
ificantly improved dehazing performance as shown in Fig. 17(e) and
able 6. The output features of the MFEN and RN show higher activa-
ion than that of Case III as shown in the fourth row of Fig. 18. It means
hat the contrast-enhanced HTM can significantly improve the dehazing
erformance for the spatially varying haze distribution compared to
ther network input combinations as shown in Fig. 17(e).

Table 7 shows the 𝑝-values of paired 𝑡-tests for a pair of different
etwork input combinations as previously given in Section 6.2 (Mc-
onald, 2014). For a paired 𝑡-test, the null hypothesis assumed that
SNR, SSIM, and SAM values have no significant difference between the
roposed and other network input combinations. On the other hand,
he alternative hypothesis assumed that PSNR, SSIM, and SAM values
re significantly different in the sense of statistical significance. The
ull hypothesis is rejected for 𝑝 < 0.05.

As summarized in Table 7, the null hypothesis can be rejected at
significance level of 5% over Cases I, II, and III. It implies that the

ombination using the HTM of the contrast-enhanced input hazy image
rovided better dehazing performance with higher PSNR, SSIM, and

ower SAM values than other network input combinations.

16
.3. Study of network architecture

We analyze the dehazing performance for different configurations
f the proposed dehazing network. The proposed CRDBN consists of
he sequences of RDBs, and each RDB has the sequences of 1 × 1

and 3 × 3 convolutional layers as shown in Figs. 6 and 7. The 1 × 1
convolutional layer is used to reduce the depth dimension of the
concatenated features of all preceding convolutional layers.

In this experiment, we used a different number of RDBs and 1 × 1
and 3 × 3 convolutional layers. The training configuration is set to
the same as the implementation described in Section 5.3. Fig. 16
shows the training loss for different configurations of the CRDBN. As
shown in this figure, the ten RDBs with three sequences of 1 × 1 and
3 × 3 convolutional layers provided better convergence than other
combinations of the RDBN. On the other hand, the training loss of
the CRDBN having six RDBs and six sequences of 1 × 1 and 3 × 3
convolutional layers increased after 16 epochs.

6.4. Convergence analysis

We compare the convergence of the proposed dehazing network
with and without the residual learning strategy for different network

input combinations. The combination using only one input hazy image
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Fig. 19. Comparison of the learning curves for different combinations of the network input in Table 6: (a) with residual learning and (b) without residual learning. The dashed
lines indicate the learning curves for validation.
is used as the baseline. The training configuration is set to the same as
the implementation details described in Section 5.3. Fig. 19 shows the
comparison of the learning curves of training and validation for four
combinations with and without residual learning during the training
process.

As shown in Fig. 19, the residual mapping estimating the haze distri-
bution from an input hazy image can achieve more stable convergence
than the original mapping, which directly estimates the dehazing result.
The multispectral hazy image in the raw file format has a low dynamic
range, and its latent version also shows a narrow histogram distribu-
tion. Learning the mapping from the input hazy image to its latent
version is closer to identity mapping. On the other hand, the hidden
layers in the residual mapping play an important role in separating the
haze distribution from the input hazy image (Zhang et al., 2017). For
this reason, residual learning can achieve better dehazing performance
compared to the learning between the input hazy and its latent images.

In terms of the network input combinations, an input hazy image
or the concatenation to its HTM cannot compete with the combi-
nation using the HTM of the contrast-enhanced input hazy image.
The combination of the HTMs estimated from both the input and its
contrast-enhanced version shows faster convergence than other combi-
nations. However, both training and validation losses increased after
9 epochs, leading to poor dehazing performance. On the other hand,
the proposed combination using the HTM of the contrast-enhanced
version shows that the training and validation curves converged after
15 epochs. In other words, the HTM of the contrast-enhanced hazy
image leads to the best dehazing performance in the sense of objective
assessments as summarized in Table 6.

6.5. Ablation study

We further demonstrate the dehazing performance with a different
combination of modules of the proposed dehazing method. The ablation
investigation of the proposed dehazing network was performed using
the same synthetic multispectral hazy images used in Section 5.3.

In Table 8, Case IV is the proposed dehazing network. As sum-
marized in Table 8, the combination of the MFEN and RN provided
poor dehazing performance with the lowest PSNR, SSIM, and SAM
values than other combinations. The combinations without either the
MFEN or RN are inferior to the proposed dehazing network. With three
modules, the proposed dehazing network provided the best dehazing
performance. We can notice that the CRDBN and MFEN play an essen-
tial role in improving the flow of the information and gradient of the
proposed dehazing network. The RN also contributes to the accurate
estimation of the haze distribution. Fig. 20 shows the learning curves
for different combinations of the network module.

To verify the difference in PSNR, SSIM, and SAM values in the

statistical manner, we performed a paired 𝑡-test for a pair of different
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Fig. 20. Learning curves for different combinations of the network module in Table 8.
The dashed lines indicate the learning curves for validation.

combinations of the network module of Table 8 (McDonald, 2014). The
null hypothesis assumed that PSNR, SSIM, and SAM values have no
significant difference between different combinations of the network
module. The null hypothesis was rejected for 𝑝 < 0.05. On the other
hand, the alternative hypothesis assumed that PSNR, SSIM, and SAM
values are significantly different. As summarized in Table 9, the null
hypothesis can be rejected at a significance level of 5%. It implies
that the difference in PSNR, SSIM, and lower SAM values between the
proposed and other network combinations are statistically significant
with improved dehazing performance.

6.6. Comparison to open-source image editor

The primary contribution of this work is to remove the spatially
variant and semi-transparent haze distribution from a multispectral
hazy image having a low dynamic range in the raw file format. How-
ever, since the haze removal using open-source image editor (GIMP) is
usually based on the local and global contrast enhancement adjusting
the brightness level, auto white balance, and unsharp masking methods,
the dehazing performance is limited on a multispectral hazy image in
the raw file format compared to the proposed method (GIMP, 2022).

The main limitation is that GIMP cannot distinguish the hazy and
haze-free regions in the multispectral hazy image having a low dynamic
range. As a result, GIMP cannot preserve the original information of
an input multispectral hazy image in the raw file format since the
local and global contrast enhancement changes the overall contrast and
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Fig. 21. Comparative results of the dehazing performance using GIMP and the proposed method: (a) haze-free images, (b) synthetic hazy images, (c) brightness level and curve
adjustment, (d) GIMP multiscale retinex and brightness level adjustment, and (e) the proposed method.
Table 8
Objective assessments of the dehazing performance for different combinations of the network module.

Case I Case II Case II Case IV

RDBN × ✓ ✓ ✓

MFEN ✓ × ✓ ✓

RN × ✓ × ✓

PSNR (dB) 33.4405 ± 5.0815 34.3229 ± 5.1264 34.2228 ± 5.1308 35.7425 ± 4.6089
SSIM 0.9804 ± 0.0269 0.9823 ± 0.0256 0.9824 ± 0.0248 0.9866 ± 0.0198
SAM 1.9385 ± 1.0900 1.8804 ± 1.0506 1.8543 ± 1.0635 1.6673 ± 0.9341
C
–

D

c

Table 9
Comparison of 𝑝-values for the differences in PSNR, SSIM, and SAM values using
a paired 𝑡-test for a pair of Case IV and other combinations at a significance level
of 5%.

Case IV-Case I Case IV-Case II Case IV-Case III

PSNR (dB) 6.44 × 10−12 8.39 × 10−8 2.04 × 10−8

SSIM 6.08 × 10−8 3.57 × 10−6 1.26 × 10−6

SAM 1.63 × 10−5 3.33 × 10−6 0.28 × 10−3

brightness. In the same manner, it generates undesired artifacts in post-
processing step and results in inaccurate terrain and object analysis. For
this reason, the proposed method uses the contrast-enhanced version of
input multispectral hazy image to give different attention on the hazy
and haze-free regions.

In addition, the multispectral hazy images are acquired with differ-
ent amount of haze distribution at different location in the real-world
case. It implies that we should apply different enhancement methods
in GIMP with different parameters for various hazy scenes. It is critical
factor making the haze removal using open-source image editor highly
heuristic manner.

Fig. 21 shows the comparative haze removal results using GIMP and
the proposed method. The first row shows the input hazy and dehazed
images in the raw file format. The second row shows the contrast-
enhanced version of the images in the first row using the conventional
histogram stretching method where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were respectively set
to 0.0001 and 0.9999. Figs. 21(a) and 21(b) are the multispectral haze-
free and hazy images, which are the same as Figs. 10(a) and 10(b). In
Fig. 21(c), we adopted the brightness level and curve adjustment to de-
crease the intensity values of haze distribution, but the resulting image
cannot preserve the original information of raw data of Fig. 21(a).

GIMP built-in multiscale retinex method improved the visibility
compared to Fig. 21(c) as shown in Fig. 21(d), but the resulting image
shows a severe spectral and spatial distortion (Rahman et al., 1996).
Fig. 21(e) is the haze removal result of the proposed method, which
is the same as Fig. 10(j). As mentioned above, GIMP cannot preserve
the raw information of an input multispectral hazy image since the
brightness level and curve adjustment change the mean brightness
 i

18
and overall contrast as shown in Figs. 21(c) and 21(d). It means that
GIMP cannot perform the context-aware haze removal compared to the
proposed method.

7. Conclusion

In the real-world condition, an observed multispectral hazy image
shows the complex haze distribution including the haze-free region
with different scattering properties for each spectral band. We synthe-
sized the multispectral hazy image using the extracted haze distribution
from a real hazy patch and imposed different atmospheric scattering
properties using the relative scattering model. In addition, we used the
HTM of each spectral band estimated from the contrast-enhanced input
hazy image as the input of the proposed dehazing network to accu-
rately estimate the haze distribution from an input multispectral hazy
image having a low dynamic range. In comprehensive experiments, we
analyzed that the contrast-enhanced HTM and the residual mapping
estimating the haze distribution from an input multispectral hazy image
play an important role in improving the dehazing performance in the
sense of quantitative and qualitative assessments.

Existing object detection methods have been proposed to detect a
certain object in high-quality remote sensing images. In future work, we
will extend our research to simultaneously perform the haze removal
and object detection from various hazy images having low dynamic
range in the raw file format.
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