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AMST2: aggregated multi‑level 
spatial and temporal context‑based 
transformer for robust aerial 
tracking
Hasil Park 1, Injae Lee 2, Dasol Jeong 1 & Joonki Paik 1,2*

Recently, many existing visual trackers have made significant progress by incorporating either spatial 
information from multi-level convolution layers or temporal information for tracking. However, the 
complementary advantages of both spatial and temporal information cannot be leveraged when these 
two types of information are used separately. In this paper, we present a new approach for robust 
visual tracking using a transformer-based model that incorporates both spatial and temporal context 
information at multiple levels. To integrate the refined similarity maps through multi-level spatial and 
temporal encoders, we propose an aggregation encoder. Consequently, the output of the proposed 
aggregation encoder contains useful features that integrate the global contexts of multi-level 
spatial and the temporal contexts. The feature we propose offers a contrasting yet complementary 
representation of multi-level spatial and temporal contexts. This characteristic is particularly 
beneficial in complex aerial scenarios, where tracking failures can occur due to occlusion, motion 
blur, small objects, and scale variations. Also, our tracker utilizes a light-weight network backbone, 
ensuring fast and effective object tracking in aerial datasets. Additionally, the proposed architecture 
can achieve more robust object tracking against significant variations by updating the features of 
the latest object while retaining the initial template information. Extensive experiments on seven 
challenging short-term and long-term aerial tracking benchmarks have demonstrated that the 
proposed tracker outperforms state-of-the-art tracking methods in terms of both real-time processing 
speed and performance.

Visual tracking of an object of interest is a highly important and challenging research topic in computer vision1. 
The main objective of visual tracking is to estimate the location and size of an arbitrary object in a sequence of 
video frames by establishing correspondences between similar pixels in different frames. In recent years, with 
the growing importance and usage of unmanned aerial vehicles (UAVs) such as drones, various visual tracking 
methods that use aerial data have been studied2,3. Despite considerable advances in visual tracking, aerial track-
ing still faces the numerous challenges, including real-time tracking, illumination fluctuation, occlusion, rapid 
movement, background clutter, and blurring.

Conventional visual tracking paradigms can be categorized into two categories: (1) tracking-by-detection 
and (2) Siamese network-based tracking.

Tracking-by-detection method first detects the object in each video frame, and then updates the object’s loca-
tion using a motion model. The discriminate correlation filter (DCF) is a representative tracking-by-detection 
method, which uses Fourier transforms to efficiently compute cross correlation computation and achieves real-
time processing4–11. The DCF tracker also employs hand-crafted features such as histogram of oriented gradients 
(HOG) to represent the object and the background. However, the DCF tracker suffers from some limitations 
such as the inability to handle scale changes and significant appearance variations.

Using the deep features of convolutional neural networks (CNNs), deep learning-based methods have made 
greater advancements in tracking performance than DCF-based trackers12–18. Despite advances in deep learning-
based trackers, some algorithms lack computational resources that make them unsuitable for embedded plat-
forms, while others cannot deliver the desired level of tracking performance. Until recently, DCF-based trackers 
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were frequently employed in low-end applications, ignoring their weaker tracking performances compared to 
deep learning-based methods due to device constraints like those in embedded platforms.

Recently, many trackers have adopted the Siamese network architecture to simultaneously achieve both 
real-time processing and high performance. Siamese network-based trackers estimate an object’s position using 
a similarity map generated from the target appearance of a template frame and a corresponding feature repre-
sentation of a search region within the search frame. These trackers are trained offline on a large dataset, such 
as ImageNet19, to measure the similarity between template and search patches. Although the original version 
of the Siamese tracker is SINT20, the most popular method is called SiamFC21, which has contributed to many 
other trackers22–35. Several Siamese trackers that use light-weight CNNs like AlexNet36 are unable to extract both 
robust features and global context21–23,25,37. Many state-of-the-art trackers adpoted deeper neural networks like 
ResNet38 to address the performance issue26–31,34,39,40. In addition to improving the backbone networks, significant 
research has been conducted to enhance Siamese network-based frameworks. This includes the combination of 
various techniques such as DCF41,42, region proposal network (RPN) module26,37,43,44, template update module44,45, 
attention mechanism24,34,35,46, anchor-free mechanism29–31,33, and transformer mechanism47–51.

Although general-purpose trackers have made significant advances, tracking in aerial environment such as 
UAVs demand faster processing while maintaining a certain level of performance. To meet these requirements, 
trackers that combine light-weight CNNs with various deep learning techniques have been proposed. In this 
context, SiamAPN utilized an anchor proposal network to refine anchors52. SiamAPN++ adopted an attentional 
aggregation network (AAN) to achieve robust aerial tracking in complex situations through the attention mecha-
nisms of self- and cross-AANs53. Both SiamAPN and SiamAPN++ generated a small number of high-quality 
anchors to increase efficiency and performance of the tracker. HiFT54 and TCTrack55 are examples of recent 
aerial trackers that utilize light-weight CNNs and transformer architecture. HiFT addresses scale invariance by 
employing a hierarchical feature transformer that leverages global context from multiple CNN feature layers. On 
the other hand, TCTrack utilizes a transformer-based framework that incorporates temporal prior knowledge 
of search feature and similarity map, with modified light-weight CNNs that consider temporal information. 
Separating the use of multi-level spatial and temporal information can lead to a significant problem where high 
performance is only achieved in specific robust scenarios. For example, using multi-level spatial information 
may be robust to low-resolution and scale variation, while relying solely on temporal information may show 
better performance in dealing with deformation.

Integrating both spatial and temporal information can improve robustness and efficiency in complex sce-
narios. To achieve this, we propose an aggregated multi-level spatial and temporal context-based transformer 
(AMST2 ) architecture for robust aerial tracking. Our design includes an aggregation encoder based on a modi-
fied transformer encoder, and multi-level spatial and temporal encoders that capture useful contexts for an 
enhanced similarity map. The output of the multi-level spatial encoder is then simply injected into the output 
of the temporal encoder using the aggregation encoder. As a result, the output of the aggregation encoder is a 
robust embedding representation that can fully exploit the global contexts of multi-level spatial and the temporal 
contexts. The decoder focuses on the generation of more powerful refined similarity maps based on the output 
of the aggregation encoder. The multi-level spatial information included in the aggregation encoder deals with 
information highly relevant to small object tracking, which is a big issue in aerial tracking, and temporal infor-
mation captures large changes in small objects. Additionally, the proposed model adopts a light-weight based 
backbone network. Using a light-weight backbone has an overall model size advantage over using a deep back-
bone when combined with various AI algorithms. As a result, these trackers can successfully solve the problem 
of tracking small objects in data obtained using UAVs while running in real time. Furthermore, in the existing 
method55, the updating of temporal information only at the feature level of the search can lead to high failure of 
the tracker due to inconsistency between the search and the template feature over time. Therefore, we further 
improve tracking performance by employing a template update network, which is the discrete temporal context 
update at the template level. As shown in Fig. 1, the proposed AMST2 achieves accurate and robust performance 
in complex scenarios.

The main contributions of this work can be summarized as follows:

•	 We propose a new aerial view tracking mechanism, which introduces the aggregation encoder that combines 
the encoder embedding representation of hierarchical feature of multi-level spatial contexts and temporal 
contexts feature within transformer structure.

•	 The proposed tracker not only applies temporal information at the search feature level and similarity map 
level, but also adopts the template update process at the template feature level as the discrete temporal context 
update for more robust tracking.

•	 We perform comprehensive experiments on various UAVs datasets for performance evaluation. The proposed 
tracker shows the achievement of state-of-the-art results compared to other aerial trackers with real-time 
processing.

Related work
Transformer in visual tracking.  The transformer was first proposed by Vaswani et  al. as a model for 
performing sequence-to-sequence tasks, such as machine translation56. This approach is based on the attention 
mechanism, which can efficiently capture the global information of the input sequence when generating the 
output sequence by focusing more on the most important part of the entire input sequence.

Recently, the transformer has been applied to vision tasks, including image classification57, object detection58, 
and action recognition59, in addition to natural language processing (NLP) fields. This approach has become 
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increasingly popular due to its ability to incorporate both spatial and temporal context information in a flexible 
and efficient manner, enabling better tracking performance in various scenarios.

Most transformer-based trackers adopt a process of feeding the transformer with features extracted from 
the backbone network47–50,54,55. Inspired by the main idea of the transformer, TransT proposed a feature fusion 
network composed of an ego-context augmentation module with self-attention and a cross-feature augment 
module with cross-attention47. As a useful feature of the output of the feature fusion network, the final tracking 
result is obtained through classification and box regression processes. TrDiMP utilizes the DiMP model predictor 
and generates model weights by using the output features of the transformer encoder as training samples48. After 
that, the target model calculates the target score map by applying the predicted weights to the output features 
generated by the transformer decoder. TrDiMP incorporates a probabilistic IoUNet for bonding box regression 
and also introduces TrSiam, which formulates the proposed model into a Siamese-like pipeline. STARK, as pro-
posed in49, is a tracker using an end-to-end transformer architecture based on DETR58. The model learns robust 
spatio-temporal representations by leveraging the global relationships in both spatial and temporal information 
through the encoder, which extracts discriminative spatio-temporal features that are fed into the decoder. Fur-
thermore, this tracker eliminates the need for post-processing techniques such as cosine window or bounding 
box smoothing, thereby simplifying the existing tracking pipeline. ToMP predicts the weight of the convolutional 
kernel for object localization using a transformer-based model prediction module to overcome the limitations 
of the existing optimization-based target localization50. The transformer-based target model predictor can avoid 
unnecessary repetitive optimization and dynamically generate discriminative features using target information. 
AiATrack introduced an attention in attention (AiA) module that enhances appropriate correlations and sup-
presses ambiguous correlations in order to suppress the noise of the existing attention mechanism. By introduc-
ing a model update method that directly reuses previously encoded cached features, they propose a simplified 
tracking process that effectively utilizes short-term and long-term references, showing remarkable performance.

In addition, active and vibrant research has been conducted on transformer-based tracking methods that 
adopt a lightweight backbone for aerial tracking54,55. Unlike the trackers mentioned above, the research on 
trackers in which the backbone is replaced with transformers instead of existing CNNs also shows remarkable 
performance60,61.

Figure 1.   Qualitative comparison between state-of-the-arts. This figure shows the results of the proposed 
tracker AMST2 and three state-of-the-art trackers on some challenging video sequence (Animal2, Vaulting from 
DTB70, and Bike2, Truck1 from UAV123). The AMST2 tracker demonstrates superior performance over other 
algorithms by combining multi-level spatial and temporal context while adding the template update mechanism 
of feature-level.
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Multi‑level spatial and temporal information‑based visual tracking.  Incorporating both spatial 
and temporal information is crucial for enhancing performance in the field of object tracking. There are many 
trackers that use multi-level spatial feature to extract the relationship between the template and the current 
search region according to the spatial dimension12,26,29,30,54. The tracker using multi-scale features has the advan-
tage of being able to robustly track the localization of objects of various scales. Dynamic template-based track-
ers, such as Updatenet45 and SiamTOL44, have been developed to enhance tracking performance by utilizing 
temporal information. In particular, TCTrack introduced a tracking method considering the temporal contexts 
of two levels, including the search feature level and the similarity map level55. Trackers that take into account 
temporal information can achieve robust performance by capturing changes in the state of the object across 
frames. However, when using multi-level spatial and temporal information separately, there is a problem that 
the complementary advantages of the two information cannot be utilized. To address this limitation, a method 
has been introduced to improve the robustness of the tracker by integrating spatial and temporal information 
through simultaneous learning with the transformer, as demonstrated in the STARK tracker49.

Aerial visual tracking.  Due to the technological advancements in UAVs equipped with visual tracking 
capabilities, aerial tracking has been widely applied in sectors such as aviation, agriculture, transportation, and 
defense1–3. One significant challenge in aerial tracking arises from image distortion caused by UAV flight vibra-
tions and complex environments. Specially, in aerial tracking, when UAVs flying at a high altitude captures an 
object on the ground, it is difficult to extract rich features due to the small size of the object. While deep learning-
based trackers have demonstrated superiority on various UAV datasets, the limited resources of aerial platforms 
hinder the use of heavy models and limit tracking performance improvement. To address these challenges, 
several specialized trackers have been developed using different UAV datasets.

AutoTrack is a DCF-based tracker that automatically tunes the hyperparameters of the space-time regu-
larization, demonstrating high performance on CPU62. COMET improves tracking accuracy by proposing 
context-aware IoU-guided tracker that utilizes a multi-task two-stream network for small object tracking and 
an offline reference proposal generation strategy63. Additionally, adopting an anchor proposal network to gener-
ate high-quality anchors for light-weight Siamese network-based trackers has shown excellent aerial tracking 
performance52,53. Moreover, employing a transformer to the light-weight Siamese network backbone has resulted 
in notable progress by enhancing the correlation map54,55.

The development of miniaturized embedded AI computing platforms offers a promising alternative to dedi-
cated server GPUs, enabling continuous research and practical use in future aerial tracking endeavors.

Proposed method
In this section, we present the AMST2 tracker for aerial tracking, which utilizes an aggregated multi-level spatial 
and temporal context-based transformer. The proposed tracker consists of four sub modules: (1) the Siamese 
feature extraction network, (2) template update network, (3) transformer module (which includes the multi-
level spatial encoder, temporal encoder, aggregation encoder, and multi-context decoder), and (4) classification 
and regression network. To provide a clear comparison with existing tracking algorithms, we introduce baseline 
algorithms that utilize the multi-level spatial encoder, temporal encoder, and template update network. We then 
propose an extension to these baseline algorithms by adopting an aggregation encoder that combines the repre-
sentations learned by the multi-level spatial and temporal encoders, along with a modified decoder for tracking. 
A visual representation of our method can be seen in Fig. 2, and we provide further details on the approach below.

Feature extraction network.  As a feature extraction backbone, deep CNNs such as GoogLeNet64, 
MobileNet65, and ResNet38 have been widely used in various trackers. However, the heavy computation require-
ments limit their employment in embedded platforms such as UAVs.

To solve this problem, we transformed a light-weight feature extractor such as AlexNet with additional con-
volution layers into online temporally adaptive convolution (TAdaConv)66, inspired by55. TAdaConv considers 
the temporal context at the search feature level. A typical convolutional layer shares learnable weights and bias 
in the entire tracking sequence. On the other hand, the parameters of the online convolution layer are calculated 
by a calibration factors that are varied for each frame and learnable weights and bias. As a result, it is possible to 
extract features that contain temporal information at the feature level using the convolutional weight dynami-
cally calibrated by the previous frame. Since TAdaConv is calibrated using global descriptors of the feature in the 
previous frames, the tracking performance with temporal adaptive convolutional network (TAdaCNN) improves 
remarkably despite a diminutive frame rate drop. For more details on how to transform a standard convolution 
layer into TAdaConv, please refer to55,66.

Utilizing both low-level and high-level convolution layers’ features improves tracking accuracy. Therefore, 
using TAdaCNN φ as the backbone, multi-level spatial information is obtained by calculating the similarity map 
using the hierarchical features of the TAdaCNN’s multi-layer at the t-th frame.

where Z and X represent template and search image respectively. ⊛ denotes depth-wise cross correlation and 
φi
t(·) represents the i-th convolution layer of TAdaCNN in the t-th frame. To exploit multi-layer deep features, 

we extract features after transforming the last three convolution layers of the backbone to TAdaConv. Finally, 
the similarity map R3

t ∈ R
H×W×C , R4

t ∈ R
H×W×C , and R5

t ∈ R
H×W×C can be obtained by using multi-layer 

deep features.

(1)Ri
t = φi

t(Zt)⊛ φi
t(Xt), i = 3, 4, 5,
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Transformer encoder.  The similarity maps calculated using the hierarchical features of multi-level layer 
of backbone are pre-processed before being fed into multi-level spatial and temporal encoders. The architecture 
of the proposed transformer encoder is shown in Fig. 3. First, the similarity maps R3

t  , R4
t  and R5

t  obtained from 
t-th frame are passed through the convolutional layer. Afterwards, the refined similarity maps T t ∈ R

HW×C , 
S
3
t ∈ R

HW×C , S4t ∈ R
HW×C , and S5t ∈ R

HW×C can be obtained using reshape operation ( T t can be obtained by 
copying S5t  , such that T t = S5t).

The attention mechanism is a crucial component in a standard transformer. It involves using the query, key, 
and value represented as Q,K, and V , respectively. The attention function in a standard transformer is typically 
defined as scale dot-product attention, which can be expressed as:

where 1/
√
dk  is a scaling factor to control the softmax distribution and avoid gradient vanishing problem. By 

extending the attention module to multiple heads, the model can extract representations in multiple subspaces 
as follows:

(2)Attention(Q,K,V) = softmax

(

QKT

√
dk

)

V,

(3)
MultiHead(Q,K,V) = Concat(h1, . . . , hN )W

O,

hj = Attention
(

QW
Q
j , KW

K
j , VW

V
j

)

,

Figure 2.   The overall tracking process of the proposed tracker. The AMST2 tracker is composed of four 
main components: a Siamese feature extractor, template update network, transformer, and classification and 
regression network. The transformer module consists of multi-level spatial, temporal, and aggregation encoders, 
along with a multi-context decoder. The multi-level spatial encoder takes the similarity map generated from the 
3rd and 4th layer features as input, while the temporal encoder uses the similarity map generated from the 5th 
layer features and the output of the previous temporal encoder (indicated by the blue dotted line) as input. The 
aggregation encoder receives the outputs of multi-level spatial and temporal encoders as inputs. The multi-
context decoder uses the outputs of all encoders and the similarity map generated with 5th layer features as 
inputs. Furthermore, the template update process incorporates an update patch, previous template features, and 
initial template features. This process is executed either during each specific frame or under certain conditions 
to update the template.
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where WQ
j ∈ R

C×C/N , WK
j ∈ R

C×C/N , WV
j ∈ R

C×C/N, and WO ∈ R
C×C are learnable weight matrices, Concat(·) 

represents the concatenation and N is the number of attention head.

Multi‑level spatial encoder.  Cao et al. utilized a combination of multi-level spatial information to fully explore 
inter-dependencies between hierarchical features54. Specifically, with learnable position encoding, S3t  and S4t  are 
combined using addition and a normalization to obtain M1

t , i.e., M1
t = Norm

(

S
3
t + S

4
t

)

 , which is then fed into a 
multi-head attention layer to obtain M2

t  using the equation in (3).

As shown in (4), by considering the global context of S3t  and S4t  and learning the inter-dependencies of the two 
feature maps, M2

t  is enhanced to a high-resolution feature map. Thereafter, M3
t  can be obtained by add operation 

and normalization layer, i.e., M3
t = Norm

(

M2
t + S

3
t

)

 . To fully explore the inter-dependencies between M3
t  and 

S
4
t  , we adopt a modulation layer. The modulation layer can efficiently exploit the internal spatial information of 

between M3
t  and S4t  , the output M4

t  of modulation layer can be expressed as:

where FFN(·) denotes a feed-forward network (FFN), GAP(·) denotes a global average pooling (GAP), and γ and 
F(·) represent learning weight and convolution layer, respectively. The final output Mm

t ∈ R
HW×C of multi-level 

spatial encoder can be expressed as:

The compressed embedding features of the multi-level spatial encoder not only effectively discriminate objects 
from the scale variation scenario, but are also robust to small object detection. The multi-level spatial encoder 
is shown in Fig. 3a.

Temporal encoder.  Aside from using temporal information at the feature level, Cao et al. refined the similarity 
map using temporal prior knowledge by integrating both the previous knowledge and the current information 
at the similarity level55. The temporal context-based encoder structure is composed of three multi-head attention 
layers and one temporal information filter. The temporal encoder is shown in Fig. 3b. Given the previous prior 
knowledge Tm

t−1 and the current similarity map T t as inputs of the encoder, T1
t can be obtained using the first 

multi-head attention layer.

Then, T2
t  is obtained by normalizing after adding T t and T1

t , i.e., T2
t = Norm

(

T t + T
1
t

)

 . In the same way as in 
(7), T3

t  is obtained using T2
t  as the input of the second multi-head attention layer.

After that, T4
t  can be obtained by add operation and normalization layer, i.e., T4

t = Norm
(

T
2
t + T

3
t

)

 . During 
tracking, the degraded temporal context occurs due to various noises. Hence, the unnecessary context may be 

(4)M2
t = MultiHead

(

M1
t , M

1
t , S

3
t

)

.

(5)
M4

t = M3
t + γ ∗ w ∗M3

t ,

w = F
(

Concat
(

M3
t , S

4
t

))

∗ FFN
(

GAP
(

F
(

S
4
t

)))

,

(6)Mm
t = Norm

(

M4
t + FFN

(

M4
t

))

.

(7)T
1
t = MultiHead

(

T
m
t−1, T t , T t

)

.

(8)T
3
t = MultiHead

(

T
2
t , T

2
t , T

2
t

)

.

Figure 3.   Architecture of the proposed transformer encoder. The proposed encoder consists of three 
components: a multi-level spatial encoder, a temporal encoder, and an aggregation encoder.
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included, which degrades tracker performance when temporal information of the entire frame is exploited. 
To solve this problem, the temporal information filter can be obtained by feeding the global descriptor of T2

t  , 
which is the result of GAP into the FFN. The temporal information filter and the filtered information T f

t  can be 
expressed as:

where f is the temporal information filter. The temporal knowledge of the t-th frame Tm
t ∈ R

HW×C as the final 
output of the temporal encoder can be expressed as:

where Norm(·) denotes normalization layer. Notably, the first frame has a problem in that there is no distinguish-
ing characteristic of the previous frame. Therefore, by convolution operation, the initial similarity map is set to 
T
m
0 = Finit(T1) , where Finit(·) represents the initial convolution layer.

Aggregation encoder.  In order to improve tracking performance by utilizing integrated multi-level spatial 
information and temporal information, we propose an aggregation encoder that aggregates the outputs of the 
multi-level spatial and temporal encoders. The aggregation encoder modifies the multi-head attention layer of 
the standard encoder, allowing the output of the multi-level spatial encoder to be injected into the output of 
the temporal encoder. The attention weight for the aggregation encoder can be expressed as follows, given the 
outputs Mm

t  and Tm
t  of each encoder:

where WM
j ∈ R

C×C/N , WT
j ∈ R

C×C/N , Wα
j ∈ R

2C×C/N are learnable weight of the linear layer and j is the index 
of the head. According to (11), the output of the j-th head and the output H of modified multi-head attention 
layer can be expressed as by:

where WO ∈ R
C×C are learnable weight matrices and N is the number of attention head. Afterwards, A1

t  can be 
obtained by using add operation and normalization layer, i.e., A1

t = Norm
(

T
m
t +H

)

 . Finally, the output Am
t  of 

the aggregation encoder can be obtained by:

The output of the aggregation encoder integrates multi-level spatial and temporal information to generate more 
powerful features omplex scenarios. The detailed structure of aggregation encoder is shown in Fig. 3c.

Transformer decoder.  We propose a multi-context decoder to utilize both high-resolution and low-resolu-
tion information, and further exploit the interrelation between current spatial features and temporal knowledge. 
The proposed multi-context decoder introduces a structure that integrates the refined multi-context features 
using the outputs of the multi-level spatial and temporal encoders. Therefore, we adopt three multi-head atten-
tion differently from the decoder structure of the standard transformer. Also, after the first multi-head atten-
tion, the output of the aggregation encoder was used for the key, and the output of the multi-level spatial and 
temporal encoders were used for the value, respectively. Therefore, the proposed method not only maintains the 
feature information of each of the multi-level spatial and the temporal encoders, but also obtains the feature with 
increased attention at a corresponding location containing the multi-context information based on the valid 
information of the location containing the aggregated multi-context information of the aggregation encoder. 
The positional encoding of the multi-level spatial encoder is used to distinguish each location on the feature 
map. However, in order to avoid direct influence on the multi-context-based transformed features, the decoder is 
designed without positional encoding and implicitly receives the positional information of the multi-level spatial 
encoder54. The multi-context decoder is shown in Fig. 4.

The current low-resolution similarity map S5t  and T t are the same similarity map and are denoted as Dt , the 
normalized result after adding to Dt passed through multi-head attention is as follows:

The outputs of calculating the two multi-head attentions using both D1
t and the outputs of the encoders is then 

normalized after adding to D1
t is expressed as:

(9)
T
f
t = T

4
t + γ ∗ f ∗ F

(

Concat
(

T
2
t , T

4
t

))

,

f = FFN
(

GAP
(

F
(

T
2
t

)))

,

(10)T
m
t = Norm

(

T
f
t +MultiHead

(

T
f
t , T

f
t , T

f
t

))

,

(11)
αj = Concat

(

Mm
t W

M
j , Tm

t W
T

j

)

,

wj = softmax
(

αjW
α
j

)

,

(12)
h
′
j = wj ∗

(

Mm
t W

M

j ∗ Tm
t W

T

j

)

,

H = Concat
(

h
′
1, . . . , h

′
N

)

WO,

(13)Am
t = Norm

(

A1
t + FFN

(

A1
t

))

.

(14)D1
t = Norm(Dt +MultiHead(Dt , Dt , Dt)).
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where D2
t  is the result of set the key and value to Am

t  and Mm
t  , respectively, and D3

t  is the result of set the key and 
value to Am

t  and Tm
t  , respectively. The final result D∗

t  of the transformer containing multi-context information 
can be obtained by using D2

t  and D3
t  obtained from (15).

Template update.  Despite using temporal context information through TAdaCNN, the updating of tem-
poral information only at the feature level of the search can lead to high failure of the tracker due to incon-
sistency between the search and the template feature over time. In addition, when updating a template using 
backbone network, the information of the initial template which is a non-contaminated sample can be lost and 
violates the criteria of visual tracking to track arbitrary object using an initial template. We adopt the template 
update network as a feature fusion network44 to combine the features of the initial template and the update sam-
ple and can be seen in Fig. 2.

Given the template and the update sample in the k-th frame, the updated template Ẑk using the template 
update network is calculated as:

where Z1 and Uk denotes the initial template and the k-th frame updated image, respectively. Z̃i
k and φi

1(Z1) 
respectively represent the previous updated template and the initial template feature of the first frame. ψ i

k(·) 
represents the template update network. Z̃i

k is initialized to φi
1(Z1) in the first updating process. The template 

update network consists of three 1 × 1 convolutional layers with different channels of C, C/2, and C. Each of the 
first two convolutional layers is followed by a ReLU. We update the template every δ frames or when the confi-
dence score is lower than the threshold τ . The template update network can learn powerful representations of 
object appearance changes and can prevent tracking failure due to extreme drift over time.

Network training loss.  The proposed loss function consists of two branches for classification and regres-
sion tasks, similar to the HiFT tracker54. The first classification branch computes the foreground and background 
scores of a given location, while the second branch measures the distance contrast between the location and the 
center of the ground-truth to remove low-quality boxes. For regression, a linear combination of the L1-norm 
and the complete-IoU (CIoU)67 is used. The regression loss can be formulated as:

(15)
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(
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(
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Figure 4.   Architecture of the proposed transformer decoder. The proposed decoder aims to refine the similarity 
map using multiple context-based information and is composed of three multi-head attention modules.
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where bj is the j-th predicted bounding box and bgt is its corresponding ground-truth box,  cj and cgt respectively 
represent the center of the predicted and ground-truth boxes, ρ(·) represents Euclidean distance, and d is the 
diagonal length of the box covering the predicted bounding box and the ground-truth box, and υ represents 
the correspondence between the aspect ratios of the predicted bounding box and the ground-truth box, and α 
is a positive trade-off parameter, which controls the balance between non-overlapping cases and overlapping 
cases, and �I = 1 , �C = 0.5 , and �L1 = 0.5 are the regularization parameters in our experiments.The total loss 
function can be expressed as:

where �1 = 1 , �2 = 1 , and �3 = 1.2 are the regularization parameters in our experiments.
The feature extractor of the proposed model includes a Siamese network and a template update network to 

control features online. However, training the network with only a total loss can lead to over-fitting and a dilemma 
in balancing the function between the Siamese network and the template update network. To address this issue, 
we adopt a multi-aspect loss training method44. The multi-aspect training loss includes three aspects. Firstly, 
Ltemplate loss is based on the template sample and the search region to allow the network to track like an existing 
Siamese tracker using the template. Secondly, Lupdate loss is obtained using the update sample and the search 
region, which can also be regarded as a template sample, resulting in a complementary sample data augmentation 
effect. Thirdly, Loverall loss is obtained by using the updated template, which is the output of the template update 
network, and the search area to learn to track the location of an object using the updated template information. 
Finally, Lfinal loss is expressed as:

where Ltemplate , Lupdate , and Loverall are constructed as Ltotal of (19) loss obtained using template sample, update 
sample, and updated template feature, respectively.

Experimental results
In this section, we conducted comprehensive experiments of the proposed tracker AMST2 on various 
UAVs datasets including DTB7068, UAV12369, UAV123@10fps69, UAV20L69, UAVTrack112_L70, VisDrone-
SOT202071 and UAVDT72. To evaluate the performance of the SOTA visual tracking method, we quantita-
tively compared the proposed tracker with 51 existing top trackers. The existing methods include light-weight 
trackers5–12,16,21–23,26,32,37,52–55,62,73–76 trackers and the deep trackers26–31,33,39,40,46–51,77,78. For fair comparison, we used 
Siamese network-based trackers for all the lightweight backbone such as AlexNet. In all experiments, we used 
publicly available codes or results provided by the original author.

Implementation details.  Training.  In the training phase, AMST2 was trained on ImageNet VID19, 
COCO79, GOT-10K80, and LaSOT81 datasets. We exploited three samples for training. We used the same patch 
size 127 × 127 for both template and update, and used the search patch of size 287 × 287. Our backbone is an 
AlexNet with the last three layers converted by TAdaConv and initialized with pre-trained weights from Ima-
geNet. For efficient learning of the temporal context of TAdaConv, we used one search patch in a half and two 
search patches in one third for the entire epoch, respectively, and three search patches for the remaining epochs. 
The transformer architecture consists of one multi-level spatial encoder layer, one temporal encoder layer, one 
aggregation encoder layer and two multi-context decoder layers. Our whole networks are trained with stochastic 
gradient descent (SGD) with momentum and weight decay of 0.9 and 0.0001, respectively. The batch size was 
180 and the network was trained for 100 epochs. For the first 20 epochs, the layers of backbone are frozen and the 
remaining epochs fine-tune the last three layers. We used a warm-up learning rate from 0.005 to 0.01 in the first 
10 epochs and a decreasing learning rate from 0.01 to 0.00005 in log space in the remaining epochs. The training 
process was conducted with two NVIDIA RTX 3090 GPUs.

Testing.  In the inference phase, to obtain the initial temporal prior knowledge, we calculated the correlation 
between the template and search patches using only the initial frame. Afterwards, the smooth object tracking 
was possible by continuously matching the feature of the search area cropped based on the object position of the 
previous frame with the template feature obtained in the initial frame or the updated template feature through 
the template update network. The threshold τ of the template update process was set to 0.8. In addition, δ was 
set to 50 for short-term aerial tracking datasets such as DTB70 and 150 for long-term aerial data sets such as 
UAV123. In order to smooth the motion of the object, the cosine window and the scale change penalty are 
applied for the predicted box to eliminate the boundary outliers and minimize the large changes in size and 
ratio5,37. After that, by selecting the prediction box with the best score, the size of the bounding box is updated 
by linear interpolation. Fig. 2 shows a whole tracking process, where our tracker operates on a single NVIDIA 
RTX 3090 GPU for real-time tracking.
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(19)Ltotal = �1 · Lcls1 + �2 · Lcls2 + �3 · loc,

(20)Lfinal = Ltemplate + Lupdate + Loverall ,
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Evaluation metrics.  We employed One Pass Evaluation (OPE)69,82 to evaluate the proposed method. OPE 
is based on two metrics: (1) precision and (2) success rate.

The precision exploits the center location error (CLE) between the predicted bounding box and the ground-
truth box.

where ct and cgtt  respectively represent the center of the t-th predicted and ground-truth bounding boxes, and �·� 
is the Euclidean distances. The precision plot displays the percentage of frames where the center location error 
is below a specific threshold. A threshold of 20 pixels is utilized to evaluate and rank the trackers.

The success rate is calculates overlap as the IOU between the predicted and ground-truth bounding boxes. 
The overlap ratio ORt in the t-th frame is expressed as:

where ∩ and ∪ respectively represent intersection and union of regions of two boxes, and |·| is the number of 
pixels in the region. The success plot shows the percentage of successful frames whose overlap ratio is beyond a 
pre-defined threshold varied from 0 to 1. The area under curve (AUC) score of the success plot is mainly adopted 
to rank the trackers.

Quantitative evaluation with the light‑weight trackers.  Evaluation on DTB70.  DTB7068 contains 
70 challenging sequences constructed from data collected by UAVs. In addition, various challenging scenes with 
translation, rotation, and different size and aspect ratio due to camera motion further complicate the dataset. 
The robustness of our tracker in various complex scenarios caused by the fast motion of the UAV can be demon-
strated with this benchmark. As a result of comparison with other trackers, AMST2 achieved precision (0.851) 
and success rate (0.658), ranking first place, and the results are shown in Fig. 5. Compared to the second-best and 
third-best place TCTrack (0.815) and HiFT (0.804), the precision improved by about 4.4% and 5.8% , respectively. 
Similarly, in success rate, AMST2 has 6.0% and 10.8% performance increase over TCTrack (0.621) and HiFT 
(0.594), respectively.

Evaluation on UAV123.  The UAV12369 is a large-scale aerial tracking benchmark collected from an aerial view-
point consisting of a total of 123 video sequences containing over 112 K frames. The object in the dataset are 
difficult to track due to large-scale change, illumination change, and occlusion, especially small object. As shown 
in Fig. 5, the AMST2 outperforms all other trackers for both precision and success rate. In terms of precision, 
the proposed method surpasses the second-best TCTrack (0.800) and third-best HiFT (0.787) by 4.0% and 5.7% , 
respectively, with a precision score (0.832). The success rate also achieved an better performance increase of 
about 4.3% and 7.0% , respectively, compared to the baseline trackers.
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Figure 5.   Comparison of overall performance with the light-weight trackers. The evaluation used the precision 
and success plots of the proposed tracker and 29 other light-weight trackers.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9062  | https://doi.org/10.1038/s41598-023-36131-2

www.nature.com/scientificreports/

Evaluation on UAV123@10fps.  The UAV123@10fps69 is downsampled by adopting the 10FPS image rate of the 
original version UAV123. The tracking problem is more challenge than the original version because the move-
ment displacement and variation of the object are larger. As shown in Fig. 5, our tracker achieves the best perfor-
mance in terms of both precision (0.798) and success rate (0.616). This clearly shows that our tracker is capable 
of robust tracking in discontinuous aerial data with no performance degradation due to image frame rate.

Evaluation on UAV20L.  The UAV20L69 was used for long-term tracking performance evaluation. This bench-
mark is a subset of UAV123 and consists of 20 long-term tracking sequences with an average of 2934 frames. 
As shown in Table 1, AMST2 attains first place with a precision of 0.784, ahead of second and third-best place 
TCTrack (0.780) and HiFT (0.763) by small margin of about 0.5% and 2.8% , respectively. Also, the success rate 
of AMST2 has the best score (0.601), showing better tracking performance than TCTrack (0.580) and HiFT 
(0.566). This represents that the proposed method generates better features for tracking than existing methods 
on long-term datasets.

Evaluation on UAVTrack112_L. 
UAVTrack112_L70 is a well-known long-term tracking dataset designed for aerial tracking, comprising of over 
60,000 frames and a subset of UAVTrack11270. As demonstrated in Table 2, AMST2 is a more resilient tracker 
compared to state-of-the-art trackers. AMST2 secures the top spot with a precision score of 0.835, surpassing 
TCTrack (0.786) and SiamRPN++ (0.769) by approximately 6.2% and 8.6%, respectively. In terms of success rate 
(0.629), AMST2 also demonstrates superior performance to other trackers. These results confirm the superiority 
of our tracker over existing light-weight trackers in long-term benchmarks.

Attribute comparison.  Due to the severe motion of UAV, aerial tracking faces various challenges. Attributes 
were annotated in the benchmark datasets, as shown in Figs. 6 and 7 to evaluate the tracker performance under 
various challenging conditions.

Figure 6 illustrates that the proposed tracker outperforms other light-weight trackers in several challenging 
scenarios on the DTB70 and UAV123 benchmarks. Figure 7 depicts the evaluation results of all attributes on the 
UAV123@10fps benchmark. In terms of precision, our tracker secures the second-best position in low-resolution 
and similar object conditions, and first place in all other attributes. Particularly, AMST2 demonstrates the high-
est success rate among all attributes in the UAV123@10fps dataset. By utilizing multi-level spatial and temporal 

Table 1.   Overall performance on UAV20L. The best three performances are respectively highlighted with 
bolditalic, italic, and bold.

Trackers Prec. Succ. Trackers Prec. Succ.

SRDCF 0.507 0.343 DaSiamRPN 0.677 0.519

BACF 0.584 0.415 TADT 0.609 0.459

DSiam 0.601 0.391 SiamRPN++ 0.696 0.528

ECO 0.589 0.427 AutoTrack 0.512 0.349

STRCF 0.575 0.410 SiamAPN 0.717 0.532

DeepSTRCF 0.588 0.443 SiamAPN++ 0.731 0.556

UDT 0.585 0.401 HiFT 0.763 0.566

ARCF 0.544 0.381 TCTrack 0.780 0.580

SiamFC 0.599 0.402 AMST2 (Ours) 0.784 0.601

Table 2.   Overall performance on UAVTrack112_L. The best three performances are respectively highlighted 
with bnolditalic, italic, and bold.

Trackers Prec. Succ. Trackers Prec. Succ.

SRDCF 0.508 0.320 DaSiamRPN 0.729 0.518

BACF 0.593 0.358 TADT 0.712 0.462

DSiam 0.643 0.400 SiamRPN++ 0.769 0.557

ECO 0.684 0.436 AutoTrack 0.675 0.405

STRCF 0.609 0.360 SiamAPN 0.750 0.559

DeepSTRCF 0.713 0.460 SiamAPN++ 0.741 0.546

UDT 0.620 0.388 HiFT 0.758 0.570

ARCF 0.640 0.400 TCTrack 0.786 0.582

SiamFC 0.690 0.452 AMST2(Ours) 0.835 0.629
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information, our tracker exhibits exceptional performance in various scenarios, such as scale variation, deforma-
tion, fast camera motion, and occlusion, among others. Moreover, template updates at the template feature level 
provide an advantage of more robust tracking for extreme variations.

Ablation study. 
To validate the impacts of the proposed method, we performed several ablation studies on DTB70 dataset. We 
evaluated five variants of our tracker, including: (1) MS, which uses only the features of the multi-level spatial 
encoder as the first baseline, (2) TE, which utilizes only a temporal encoder as the second baseline, (3) MS+TE, 
which applies both multi-level spatial and temporal encoders, (4) MS+TE+TU, a model in which a template 
update network is added to MS+TE, and (5) MS+TE+AE+TU, the final model that includes the aggregation 
encoder added to MS+TE+TU. In this ablation study, the same multi-context decoder structure was used about 
the method of applying both multi-level spatial and temporal information. As shown in Table 3, our contribu-
tion not only demonstrates outstanding performance in various complex conditions, but also shows the highest 
score in precision and success rate.

Quantitative evaluation with the deep trackers.  Our goal was to enhance the robustness of our pro-
posed aerial tracking by combining multi-level spatial and temporal information, and thus handle complex 
conditions. To obtain clearer results, we compared our method with 22 state-of-the-art trackers with deeper 

Figure 6.   Success plots of OPE of the DTB70 and UAV123 dataset attributes. The several attribute-based 
evaluations on the DTB70 and UAV123 aerial tracking benchmarks.

Figure 7.   Overall performance of the UAV123@10fps dataset attributes. All of attribute-based evaluation of 
top 10 trackers on the UAV123@10fps aerial tracking benchmark. Red and blue fonts represent the highest and 
lowest scores, respectively.
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backbones. As depicted in Fig. 8, even though our method uses a light-weight backbone, it achieves competi-
tive performance with a significantly faster tracking speed than AiATrack, which has the highest success rate. 
Furthermore, we conducted comparison experiments on all scenarios of the DTB70 using the top 10 tracking 
speed-based trackers to support the attribute-based analysis with deep trackers. As shown in Fig. 9, our tracker 
outperforms others in various complex and cluttered scenarios. The proposed robust feature representation, 
which aggregates multi-level spatial and temporal context, reduces the performance gap with deeper backbone-
based trackers and ensures efficient and robust tracking in various aerial scenes. Table  4 presents an in-depth 
comparison between the proposed method and deeper backbone-based trackers, as well as baseline trackers. 
we conducted evaluations on multiple factors including frames per second (fps), parameters, and performance 
metrics using well-known aerial datasets such as VisDrone-SOT202071 and UAVDT72. VisDrone-SOT2020 is 
based on data collected from numerous real-world situations on weather and lighting variations, and UAVDT 
also includes various frames in complex scenarios that confuse tracker performance such as weather, altitude, 
camera view, object appearance, and occlusion. For clarity, STARK and TransT use a modified version of ResNet 
that removes the last stage, so they have a fewer number of parameters than trackers using the other deeper 
backbones. HiFT, TCTrack, and the proposed tracker show faster processing time with much less parameters 
and tracking speeds of more than 100 fps than deep trackers. In addition, HiFT and TCTrack have advantages 
in parameters and fps over the proposed tracker, but in terms of performance, they underperform deep trackers 
and the proposed tracker. Furthermore, our proposed tracker not only demonstrates lower parameter complex-
ity compared to TransT, which achieved the highest score in VisDrone-SOT2020, but also exhibits similar preci-

Table 3.   Ablation analysis on DTB70 dataset. The red and blue arrows denote improvement compared to 
baseline 1 and baseline 2, respectively and the down and up arrows indicate scores lower and higher than 
baseline, respectively.

Trackers
Attributes SV(22) ARV(25) OCC(17) DEF(18)

Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

MS54 (Baseline 1) 0.836 0.649 0.770 0.609 0.662 0.455 0.821 0.626

TE55 (Baseline 2) 0.868 0.686 0.742 0.593 0.755 0.533 0.828 0.646

MS+TE 0.856↑,↓ 0.687↑,↑ 0.768↓,↑ 0.614↑,↑ 0.763↑,↑ 0.549↑,↑ 0.830↑,↑ 0.647↑,↑
MS+TE+TU 0.861↑,↓ 0.688↑,↑ 0.787↑,↑ 0.621↑,↑ 0.768↑,↑ 0.563↑,↑ 0.826↑,↓ 0.630↑,↓
MS+TE+AE+TU (AMST2) 0.922↑,↑ 0.730↑,↑ 0.820↑,↑ 0.654↑,↑ 0.770↑,↑ 0.555↑,↑ 0.860↑,↑ 0.679↑,↑

Trackers
Attributes FCM(41) SOA(27) MB(27) Overall

Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

MS54 (Baseline 1) 0.834 0.610 0.700 0.485 0.811 0.589 0.804 0.594

TE55 (Baseline 2) 0.827 0.630 0.723 0.528 0.748 0.576 0.815 0.621

MS+TE 0.839↑,↑ 0.645↑,↑ 0.729↑,↑ 0.536↑,↑ 0.762↓,↑ 0.587↓,↑ 0.825↑,↑ 0.634↑,↑
MS+TE+TU 0.855↑,↑ 0.654↑,↑ 0.754↑,↑ 0.569↑,↑ 0.797↓,↑ 0.608↑,↑ 0.840↑,↑ 0.644↑,↑
MS+TE+AE+TU (AMST2) 0.858↑,↑ 0.670↑,↑ 0.768↑,↑ 0.564↑,↑ 0.799↓,↑ 0.623↑,↑ 0.851↑,↑ 0.658↑,↑

Figure 8.   The comparison of the quality and speed of state-of-the-art trackers with deeper backbones on 
DTB70. The trackers used for comparison consist of trackers that adopt a deeper backbone network than 
AlextNet.
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sion performance and comparable success performance to deeper backbone models, even with a doubled fps. 
These results highlight the efficiency and effectiveness of our proposed tracker in terms of parameter usage and 
overall tracking performance, showcasing its potential for real-time aerial tracking applications. In the UAVDT 
dataset, the proposed method shows a comparable performance to state-of-the-art trackers, while maintaining 
low parameter complexity and fast processing speed. These findings further demonstrate the effectiveness and 
efficiency of our proposed method in aerial tracking tasks. Among the deeper backbone-based trackers, there 
are trackers close to 100 fps, but the proposed tracker outperforms in terms of parameters and performance. 
Therefore, our tracker demonstrates higher efficiency in aerial tracking using UAVs than many SOTA trackers 
with low latency, fast tracking speed and superior performance.

Figure 9.   Attribute-based comparison results of trackers with deeper backbones. The trackers used for 
comparison are composed of trackers with the top 10 running speed among deep trackers.

Table 4.   Comparisons to trackers with deeper backbones and baselines on VisDrone-SOT2020 and UAVDT. 
The best three performances are respectively highlighted with bolditalic, italic and bold. In addition, inference 
time and parameters are further compared to prove the superiority of the proposed tracker in the aerial 
datasets.

Benchmark Param (M) Avg. FPS.

VisDrone-
SOT2020 UAVDT

Prec. Succ. Prec. Succ.

Trackers

 SiamBAN ResNet50 53.9 86.1 0.797 0.585 0.806 0.601

 SiamGAT​ GoogleNet 14.2 94.8 0.811 0.607 0.754 0.574

 SiamMask ResNet50 21.5 92.6 0.806 0.588 0.782 0.580

 SiamRPN++ ResNet50 54.0 86.3 0.778 0.592 0.801 0.594

 SiamCAR​ ResNet50 51.4 84.7 0.838 0.630 0.804 0.598

 DiMP18 ResNet18 19.7 89.2 0.784 0.592 0.774 0.567

 DiMP50 ResNet50 43.1 76.1 0.819 0.621 0.798 0.594

 PrDiMP18 ResNet18 19.7 60.8 0.777 0.588 0.767 0.577

 PrDiMP50 ResNet50 43.1 50.2 0.806 0.605 0.830 0.618

 KeepTrack ResNet50 41.7 24.1 0.844 0.638 0.825 0.610

 ToMP50 ResNet50 46.4 40.6 0.840 0.639 0.853 0.644

 ToMP101 ResNet101 65.4 35.1 0.845 0.643 0.808 0.612

 STARK-ST50 ResNet50 28.2 53.0 0.735 0.582 0.740 0.551

 STARK-ST101 ResNet101 47.2 37.9 0.755 0.587 0.704 0.523

 TrDiMP ResNet50 42.3 42.6 0.830 0.627 0.860 0.633

 TransT ResNet50 23.0 64.8 0.868 0.653 0.832 0.612

 HiFT AlexNet 10.4 159.7 0.784 0.570 0.734 0.522

 TCTrack AlexNet 9.8 146.1 0.828 0.604 0.773 0.570

 AMST2 AlexNet (Ours) 11.6 122.3 0.863 0.628 0.835 0.614
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Conclusion
In this paper, we presented the aggregated multi-level spatial and temporal context-based transformer (AMST2 ) 
architecture, a novel approach for robust aerial tracking that leverages multi-level spatial and temporal informa-
tion through a Transformer-based model. The proposed approach includes an aggregation encoder that enhances 
the similarity map and a multi-context decoder that generates powerful refined similarity maps. The utilization 
of an aggregated multi-level spatial and temporal information-based transformer, along with a light-weight back-
bone, effectively addresses the challenges of tracking speed and aerial tracking when employing UAVs. The adop-
tion of a template update process further enhances the robustness of our approach against complex scenarios.

Extensive experiments on challenging aerial benchmarks, including DTB70, UAV123, UAV123@10fps, 
UAV20L, and UAVTrack112_ L, demonstrated that AMST2 outperforms state-of-the-art methods in terms of 
both accuracy and efficiency.

While our approach shows promising results, there are still limitations to be addressed, such as the sensitiv-
ity to low-lighting conditions and the need for a large amount of training data. Future research can investigate 
ways to overcome these limitations and further improve the accuracy and efficiency of aerial tracking. Overall, 
the proposed approach represents a significant advancement in the development of more robust and effective 
aerial tracking systems.

Data availibility
All data generated or analyzed in this study are included in this published article. The training and testing 
datasets used in this study are publicly available and have been cited in accordance with research rules. Detailed 
descriptions of the datasets and their citations can be found in the “Experimental results” section of the paper. For 
instance, the ImageNet VID dataset’s training set can be downloaded from the link https://​image-​net.​org/​chall​
enges/​LSVRC/​2015/​index.​php. The COCO dataset’s training set can be downloaded from https://​cocod​ataset.​
org/#​home, while the GOT-10K dataset’s training set can be downloaded from http://​got-​10k.​aites​tunion.​com/. 
Furthermore, the LaSOT dataset’s training set can be accessed via http://​vision.​cs.​stony​brook.​edu/​~lasot/. The 
testing sets of the DTB70 dataset, the UAV123, UAV123@10fps and UAV20L datasets, and the UAVTrack112_L 
dataset, VisDrone-SOT2020 dataset and UAVDT dataset can be downloaded from https://​github.​com/​flyers/​
drone-​track​ing, https://​cemse.​kaust.​edu.​sa/​ivul/​uav123, https://​github.​com/​visio​n4rob​otics/​SiamA​PN, http://​
aisky​eye.​com/, and https://​sites.​google.​com/​view/​grli-​uavdt, respectively.
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