
Engineering Applications of Artificial Intelligence 124 (2023) 106543

G
a
J

A

K
H
C
R
T

1

u
r
b
e
p
e
2
r
t
2
t
r
2

(
t
t
n

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

TSNet: Flexible architecture under budget constraint for real-time human
ctivity recognition from wearable sensor
aegyun Park a, Won-Seon Lim a, Dae-Won Kim a,c,∗, Jaesung Lee b,c,∗

a School of Computer Science and Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
b Department of Artificial Intelligence, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
c AI/ML Innovation Research Center, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea

R T I C L E I N F O

eywords:
uman activity recognition
onvolutional neural network
eal-time systems
ime-series analysis

A B S T R A C T

Human activity recognition is an essential task for human-centered intelligent systems such as healthcare
and smart vehicles, which can be accomplished by analyzing time-series signals collected from sensors
in wearable devices. In these applications, real-time response is vital because prompt action is necessary
for urgent events such as an elderly person falling or driving while drowsy. Although recurrent neural
networks have been widely used owing to their temporal modeling capabilities, recent studies have focused
on convolutional neural networks (CNNs) that are suitable for real-time responses because they incur lower
computational costs. However, CNNs with a manual design may fail to achieve optimal accuracy due to varying
computational budgets with applications or devices. In this paper, we propose a novel design framework
that uses a mathematical approach to derive a CNN architecture suitable for a given computational budget.
As a result, we introduce a grouped temporal shift network (GTSNet) with the network architecture to be
flexibly modified by predefining the theoretical computation cost. We demonstrate the effectiveness of our
framework in experiments, achieving the best performance for well-known public benchmark datasets under
limited computational budgets. The source codes of the GTSNet are publicly available at https://github.com/
jgpark92/GTSNet.
. Introduction

Human activity recognition (HAR) aims to identify human activities
sing time-series signals acquired from sensors (Dang et al., 2020). In
ecent years, studies have focused on deep neural networks (DNNs)
ecause of their excellent performance (Huang et al., 2019; Wang
t al., 2019). In real-time HAR, DNNs are generally trained on a high-
erformance server and then deployed to resource-limited edge devices,
specially wearable devices, where inference is conducted (Ignatov,
018; Zebin et al., 2019; Cheng et al., 2022). To achieve a real-time
esponse, reducing the computational cost of DNNs is essential owing
o their complex architectures and resource-limited devices (Dang et al.,
020; Wang et al., 2019; Chen et al., 2021). A straightforward solution
o this issue is to reduce the number of network connections, which
educes the number of computations (Chollet, 2017; Howard et al.,
017; Wu et al., 2018; Zhang et al., 2018).

Recent real-time HAR studies have focused on one-dimensional
1D) convolutional neural networks (CNNs), which are more efficient
han other networks such as recurrent neural networks (RNNs) (Igna-
ov, 2018; Wan et al., 2020). To achieve real-time HAR, lightweight
etworks were manually designed and evaluated by experimentally

∗ Corresponding authors.
E-mail addresses: dwkim@cau.ac.kr (D.-W. Kim), curseor@cau.ac.kr (J. Lee).

measuring their inference times for a specific device (Ignatov, 2018;
Zebin et al., 2019; Cheng et al., 2022; Xu et al., 2019a). However,
because the inference time of each network depends on the hardware
specifications of the device (Xu et al., 2019b; Yu et al., 2018), hand-
crafted networks should be redesigned manually when the target device
changes. This redesign process requires considerable expert knowledge
and time from practitioners because of the complex tradeoff between
accuracy and computational cost.

Against this limitation, this study aims to establish a novel mathe-
matical framework to re-design a network architecture according to a
given computation budget. Specifically, our research questions include:
how can be the theoretical computation cost of the network architecture
formalized? and how can be the network architecture flexibly modified
according to the computation budget?.

By answering the above questions, we propose a novel deep learning
design framework for deriving a network architecture tailored to the
given computational budget from a backbone network. The proposed
framework can be used to easily modify a network architecture flexibly
and directly using a mathematical approach instead of an exhaustive
or labor-intensive approach. We first analyzed and formalized the
https://doi.org/10.1016/j.engappai.2023.106543
Received 28 May 2022; Received in revised form 22 May 2023; Accepted 24 May
Available online xxxx
0952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open acces
(http://creativecommons.org/licenses/by/4.0/).
2023

s article under the CC BY license

https://doi.org/10.1016/j.engappai.2023.106543
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106543&domain=pdf
https://github.com/jgpark92/GTSNet
https://github.com/jgpark92/GTSNet
mailto:dwkim@cau.ac.kr
mailto:curseor@cau.ac.kr
https://doi.org/10.1016/j.engappai.2023.106543
http://creativecommons.org/licenses/by/4.0/

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

c
v
m
(
d

t
t
t
d
e
r
c
b
o
r
2
f

n
a
e
a
t
a
r

3

C
a
o

𝐶

p
d
F
w
a

theoretical computational cost of a backbone CNN with a familiar
architecture, identifying the major factors that increase the defined
cost. Subsequently, we introduced a grouped temporal shift (GTS)
module that allows the network architecture to be flexibly modified
by predefining the theoretical computational cost. In experiments, the
proposed framework outperformed other networks.

The main contributions of this paper are as follows:

• We propose a novel design framework that uses a mathematical
approach for reconstructing the network architecture without
requiring exhaustive or labor-intensive manual redesign.

• We introduce the GTSNet that allows its architecture to be flex-
ibly modified by predefining the theoretical computation cost
to match the desired budget constraints across various wearable
devices.

• We demonstrate the superiority of GTSNet in achieving the best
performance for four well-known public benchmark datasets un-
der limited computational budgets.

The remainder of this paper is organized as follows. In Section 2,
we describe related works on efficient and mathematical approaches
in terms of the real-time HAR. Section 3 clarifies the problem and
goal of this paper. Section 4 presents the details of our GTSNet and a
novel design framework. Section 5 elaborates on the experimental setup
and results. Section 6 provides more insights and implications focusing
on real-world applications. Finally, Section 7 concludes the paper and
presents future steps.

2. Related work

Human activity can be regarded as a sequence of several continuous
basic movements in which the transitions generate substantial changes
within each signal datum (Chen et al., 2021). To capture the transitions
that are closely related to the activities from the input signals, DNNs
must be able to extract useful temporal features. RNNs, including re-
current units such as long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and bidirectional LSTM (Graves and Schmidhuber,
2005), have been used for modeling sequential data. In HAR, diverse
RNN variants (Murad and Pyun, 2017; Guan and Plötz, 2017; Li et al.,
2019) have achieved high accuracies because of their temporal mod-
eling capabilities. Furthermore, Ordóñez and Roggen (2016) proposed
DeepConvLSTM, combining CNNs and LSTMs to abstract and enhance
features used for temporal modeling. However, RNNs incur infeasi-
ble computational costs for edge implementation (Zebin et al., 2019;
Gehring et al., 2017), making real-time HAR difficult. Meanwhile,
Fawaz et al. (2019) showed the potential of CNNs compared with other
networks, including recurrent units or attention layers in the time series
classification. Specifically, the temporal residual neural network (Wang
et al., 2017) and the temporal fully-convolutional network (Wang et al.,
2017) exhibited superior accuracy.

To the best of our knowledge, most studies have focused on im-
proving the HAR accuracy (Xu et al., 2019a; Ordóñez and Roggen,
2016; Peng et al., 2018; Lv et al., 2019; Koli and Bagban, 2020),
even though many comprehensive surveys in the HAR literature have
emphasized the importance of real-time applications (Dang et al., 2020;
Wang et al., 2019; Chen et al., 2021; Shoaib et al., 2015; Qi et al.,
2018). Ravi et al. (2016) attempted real-time HAR by integrating short-
time Fourier transform into a preprocessing step. They transformed
the signal data from the time domain to the frequency domain and
then fed the obtained spectral image into a two-dimensional (2D)
CNN; the frequency axis was processed as channels. Bhat et al. (2018)
proposed a real-time HAR framework including preprocessing, e.g., a
discrete wavelet transform and DNN based on a policy gradient update.
However, these approaches require complex preprocessing that should
be conducted without stopping, increasing the overhead.

To resolve these issues, recent studies on real-time HAR have fo-
cused on 1D CNNs, as they incur lower computational costs than RNNs.
 t

2

Ignatov (2018) proposed a CNN architecture consisting of one con-
volutional layer and one fully-connected layer. It manually extracted
simple statistical features and fed them into a fully-connected layer to
increase the accuracy. Wan et al. (2020) proposed a CNN architecture
comprising three convolutional layers and two fully-connected layers.
According to their experimental results, the proposed CNN outper-
formed RNN variants with regard to the accuracy, despite its high
efficiency. Also, Oluwalade et al. (2021) compared the performance
of CNN to three RNN variants on smartphones and smartwatches
sensor data. Similar to Wan et al. (2020), the networks including the
convolutional layers outperformed other networks. In addition, Zebin
et al. (2019) demonstrated the efficiency of parameter quantization as
postprocessing for further optimization of the CNN.

Besides, designing efficient lightweight CNNs has been extensively
studied in computer vision. Squeezenet (Iandola et al., 2016) signifi-
cantly reduced the network connections by squeezing the number of
channels based on pointwise convolutions. ResNext (Xie et al., 2017)
showed superior performance over the number of parameters by adopt-
ing a split-transform-merge strategy. MobileNet (Howard et al., 2017)
introduced a depthwise separable convolution that deconstructs the
standard convolution to depthwise and pointwise convolution, resulting
in ∼ 9× fewer computations. To reduce computations of the pointwise
onvolution, ShuffleNet (Zhang et al., 2018) introduced a group con-
olution. Furthermore, MobileNetV2 (Sandler et al., 2018) reduced the
emory footprint based on inverted residuals. In addition, Wu et al.

2018) replaced depthwise convolution with shift operation without
eriving any FLOPs and parameters while maintaining accuracy.

In summary, the existing lightweight CNNs were manually designed
o achieve a real-time response for a specific device. However, in prac-
ice, these manual architectures often need to be redesigned to optimize
he accuracy under the computational budgets for various wearable
evices, because the allowed computational costs of the devices for
nsuring a real-time response can differ. One promising strategy for
esolving this issue is as follows: (1) devising a flexible network ar-
hitecture that can be modified according to a specific computational
udget, (2) measuring the computational budget by counting basic
perations processed on the target device during the response time
equired by the target application (Zhang et al., 2018; Ding et al.,
021), and (3) adjusting the network architecture such that it is suitable
or the given computational budget.

Meanwhile, there are various mathematical approaches with neural
etworks in widespread applications, such as efficient energy man-
gement systems (Ghadami et al., 2021; Shahsavar et al., 2021) and
lectrical discharge machines (Gholizadeh et al., 2022). These studies
re orthogonal with our study because they focus more on enhancing
heir system than network architecture. Our study focuses on deriving
n efficient neural architecture based on a mathematical approach for
eal-time activity recognition.

. Problem statement

In this section, we describe the mathematical redesign process of the
NN architecture. Let 𝐶𝑛(⋅) be the computational cost of CNNs. Given
well-established backbone network  and a computation budget 𝐶𝑏,

ur goal is to derive a network ∗ satisfying the following condition:

𝑛(∗) ⪅ 𝐶𝑏 < 𝐶𝑛() (1)

Fig. 1 shows a concept of our framework to be achieved in this
aper. To this end, we need to define 𝐶𝑛(⋅) and devise a procedure to
erive the architecture ∗ from , which corresponds to (a) and (b) in
ig. 1, respectively. Therefore, in the next section, we formalize the net-
ork’s theoretical computation cost and introduce a novel module that
llows the network architecture to be flexibly modified by predefining

he cost.

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543
Fig. 1. Goal of a new deep-learning design framework. Conventional manual network design methods require considerable expert knowledge and time from practitioners. Contrarily,
our framework uses a mathematical approach that can quickly adapt to the computation budget change by deriving a network architecture from the backbone network based on
a theoretical computation cost.
𝑙

P
d
a
a
𝑡

𝑂

R
c
b
T

Table 1
Notations used for describing the proposed framework.

Symbol Meanings

𝑇 Temporal resolution of an input for each convolution
𝑀 Number of input channels for each convolution
𝑁 Number of output channels for each convolution
𝐼 Input for each convolution, 𝐼 ∈ R𝑇 ,𝑀

𝑂 Output for each convolution, 𝑂 ∈ R𝑇 ,𝑁

T Temporal resolution of an input for a network
M Number of input channels for a network
I Input for a network, I ∈ RT,M
M̂ Number of output channels for the first convolution
N Number of output channels for the first residual block
𝐷𝑘 Kernel size of each convolution
D𝑘 Fixed kernel size across convolutional layers
𝐿 Number of layers or operations
𝐾 Convolution kernel
𝑉 Number of activities
𝐺 Number of channel groups

4. Proposed method

In this section, we describe the developed novel deep-learning
design framework that can be used to derive a network architecture tai-
lored to the given computational budget from a backbone network. The
allowed computational cost for ensuring a real-time response can differ
among different target devices. Therefore, we developed a strategy
for designing an elaborate network architecture under a given com-
putational budget to optimize the accuracy while ensuring a real-time
response. Table 1 presents the terms used in this study.

This section is organized as follows. Section 4.1 describes how to
formalize the theoretical computation cost of the backbone network.
After that, Section 4.2 introduces our grouped temporal shift (GTS)
module. Lastly, Section 4.3 describes how to modify the network ar-
chitecture according to the computation budget by using the GTS
module.

4.1. Major factor of backbone network

To analyze and formalize the computational cost at the network
level, we introduced a backbone network based on an existing network
with a familiar architecture. One candidate backbone network is the
temporal residual neural network (T-ResNet) (Wang et al., 2017; Fawaz
et al., 2019), which has achieved comparable performance in many
time-series classification applications (Karim et al., 2017; Wang et al.,
2018; Franceschi et al., 2019; Dempster et al., 2020; Shifaz et al.,
2020). T-ResNet has three residual blocks, each of which is composed
3

of three convolutional layers and a residual connection. It uses global
average pooling (GAP) and a fully-connected layer for classification.
The computational cost of T-ResNet is formulated in Proposition 1.

Proposition 1. The computational cost of T-ResNet is formalized as

𝐶𝑛 =
𝐿−1
∑

𝑙=1
𝛼((𝑙)(𝐼 (𝑙); 𝜃(𝑙)))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part 1

+ 𝛼( (𝐼 (𝐿); 𝜃(𝐿)))
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Part 2

. (2)

Proof. T-ResNet consists of 𝐿 − 1 convolutional layers (𝑙) and a
fully-connected layer  . For each layer, the input 𝐼 (𝑙) is fed into the
th layer with kernel parameters 𝜃(𝑙) to calculate the output 𝐼 (𝑙+1). Let
𝛼(⋅) be the computational cost of calculating the output of each layer.
Because the computational cost of neural networks is determined by the
layer composition, the computational cost of T-ResNet is formulated as
∑𝐿−1

𝑙=1 𝛼((𝑙)(𝐼 (𝑙); 𝜃(𝑙))) + 𝛼( (𝐼 (𝐿); 𝜃(𝐿))). □

To formalize the computational cost of the network, we borrowed
the concept of time complexity as the upper bound of the cost. As T-
ResNet uses a standard convolution (StandardConv) (Fukushima and
Miyake, 1982), part 1 of Eq. (2) can be replaced with the time complex-
ity of StandardConv. Thus, Proposition 1 is simplified to Proposition 2.

Proposition 2. The time complexity of T-ResNet is formalized as
𝐿−1
∑

𝑙=1
(𝑇 (𝑙)𝐷(𝑙)

𝑘 𝑀 (𝑙)𝑁 (𝑙))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part 3

+(𝑁 (𝐿−1)𝑉). (3)

roof. Let 𝐼 ∈ R𝑇 ,𝑀 and 𝑂 ∈ R𝑇 ,𝑁 be the input and output for Stan-
ardConv, respectively, where 𝑇 represents the temporal resolution,
nd 𝑀 and 𝑁 represent the numbers of channels. Given an input and
kernel 𝐾 ∈ R𝐷𝑘 ,𝑀,𝑁 with kernel size 𝐷𝑘, the 𝑛th channel of 𝑂 at time
is calculated as follows:

𝑡,𝑛 =
∑

𝑖,𝑚
𝐾𝑖,𝑚,𝑛𝐼𝑡+𝑖,𝑚, (4)

where 𝑖 = 𝑖 − ⌊𝐷𝑘∕2⌋ is the re-centered time index. Thus, the time
complexity of StandardConv is (𝑇𝐷𝑘𝑀𝑁).

Because 𝑇 ,𝐷𝑘,𝑀 , and 𝑁 can vary among the layers, part 1 of
Eq. (2) can be replaced with ∑𝐿−1

𝑙=1 (𝑇 (𝑙)𝐷(𝑙)
𝑘 𝑀 (𝑙)𝑁 (𝑙)). In addition, T-

esNet includes GAP immediately before the fully-connected layer for
lassification. Given the number of activities 𝑉 , part 2 of Eq. (2) can
e replaced with (𝑁 (𝐿−1)𝑉). Consequently, the time complexity of
-ResNet is formalized by Eq. (3). □

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

b
r
t
E
a
n
i
o
b

P
a



P
e
o
i
a
𝑁
l

g

𝑂

w
c
o

To simplify part 3 of Eq. (3), we added one StandardConv at the
eginning of the network to fix the number of input channels to the first
esidual block because it varies depending on the number of sensors or
heir type. Therefore, the upper bound of the summation in part 3 of
q. (3) becomes 𝐿 without a change in the total time complexity. In
ddition, we fixed the kernel size and inserted max-pooling layers as the
umber of channels increased to formulate the relationship between the
nput and output sizes. The linear variations in 𝐷𝑘 and 𝑇 have no effect
n the time complexity of each convolution. Thus, Eq. (3) is simplified
y Proposition 3.

roposition 3. The time complexity of the backbone network is formalized
s

(TD𝑘N
2𝐿). (5)

roof. Given the original signals I ∈ RT,M, the first StandardConv gen-
rates new feature signals 𝐼 (1) ∈ RT,M̂, resulting in a time complexity
f (TD𝑘MM̂). Suppose that the 𝑙th intermediate convolutional layer
ncludes a kernel 𝐾 (𝑙) ∈ RD𝑘 ,𝑁 (𝑙−1) ,𝑁 (𝑙) , where D𝑘 is a fixed kernel size
cross convolutional layers, and 𝑁 (𝑙) is a positive-integer multiple of
(𝑙−1), that is, 𝑁 (𝑙) = 𝑐(𝑙)𝑁 (𝑙−1). Generally, 𝑐 ≥ 1; hence, the pooling

ayer adjusts the temporal resolution 𝑇 to 𝑇
𝑐 if 𝑐 ≥ 2. Therefore,

its time complexity is 
(

𝑇
𝑐 D𝑘𝑁 (𝑙−1)𝑐𝑁 (𝑙−1)

)

= (𝑇D𝑘(𝑁 (𝑙−1))2). As
(𝑇 (𝑙−1)𝐷(𝑙−1)

𝑘 (𝑁 (𝑙−1))2) = (𝑇 (𝑙)𝐷(𝑙)
𝑘 (𝑁 (𝑙))2), the total time complex-

ity of the intermediate convolutional layers becomes (TD𝑘N
2𝐿),

eliminating the superscript 𝑙 in Part 3 of Eq. (3).
In Proposition 2, the time complexity of T-ResNet is formulated by

Eq. (3). By constructing the backbone network from T-ResNet, the time
complexity can be simplified as follows:

(TD𝑘MM̂) + (TD𝑘N
2𝐿) + (𝑁 (𝐿−1)𝑉). (6)

BecauseM and 𝑉 can be regarded as constant values in terms of the
network architecture, Eq. (6) can be rewritten as (TD𝑘(M̂ +N2𝐿)) +
(𝑁 (𝐿−1)). Because M̂ ≤ N and 𝑁 (𝐿−1) ≤ TN, the time complexity of
the backbone network becomes (TD𝑘N

2𝐿). □

Proposition 3 indicates that the time complexity of a network is
closely related to the computational cost of each convolution. There-
fore, we considered D𝑘 and N to be the major factors related to
extracting temporal and interchannel information (Chen et al., 2021).
In this regard, StandardConv can be divided into temporal and inter-
channel convolutions. Given the kernel 𝐾 (𝑡) ∈ R𝐷𝑘 ,𝑀 of the temporal
convolution, the 𝑚th channel at time 𝑡 is calculated as

𝑂̂𝑡,𝑚 =
∑

𝑖
𝐾 (𝑡)

𝑖,𝑚
⏟⏟⏟
Part 4

𝐼𝑡+𝑖,𝑚. (7)

Next, for a given kernel 𝐾 (𝑐) ∈ R𝑀,𝑁 of the interchannel convolu-
tion, the 𝑛th channel is calculated as

𝑂𝑡,𝑛 =
∑

𝑚
𝐾 (𝑐)

𝑚,𝑛
⏟⏟⏟
Part 5

𝑂̂𝑡,𝑚, (8)

where the time complexity is (𝑇𝑀(𝐷𝑘 +𝑁)).
Inspired by the spatial shift operation (Wu et al., 2018), we focused

on the connections of temporal convolution. The spatial shift operation
shifts some channels in the spatial direction, and then the information
between features at neighboring times is exchanged by the following
1 × 1 convolution. This idea can be easily applied to HAR by shifting
channels in the temporal direction. Consequently, the time complexity
of the convolution can be reduced by introducing a temporal shift
convolution, in accordance with Lemma 1.

Lemma 1. The time complexity of the temporal shift convolution is
formalized as

(𝑇𝑀𝑁). (9)
4

Proof. Given the kernel size 𝐷𝑘, the kernel of the temporal shift
convolution 𝐾̃ ∈ R𝐷𝑘 ,𝑀 can be written as

𝐾̃𝑖,𝑚 =

{

𝜃𝑚, 𝐢𝐟 𝑖 = 𝑖𝑚
0, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞,

(10)

where 𝜃𝑚 is a trainable parameter, and 𝑖𝑚 is a channel-dependent index
that only has one value in 𝐾̃∶,𝑚 ∈ R𝐷𝑘 .

For extracting temporal information, the temporal shift convolu-
tions should be able to interact with each other between features of
adjacent times. This can be achieved simply by spreading the 𝑖𝑚 of
Eq. (10) across adjacent times, while satisfying the following condi-
tions:

∀𝑖 ∶
𝑀
∑

𝑚
|𝐾̃𝑖,𝑚| ≠ 0. (11)

Therefore, 𝑀 channels are evenly divided into 𝐷𝑘 parts, and 𝑖𝑚 for
each of them is assigned a different value. Thus, part 4 of Eq. (7) can
be replaced with 𝐾̃. Additionally, the parameters of 𝐾̃ can be replaced
with 1 by the associative law of multiplication between them and the
parameters of part 5 of Eq. (8). Therefore, the temporal shift convo-
lution has the same time complexity as the interchannel convolution,
that is, (𝑇𝑀𝑁). □

4.2. Grouped temporal shift module

In this section, we introduce a novel GTS module to control network
connections based on major factors. Although the temporal shift convo-
lution allows the increase in D𝑘 to have no effect on the network’s time
complexity, it suffers from overwhelming interchannel connections
related to another major factor N. To solve this issue, we first designed
a new GTS convolution (GTSConv), and then the GTS module was
constructed by addressing several issues of GTSConv.

A straightforward solution for reducing the number of interchannel
connections is to divide the channels into multiple channel groups
(Zhang et al., 2018). Fig. 2 shows a schematic of GTSConv. The 𝑀 input
channels are evenly divided into 𝐺 channel groups. For each channel
group, the channels are shifted in the temporal direction using Eq. (10).
Subsequently, group-wise interchannel convolution generates 𝑁 output
channels in accordance with Eq. (8). Thus, the interchannel connections
are controlled by the number of groups 𝐺, which is an additional factor
used in Section 4.3, to derive a network architecture tailored to the
computational budget based on time complexity. The time complexity
of GTSConv is formulated by Lemma 2.

Lemma 2. The time complexity of GTSConv is formalized as


(𝑇𝑀𝑁

𝐺

)

. (12)

Proof. Given an input 𝐼 ∈ R𝑇 ,𝑀 and the number of channel groups 𝐺,
𝑀 channels are evenly divided into 𝐺 channel groups, making the 𝑔th
input channel group 𝐼 (𝑔) ∈ R𝑇 ,⌊𝑀∕𝐺⌋. Subsequently, GTSConv shifts the
input channels in the 𝑔th group by using 𝐾̃ of Eq. (10) as follows:

𝐼 (𝑔)𝑡,𝑚 =
∑

𝑡
𝐾̃𝑡,𝑚,𝑔𝐼

(𝑔)
𝑡+𝑖,𝑚

, (13)

where the computational cost is zero because the calculations are
conducted by the following interchannel convolution, as described in
Lemma 1. Finally, GTSConv generates the 𝑛th output channel in the 𝑔th
roup, as follows:
(𝑔)
𝑡,𝑛 =

∑

𝑚
𝐾 (𝑐)

𝑚,𝑛,𝑔𝐼
(𝑔)
𝑡,𝑚 , (14)

here 𝑚 and 𝑛 range from 1 to ⌊𝑀∕𝐺⌋ and ⌊𝑁∕𝐺⌋, respectively. Be-
ause Eq. (14) is calculated for 𝐺 channel groups, the time complexity
f GTSConv is 

(

𝑇 × 𝑀 × 𝑁 × 𝐺
)

= 
(

𝑇𝑀𝑁
)

. □
𝐺 𝐺 𝐺

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543
Fig. 2. Illustration of our GTS convolution. 𝑀 input channels are evenly divided into 𝐺 channel groups, and then each of the groups is fed into the temporal shift convolution
and interchannel convolution, resulting in 𝑁 output channels.
1
1

Furthermore, we addressed the following issues of GTSConv, result-
ing in the GTS module: first, the order of the channels within each
channel group should be considered because shifting each channel in
a better temporal direction can reduce the loss of information (Jeon
and Kim, 2018). Second, it is unknown how to map 𝑀 input channels
to 𝐺 channel groups in advance, because their correlations can vary
whenever the trainable parameters are updated with stochastic gradient
descent. To address these issues, permutation of the input channels can
be considered.

Let  be a permutation function for the arrangement of the channels
within each group. Accordingly, GTSConv can be rewritten as

𝑂(𝑔) = (◦)(𝐼 (𝑔))

= (𝐼 (𝑔)𝑃),
(15)

where ◦ denotes function composition, and  is computed using
Eqs. (13) and (14). The permutation function  can be conducted by
multiplying a permutation matrix 𝑃 ∈ R⌊𝑀∕𝐺⌋,⌊𝑀∕𝐺⌋ to 𝐼 (𝑔) ∈ R𝑇 ,⌊𝑀∕𝐺⌋.
However, because 𝑃 has discrete values, it is difficult to optimize 𝑃
using stochastic gradient descent. A straightforward way to resolve this
issue is to train the interchannel convolution directly for each channel
group (Wu et al., 2018). Specifically, each input channel group is
permuted by conducting an additional interchannel convolution before
GTSConv is applied.

However, since 𝑃 has discrete values, it is difficult to optimize 𝑃 by
stochastic gradient descent. A straightforward way to resolve this issue
can be to train the inter-channel convolution directly for each channel
group (Wu et al., 2018). Specifically, each input channel group is
permuted by conducting an additional inter-channel convolution before
GTSConv is conducted.

Although a similar mapping of channel groups can be solved, the
interchannel convolution for the overall channels has a higher time
complexity than GTSConv. Therefore, we used the channel shuffle
operation of ShuffleNet (Zhang et al., 2018). Specifically, if the chan-
nels extracted from each GTSConv layer are randomly shuffled and
5

Algorithm 1 Grouped Temporal Shift module

1: Input: 𝐼 ∈ R𝑇 ,𝑀 , 𝐺; ⊳ number of channel groups 𝐺
2: Output: 𝑂 ∈ R𝑇 ,𝑁 ;
3: for 𝑔 = 1 to 𝐺 do
4: [𝐼 (1), ..., 𝐼 (𝑔), ..., 𝐼 (𝐺)] ← divide channels of 𝐼 into 𝐺 groups

evenly;
5: 𝐼 (𝑔) ← calculate Permutation(𝐼 (𝑔), ⌊𝑁∕𝐺⌋) ⊳ use Eq. (8)
6: 𝐼 (𝑔) ← ReLU(BN(𝐼 (𝑔))) ⊳ batch normalization BN
7: 𝑂̃(𝑔) ← calculate GTSConv(𝐼 (𝑔), 𝐷𝑘) ⊳ use Eqs. (13) and (14)
8: 𝑂̃(𝑔) ← ReLU(BN(𝑂̃(𝑔)))
9: end for
0: 𝑂 ← Concatenation(𝑂̃) ⊳ concatenate them at channel axis
1: 𝑂 ← Shuffle(O) ⊳ shuffle them at channel axis

delivered to the next GTSConv layer, the entire channel will be fully
related as the layers are stacked.

Finally, Algorithm 1 presents the pseudocode for the forward pass of
the GTS module. In Lines 5–8, each input channel group is permuted
by the interchannel convolution and then fed into GTSConv, and all
convolutions come with batch normalization and rectified linear unit.
The shuffle operation can be used at the starting point or endpoint
of each module by stacking the GTS modules. Generally, 𝑀 ≤ 𝑁 ;
thus, the shuffle operation is conducted at the endpoint to enhance
its effectiveness (Line 11). The time complexity of the GTS module is
determined by permutation and GTSConv in Lines 5 and 7. As they
have identical time complexity to 

(

𝑇𝑀𝑁
𝐺

)

, our GTS module has a

time complexity of 
(

2 × 𝑇𝑀𝑁
𝐺

)

= 
(

𝑇𝑀𝑁
𝐺

)

. Finally, we introduced
GTSNet by replacing all the intermediate StandardConv layers of the
backbone network with the GTS modules, as shown in Fig. 3. Specifi-
cally, the network architecture is a simple variant of T-ResNet, designed
by adding a first StandardConv and max-pooling layers as described

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

c

i
L

L





w
c

Fig. 3. Neural architecture of the backbone network and GTSNet. GTSNet is
onstructed by replacing StandardConv (blue boxes) with the proposed GTS module.

n Section 4.1. Thus, Eq. (5) in Proposition 3 is reduced to that in
emma 3.

emma 3. The time complexity of GTSNet is formalized as
(

TN2𝐿
𝐺

)

. (16)

Proof. Similar to Proposition 3, the time complexity of GTSNet is

(TD𝑘MM̂) + 
(

TN2

𝐺
𝐿
)

+ (𝑁 (𝐿−1)𝑉), (17)

where the first term represents the time complexity of the first Stan-
dardConv, the second term represents the time complexity of the GTS
modules, and the third term represents the time complexity of the
fully-connected layer.

Because M and 𝑉 can be regarded as constant values in terms of
the network architecture, Eq. (17) can be rewritten as follows:

(TD𝑘M̂) + 
(

TN2

𝐺
𝐿
)

+ (𝑁 (𝐿−1)). (18)

Given M̂ ≤ N and 𝑁 (𝐿−1) ≤ TN, Eq. (18) is rewritten as
(

TN
(

D𝑘 +
N

𝐺
𝐿
))

, (19)

here N

𝐺 represents the number of channels in each channel group.
The condition of Eq. (11) can be satisfied if and only if N

𝐺 ≥ D𝑘. As
D > 2 and 𝐿 ≥ 2, N𝐿 ≫ D . Therefore, the time complexity for the
𝑘 𝐺 𝑘

6

backbone network is reduced to Eq. (16) by replacing all intermediate
StandardConv with the GTS modules. □

4.3. Complexity-based network design strategy

In this section, we introduce a novel strategy for controlling the
network connections according to the time complexity to achieve the
optimal accuracy under the computational budget. We consider N to
be a major factor because GTSNet suffers from a factor that grows
quadratically in its time complexity, that is, (N2). If a theoretical
computational cost is predefined according to a given computational
budget, our framework can rapidly achieve a final network by narrow-
ing the range of possible architectures. Let (T𝐿𝑈) be the predefined
cost, i.e., the target time complexity (TTC), where (𝑈) ≤ (N2). We
formalize the TTC using GTSNet’s additional factor 𝐺, in accordance
with Theorem 1.

Theorem 1. The time complexity of GTSNet can be reduced to TTC of
(T𝐿𝑈) if 𝐺, satisfying the following condition, exists:

∃𝐺 ∈ Z+ ∶ N
2

𝑈
≤ 𝐺 ≤ N

D𝑘
, (20)

where (𝑈) ≤ (N2).

Proof. The quadratic growth of the time complexity comes from
the interchannel convolution. In our GTS module, (N2) becomes 
(

N

𝐺 × N

𝐺 × 𝐺
)

when the channels are divided into groups. Because N

𝐺 ≥
D𝑘, the positive integer 𝐺 should be less than or equal to N

D𝑘
. Suppose

that there is a value of 𝐺 satisfying N2

𝐺 ≤ 𝑈 , where (𝑈) ≤ (N2). In
Lemma 3, the time complexity in Eq. (12) can be reduced to (T𝐿𝑈)
by setting 𝐺 according to Eq. (20). □

From Theorem 1, the conditions that satisfy Eq. (20) depend on
the TTC of (T𝐿𝑈), where (𝑈) ≤ (N2). There are several possible
options for the TTC. The basic option is (T𝐿N2), in accordance with
Corollary 1.1.

Corollary 1.1. GTSNet with (T𝐿N2) can be achieved by satisfying the
following condition:

D𝑘 ≤ N. (21)

Proof. When 𝑈 = N2, the condition of Eq. (20) can be rewritten as

1 ≤ 𝐺 ≤ N

D𝑘
. (22)

Therefore, a value of 𝐺 satisfying the condition in Eq. (22) always
exists if D𝑘 ≤ N. □

The number of input and output channels is larger than the kernel
size in almost all the convolutional layers of the existing deep learning
models, satisfying Eq. (21). Therefore, (T𝐿N2) can be regarded as the
basic option for the TTC. Next, consider the TTC to be (T𝐿N log(N)).
To achieve this, the relationship between D𝑘 and N can be formulated
as in Corollary 1.2.

Corollary 1.2. GTSNet with (T𝐿N log(N)) can be achieved by satisfy-
ing the following condition:

D𝑘 < 𝑎 × 2𝑎
𝑎 + 2𝑎

, N = 2𝑎 ≥ 23. (23)

Proof. When 𝑈 = N log(N), the condition in Eq. (20) can be satisfied
if N

D𝑘
− N

log(N) > 1. Because N is commonly set to two powers, that is,
N = 2𝑎, D𝑘 and N should be set to values that satisfy the following
ondition:

1 < 2𝑎
D𝑘

− 2𝑎
𝑎

D < 𝑎 × 2𝑎 = 𝑈 (𝑎).
(24)
𝑘 𝑎 + 2𝑎

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

I
i
b

C


E

D

t

5

d
e
S
L
p

5

D

m

For extracting temporal information, D𝑘 should be ≥ 2. When D𝑘 =
2, 𝑎 should be ≥ 3, according to Eq. (24). As 𝑈 (𝑎) is an increasing
function, Eq. (20) is satisfied if 𝑎 ≥ 3. □

Finally, we consider the TTC to be (T𝐿N). To achieve this, a value
of 𝐺 satisfying N2

𝐺 ≤ N should exist, but this violates the condition of
Eq. (20). Instead, we consider the lowest time complexity that can be
achieved in GTSNet. Because a higher 𝐺 incurs a lower computational
cost, the optimal efficiency of GTSNet is achieved, as indicated by
Corollary 1.3.

Finally, we consider the TTC to be (T𝐿N). To achieve this, 𝐺
satisfying N2

𝐺 ≤ N should exist, but it violates the condition of Eq. (20).
nstead, we consider the lowest time complexity that can be achieved
n GTSNet. Since the higher 𝐺 incurs a lower computational cost, the
est efficiency of GTSNet is achieved as in Corollary 1.3.

orollary 1.3. GTSNet achieves the optimal efficiency with (T𝐿N) by
satisfying the following condition:

𝐺 = N

D𝑘
. (25)

Proof. As a higher 𝐺 incurs a lower computational cost, we consider
N

D𝑘
as the upper bound of 𝐺 according to Eq. (20) of Theorem 1. From

Lemma 3, the time complexity of GTSNet can be reduced to (T𝐿D𝑘N)
by replacing 𝐺 with N

D𝑘
. To achieve the optimal efficiency for GTSNet,

(D𝑘N) < (N log(N)) should always be satisfied. From Corollary 1.2,
q. (24) can be rewritten as

𝑘 <
N log(N)
N + log(N)

< log(N). (26)

Therefore, the optimal efficiency of GTSNet can be achieved with
ime complexity of (T𝐿N). □

. Experimental results

In this section, we verify the performance of our GTSNet. Section 5.1
escribes the experimental settings, including benchmark datasets,
valuation metrics, baseline networks, and implementation details.
ection 5.2 shows the compared results of GTSNet and other networks.
astly, Section 5.3 investigates the effect of components of GTSNet on
erformance.

.1. Experimental settings

Experiments were conducted using four public benchmark datasets.
etails are presented below.

• The UCI-HAR dataset (Anguita et al., 2013) was aggregated from
30 subjects by using accelerometers and gyroscopes embedded
in Android smartphones. Each subject performed six activities:
‘‘walking’’, ‘‘upstairs’’, ‘‘downstairs’’, ‘‘sitting’’, ‘‘standing’’, and
‘‘lying’’, The dataset was sampled at a frequency of 50 Hz, and the
length of each segment was 128. As recommended by the authors,
70% and 30% of the dataset were used as the training and test
sets, respectively.

• The WISDM dataset (Kwapisz et al., 2011) was aggregated from
36 subjects by using accelerometers embedded in Android smart-
phones. Each participant performed six activities: ‘‘jogging’’,
‘‘walking’’, ‘‘upstairs’’, ‘‘downstairs’’, ‘‘sitting’’, and ‘‘standing’’.
In Ignatov (2018), when each segment covered 3 s, the CNN
achieved the best tradeoff between accuracy and efficiency.
Therefore, we set the segment length to 60, because the data were
sampled at a frequency of 20 Hz. The data collected from subjects
1–26 were used as the training set, and the other data were used
as the test set.
7

• The OPPORTUNITY dataset (Chavarriaga et al., 2013) contained
measurements for complex activities in a sensor-rich environment
with on-body, object, and ambient sensors. We only considered
on-body sensors for real-time HAR, including accelerometers and
inertial measurement units (IMUs); the number of input channels
used in our experiments was 113. The dataset was sampled at a
frequency of 30 Hz, aggregated from four subjects, and contained
18 classes, such as ‘‘open door’’ and ‘‘drink from cup’’. For each
subject, the dataset contained ADL1–5 and Drill; the ADL3–4 data
for subjects 3 and 4 were used as the test set, and the other data
were used as the training set. The segment length was set to 150.

• The PAMAP2 dataset (Reiss and Stricker, 2012) was aggregated
from nine subjects who wore three IMUs at 100 Hz and a heart
rate monitor at 9 Hz. The dataset consisted of 18 activities, includ-
ing basic activities such as ‘‘walking’’ and complex activities such
as ‘‘playing soccer’’. The authors recommended a sliding window
of 5.12 s, and we set the segment length to 512. The datasets
obtained by subjects 102 and 106 were used as the test set.
Because ‘‘watching TV’’, ‘‘car driving’’, and ‘‘playing soccer’’ were
performed by only one subject, 30% of the data were randomly
added to the test set. The remaining data were used as the training
set.

Three metrics were used to evaluate the performance of GTSNet:
ultiply-accumulate (MAC) operation, model size, and F1-score.

• The MAC operation is a basic computation that includes one
multiplication operation and one addition operation. Therefore,
we used MACs to measure the actual computational cost of neural
networks.

• The Model size represents the number of parameters in a neural
network. This metric is related to memory access, which affects
the inference time.

• The F1-score has been commonly used as an alternative to accu-
racy in HAR studies. This is because the HAR datasets inherently
involve a class imbalance. The F1-score is computed as follows:

𝐹1 =
∑

𝑖
2𝑤𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑖
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

, (27)

where 𝑤𝑖 represents the proportion of patterns in 𝑖th class.

We compared GTSNet with eight baseline networks, as follows:

• Real-time HAR models. Ignatov (2018) introduced a CNN con-
sisting of a single convolutional layer and a fully-connected layer.
Additionally, Wan et al. (2020) proposed a CNN consisting of
three convolutional layers and two fully-connected layers. These
CNNs used a max-pooling layer that followed each convolution to
reduce the temporal resolution. Their experimental results can be
regarded as the baseline performance of real-time HAR models.

• RNN Variants. We adopted three RNNs widely used for modeling
sequential data. The long short-term memory (LSTM) network
consists of two recurrent layers with 128 LSTM units (Hochreiter
and Schmidhuber, 1997) and a fully-connected layer. The bidirec-
tional LSTM (BiLSTM) network consists of two BiLSTM (Graves
and Schmidhuber, 2005) layers with 128 units and a fully-
connected layer. The DeepConvLSTM network (Ordóñez and
Roggen, 2016) includes four convolutional, two LSTM, and a
fully-connected layer.

• Time-Series Classification (TSC) models.We adopted two CNNs
that achieved significant success for the TSC problem, which is
more general purpose than HAR. The temporal residual neural
network (T-ResNet) (Wang et al., 2017; Fawaz et al., 2019) is
described in Section 4.1, along with our backbone network. The
temporal fully-convolutional network (T-FCN) (Wang et al., 2017;
Fawaz et al., 2019) consists of three convolutional and a fully-
connected layer. Compared with Wan et al. (2020), it has more
output channels. These CNNs use a GAP layer, which averages
channels across the time dimension, instead of other pooling

layers.

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

m
𝑡

2
s
r
f
c
W
0
t
1
a
s

r
b
u
o
a

Table 2
Comparison results for the UCI-HAR dataset. ▾/▵ indicates that the corresponding

odel is significantly worse/better than the proposed network according to a paired
-test at a significance level of 95% for three metrics.
Model MACs Model size F1 score

GTSNet (Ours) 2.996M 0.078M 0.957
Backbone network 11.220M▾ 0.315M▾ 0.954

Ignatov (2018) 8.950M▾ 6.490M▾ 0.925▾
Wan et al. (2020) 2.199M▵ 0.228M▾ 0.939▾

LSTM 26.150M▾ 0.203M▾ 0.804▾
BiLSTM 69.076M▾ 0.536M▾ 0.914▾
DeepConvLSTM 33.602M▾ 0.296M▾ 0.891▾

T-ResNet 61.621M▾ 0.482M▾ 0.953
T-FCN 34.440M▾ 0.269M▾ 0.958

ResNext 27.466M▾ 22.036M▾ 0.941▾
MobileNetV2 11.997M▾ 2.189M▾ 0.925▾
ShuffleNet 5.634M▾ 0.910M▾ 0.937▾
SqueezeNet 5.338M▾ 0.360M▾ 0.920▾

• Efficient CNNs We used four CNNs (MobileNetV2 Sandler et al.,
2018, ShuffleNet Zhang et al., 2018, SqueezeNet Iandola et al.,
2016, and ResNext Xie et al., 2017) designed for computationally
efficient image classification. We replaced 2D operations with 1D
operations to conduct experiments on the HAR datasets.

All the networks were re-implemented in PyTorch (Paszke et al.,
019). For fairness, we excluded sophisticated tricks of each original
etting, such as a gradient clipping (Mikolov et al., 2012) and learning
ate warmup (He et al., 2019). We performed the experiments 10 times
or all the datasets and obtained the average values; herein, a random
ross-validation method was used on UCI-HAR and PAMAP2 datasets.
e used Adam optimizer (Kingma and Ba, 2014) with 𝛽1 = 0.9, 𝛽2 =
.999 and 𝜖 = 10−8. Both the learning rate and weight decay were set
o 0.0005. We trained the networks for 500 epochs with a batch size of
28 using a 2080Ti graphics processing unit. Each network was selected
t the epoch that achieved the best performance during the training
tep and was applied to the test set.

For the backbone network, we set D𝑘, N, and M̂ to 3, 64, and 32,
espectively. In GTSNet, N was set to 128, which was twice that of the
ackbone network, to mitigate accuracy degradation. In addition, we
sed the TTC of (T𝐿N log(N)) and set 𝐺 to 32, satisfying the condition
f Eq. (20). The permutation in the first GTS module was conducted
cross M̂ overall input channels, because the condition of M̂

𝐺 ≥ D𝑘
may be unsatisfied when N≫ M̂.

5.2. Comparison results

Tables 2–5 present the results of the comparison of GTSNet and
the baseline networks. We performed the experiments 10 times and
obtained the average values. For each dataset, we also conducted a
paired 𝑡-test at the 95% significance level. In Tables 2–5, ▾/▵ indicates
that the corresponding network was significantly worse/better than
GTSNet for the three metrics, respectively. As indicated by Tables 2
and 3, GTSNet (with the smallest model size) was statistically superior
to the existing real-time HAR models, RNN Variants and efficient CNNs
with regard to the F1-score for the UCI-HAR and WISDM datasets. More
importantly, compared with T-ResNet, GTSNet significantly reduced
the MACs and model size without degrading the F1-score.

As indicated by Tables 4 and 5, GTSNet (with the smallest number
of MACs and smallest model size) outperformed the existing real-time
HAR models with regard to the F1-score for the OPPORTUNITY and
PAMAP2 datasets. Interestingly, despite its efficiency gain, GTSNet
exhibited the same F1-score as the backbone network or a higher
F1-score than the backbone network for all the datasets. Meanwhile,
T-ResNet (with the largest number of MACs) achieved the best F1-score
for the OPPORTUNITY dataset, as shown in Table 4. On the other hand,
8

Table 3
Comparison results for the WISDM dataset. ▾/▵ indicates that the corresponding model
is significantly worse/better than the proposed network according to a paired 𝑡-test at
a significance level of 95% for three metrics.

Model MACs Model size F1 score

GTSNet (Ours) 1.388M 0.078M 0.886
Backbone network 5.242M▾ 0.315M ▾ 0.884

Ignatov (2018) 3.658M▾ 3.068M▾ 0.840▾
Wan et al. (2020) 0.968M▵ 0.161M▾ 0.862▾

LSTM 12.166M▾ 0.201M▾ 0.869▾
BiLSTM 32.196M▾ 0.533M▾ 0.862▾
DeepConvLSTM 13.312M▾ 0.295M▾ 0.877▾

T-ResNet 28.793M▾ 0.480M▾ 0.879▾
T-FCN 15.983M▾ 0.267M▾ 0.880▾

ResNext 12.878M▾ 22.035M▾ 0.869▾
MobileNetV2 5.972M▾ 2.188M▾ 0.861▾
ShuffleNet 2.811M▾ 0.909M▾ 0.870▾
SqueezeNet 2.146M▾ 0.358M▾ 0.845▾

Table 4
Comparison results for the OPPORTUNITY dataset. ▾/▵ indicates that the corresponding
model is significantly worse/better than the proposed network according to a paired
𝑡-test at a significance level of 95% for three metrics.

Model MACs Model size F1 score

GTSNet (Ours) 5.022M 0.092M 0.874
Backbone network 14.550M▾ 0.327M▾ 0.876

Ignatov (2018) 31.507M▾ 8.292M▾ 0.871▾
Wan et al. (2020) 9.749M▾ 0.315M▾ 0.857▾

LSTM 38.863M▾ 0.259M▾ 0.845▾
BiLSTM 97.387M▾ 0.649M▾ 0.860▾
DeepConvLSTM 45.150M▾ 0.332M▾ 0.850▾

T-ResNet 80.431M▾ 0.538M▾ 0.883▵
T-FCN 54.742M▾ 0.367M▾ 0.876

ResNext 32.461M▾ 22.069M▾ 0.877▵
MobileNetV2 15.694M▾ 2.214M▾ 0.872
ShuffleNet 7.577M▾ 0.929M▾ 0.875
SqueezeNet 11.694M▾ 0.438M▾ 0.832▾

Table 5
Comparison results for the PAMAP2 dataset. ▾/▵ indicates that the corresponding
model is significantly worse/better than the proposed network according to a paired
𝑡-test at a significance level of 95% for three metrics.

Model MACs Model size F1 score

GTSNet (Ours) 13.210M 0.084M 0.762
Backbone network 46.107M▾ 0.319M▾ 0.734▾

Ignatov (2018) 75.906M▾ 25.930M▾ 0.674▾
Wan et al. (2020) 14.375M▾ 0.704M▾ 0.718▾

LSTM 111.151M▾ 0.217M▾ 0.747▾
BiLSTM 289.412M▾ 0.565M▾ 0.684▾
DeepConvLSTM 151.946M▾ 0.305M▾ 0.773▵

T-ResNet 253.037M▾ 0.496M▾ 0.714▾
T-FCN 149.228M▾ 0.293M▾ 0.725▾

ResNext 109.857M▾ 22.053M▾ 0.772▵
MobileNetV2 48.596M▾ 2.206M▾ 0.759
ShuffleNet 22.991M▾ 0.923M▾ 0.798▵
SqueezeNet 27.011M▾ 0.383M▾ 0.710▾

DeepConvLSTM outperformed our GTSNet for the PAMAP2 dataset
with the largest segment length, as shown in Table 5. ShuffleNet, which
had the largest number of channels, achieved the best F1-score for the
PAMAP2 dataset, as shown in Table 5. These results indicate that it is
essential to use sufficient channels to achieve a tradeoff between the
computational cost and accuracy in real-time HAR.

To investigate the error of GTSNet, we also plot the confusion ma-
trices in Figs. 4–6. Their diagonal elements represent the number of the
patterns classified to correct activities, with the color lightening as the
number grows. In Fig. 4, GTSNet with a fixed kernel size across layers
tends to misclassify ‘‘walking’’ as ‘‘jogging’’ with a 10% error rate on

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

r
a
w
s
N

o
N

r
c

Fig. 4. Confusion matrix of GTSNet on UCI-HAR and WISDM dataset.
Fig. 5. Confusion matrix of GTSNet on OPPORTUNITY dataset.
G
b

the WISDM dataset. Also, GTSNet only with local temporal operations
is efficient but tends to misclassify activities performed in the reverse
order, such as ‘‘open door’’ and ‘‘close door’’ on the OPPORTUNITY
dataset, as shown in Fig. 5. Furthermore, GTSNet may need more
sophisticated architecture to correctly classify similar activities, such as
‘‘ironing’’ and ‘‘folding laundry’’ on the PAMAP2 dataset, as shown in
Fig. 6. In conclusion, the confusion matrices indicate that our GTSNet
has a low error rate for most activities across four HAR datasets.

5.3. Ablation study

Scalable architecture depending on N. We compared the growth
ate of the computational cost as the number of channels 𝑁 increased
mong three networks: GTSNet, the backbone network, and the net-
ork of Wan et al. (2020). We set the TTC of GTSNet to (T𝐿N). As

hown in Fig. 7, GTSNet had an efficient rate of increase in MACs as
increased for all the datasets. This is because the time complexities

f the backbone network and the network of Wan et al. grows by
quadratically. In addition, the MACs of the network of Wan et al.

apidly increased for the OPPORTUNITY dataset, with more input
hannels than the other datasets. This indicates the efficiency of scaling
9

the number of input channels at the beginning of the network with
fewer M̂ channels than N.

F1-score vs. MACs. We investigated the tradeoff between the F1-
score and MACs for the three networks. For the UCI-HAR and WISDM
datasets (consisting of simple activities), we increased N according
to Table 7 until the MACs reached a computational budget of 22M.
For the OPPORTUNITY and PAMAP2 datasets (consisting of complex
activities), we increased N until the MACs reached a computational
budget of 24M. Fig. 8 shows the tradeoff between the MACs and F1-
score for four HAR datasets; here, tradeoff curves closer to the top-left
are more efficient, with a higher F1-score per MAC. As shown in Fig. 8,
GTSNet achieved the highest F1-score under the various computational
budgets of 2𝑎 MACs for all the datasets. These results indicate that

TSNet achieved the highest accuracy under the given computational
udget.
The breakdown effect of GTS module. Finally, we conducted the

ablation study on our GTS module. Our GTS module is composed of the
grouped shift convolution, shuffle across channel groups, and permu-
tation within each channel group, as shown in Algorithm 1. Therefore,
we compared the performance of our GTSNet with three variants of

the GTSNet obtained by removing its components one by one. As

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

Fig. 6. Confusion matrix of GTSNet on PAMAP2 dataset.

Fig. 7. Comparison among three networks with regard to the impact of N on the number of MACs.

10

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543
Fig. 8. Tradeoff between the MACs and F1-score for four HAR datasets.
Table 6
Ablation study of GTSNet for four HAR dataset; P: Permutation within each channel
group, S: Shuffle across channel groups.

UCI-HAR MACs Model size F1 score

GTSNet 2.996M 0.078M 0.957
GTSNet without P 2.648M 0.064M 0.952
GTSNet without P & S 2.648M 0.064M 0.948▾
GTSNet with StandardConv 11.220M 0.315M 0.954

WISDM MACs Model size F1 score

GTSNet 1.388M 0.078M 0.886
GTSNet without P 1.225M 0.064M 0.863▾
GTSNet without P & S 1.225M 0.064M 0.857▾
GTSNet with StandardConv 5.242M 0.315M 0.884

OPPORTUNITY MACs Model size F1 score

GTSNet 5.022M 0.092M 0.874
GTSNet without P 4.619M 0.077M 0.868
GTSNet without P & S 4.619M 0.077M 0.867
GTSNet with StandardConv 14.550M 0.327M 0.876

PAMAP2 MACs Model size F1 score

GTSNet 13.210M 0.084M 0.762
GTSNet without P 11.817M 0.069M 0.713▾
GTSNet without P & S 11.817M 0.069M 0.732▾
GTSNet with StandardConv 46.107M 0.319M 0.734▾

shown in Table 6, the GTSConv significantly reduces computations and
model size of the network. In addition, the results indicate that the
permutation and shuffle help preserve accuracy.

6. Discussion

In real-world HAR, it is impractical to achieve a real-time response
from a network with (N2) in various applications. For example, some
11
Table 7
Guidance for N and 𝐺 in GTSNet.

TTC N→ 𝐺

(T𝐿N log(N))
32 48 64 96 128 192 256 320
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

8 12 16 16 32 32 32 64

(T𝐿N)
30 48 63 96 126 192 255 321
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

10 16 21 32 42 64 85 107

healthcare systems may require accurate and immediate recognition of
an elderly person falling with only a small sensor device. To realize
these applications, GTSNet can be used by setting TTC to (T𝐿N) of
Corollary 1.3. Given the TTC, the N of GTSNet increases according
to Table 7 until the computational cost of the network reaches the
computational budget for the target application.

Meanwhile, T and 𝐿 are given and fixed by the sampling frequency
of the sensors and the original network, respectively. Commonly, 𝐿 ≪
T and 𝐿 ≪ N; thus, the search of 𝐿 has a negligible effect on the
efficiency. For the search of T, our framework can be easily inte-
grated with preprocessing methods, including datum-wise frequency
selection (Cheng et al., 2018).

In addition, another important factor in real-world applications is a
memory access cost (MACC). If the cache in the device is large enough
to store intermediate feature signals and model parameters, MACC of
StandardConv is 𝑇 (𝑀 +𝑁) +𝐷𝑘𝑀𝑁 (Ma et al., 2018); herein, the two
terms are related to the memory access for the input/output signals
and kernel parameters, respectively. Therefore, the time complexity
for the MACC in the backbone network, described in Section 4.1, is
(N𝐿(T+D𝑘N)). As the number of parameters of the GTS module is 2 ∗

𝑀𝑁∕𝐺, our GTSNet has the time complexity of (N𝐿(T+N∕𝐺)) for the

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543
Table 8
Comparison results with large-scale CNNs on the four HAR datasets.

UCI-HAR MACs Model size F1 score Inference time

GTSNet 2.996M 0.078M 0.957 3.84 ms
ViT 341.025M 37.908M 0.922▾ 12.08 ms
ResNet-50 101.030M 15.969M 0.937▾ 6.53 ms
VGG-16 104.364M 36.407M 0.928▾ 6.78 ms

WISDM MACs Model size F1 score Inference time

GTSNet 1.388M 0.078M 0.886 3.62 ms
ViT 189.204M 37.855M 0.858▾ 9.97 ms
ResNet-50 50.298M 15.967M 0.868▾ 5.80 ms
VGG-16 62.852M 36.406M 0.891 6.49 ms

OPPORTUNITY MACs Model size F1 score Inference time

GTSNet 5.022M 0.092M 0.874 4.31 ms
ViT 433.282M 39.561M 0.885▵ 13.46 ms
ResNet-50 128.600M 16.041M 0.883▵ 8.73 ms
VGG-16 117.406M 36.476M 0.877 7.77 ms

PAMAP2 MACs Model size F1 score Inference time

GTSNet 13.210M 0.084M 0.762 4.44 ms
ViT 1.264G 38.330M 0.769▵ 22.74 ms
ResNet-50 406.968M 16.005M 0.777▵ 15.63 ms
VGG-16 325.505M 36.461M 0.734▾ 9.89 ms

MACC in accordance with Lemma 3. Because D𝑘N > N∕𝐺, our GTSNet
has a more efficient MACC than the network with StandardConv.

Furthermore, we also consider a disk access cost (DACC). If the
cache in the device is not large enough, the disk access can be required
whenever calculating the output of each layer. As the input of each
layer is removed after calculating its output in an inference step, the
disk access cost depends on the parameter size of each layer. As shown
in Tables 2–5, our GTSNet has the lowest model size, resulting in
the lowest DACC. In conclusion, our GTSNet is more efficient than
other models on resource-limited devices with low memory or disk
bandwidth.

Lastly, we need to examine whether the accuracy of our GTSNet is
large enough for use in various real-world applications. To this end,
we compared the GTSNet with large-scale networks (ViT Dosovitskiy
et al., 2021 and ResNet50 He et al., 2016, and VGG16 Simonyan
and Zisserman, 2015). As shown in Table 8, GTSNet outperforms
ViT and ResNet-50 on WISDM and UCI-HAR but not OPPORTUNITY
and PAMAP2 datasets. This limitation indicates that GTSNet requires
more sophisticated network architectures to classify complex activities
correctly. In addition, Table 8 shows the inference time of the four
networks, measured in AMD Ryzen 7 5800X 8-Core Processor. It indi-
cates our GTSNet can achieve the computation budget even in a single
CPU setting. Although they show minor differences compared to the
MACs, these gaps can get wider and wider on devices with low memory
bandwidth due to the tiny size of GTSNet.

7. Conclusion

In this paper, we proposed a novel deep-learning design framework
that reconstructs the network architecture without requiring exhaustive
or labor-intensive manual redesign for real-time HAR from wearable
sensors. Specifically, we formalized the theoretical computation cost of
the network architecture by using the time complexity as the upper
bound of the cost. After that, we introduced the GTSNet, which allows
its architecture to be flexibly modified by predefining the desired com-
putation budget. Our experiments showed that our GTSNet possesses
the superior tradeoff between accuracy and computational cost, result-
ing in the highest accuracy under the given computational budget. In
addition, the ablation study showed that the proposed framework could
derive an efficient architecture while preserving the HAR accuracy.

Future studies can be conducted to overcome the limitations of the
proposed framework. First, the network derived from our framework
should be trained from scratch, abandoning the pretrained weights of
12
the backbone network. To address this issue, various transfer learning
techniques can be used. Second, our framework does not consider
runtime optimizations of model graphs. For example, TensorFlow Lite
merges multiple operators into one fused operator to boost the in-
ference time. In this regard, future studies may further improve the
tradeoff between accuracy and efficiency by formulating theoretical
computation budgets more sophisticatedly.

CRediT authorship contribution statement

Jaegyun Park: Conceptualization, Methodology, Software, For-
mal analysis, Writing – original draft, Visualization. Won-Seon Lim:
Methodology, Software, Validation, Investigation. Dae-Won Kim: Con-
ceptualization, Methodology, Writing – review & editing, Supervi-
sion. Jaesung Lee: Methodology, Formal analysis, Writing – review &
editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jaesung Lee reports financial support was provided by Institute for
Information Communication Technology Planning and Evaluation. Dae-
Won Kim reports financial support was provided by National Research
Foundation of Korea.

Data availability

Data will be made available on request.

Acknowledgments

This research was partly supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (2021-0-01341, Artificial Intelligence
Graduate School Program (Chung-Ang University)) and the National
Research Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (No. 2023R1A2C1006745).

References

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J., 2013. A public domain
dataset for human activity recognition using smartphones. In: 21th European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN). CIACO, pp. 437–442.

Bhat, G., Deb, R., Chaurasia, V.V., Shill, H., Ogras, U.Y., 2018. Online human activity
recognition using low-power wearable devices. In: 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, pp. 1–8.

Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S.T., Tröster, G., Millán, J.d.R.,
Roggen, D., 2013. The opportunity challenge: A benchmark database for on-body
sensor-based activity recognition. Pattern Recognit. Lett. 34 (15), 2033–2042.

Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y., 2021. Deep learning for sensor-
based human activity recognition: Overview, challenges, and opportunities. ACM
Comput. Surv. 54 (4), 1–40.

Cheng, W., Erfani, S., Zhang, R., Kotagiri, R., 2018. Learning datum-wise sampling
frequency for energy-efficient human activity recognition. In: Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 32.

Cheng, X., Zhang, L., Tang, Y., Liu, Y., Wu, H., He, J., 2022. Real-time human activity
recognition using conditionally parametrized convolutions on mobile and wearable
devices. IEEE Sens. J..

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1251–1258.

Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H., 2020. Sensor-based and
vision-based human activity recognition: A comprehensive survey. Pattern Recognit.
108, 107561.

Dempster, A., Petitjean, F., Webb, G.I., 2020. ROCKET: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Min. Knowl.
Discov. 34 (5), 1454–1495.

Ding, Y., Li, K., Liu, C., Tang, Z., Li, K., 2021. Budget-constrained service allocation
optimization for mobile edge computing. IEEE Trans. Serv. Comput..

http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb5
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb5
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb5
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb5
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb5
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb10

J. Park, W.-S. Lim, D.-W. Kim et al. Engineering Applications of Artificial Intelligence 124 (2023) 106543

I

J

K

K

K

K

L

L

M

M

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.,
2021. An image is worth 16x16 words: Transformers for image recognition at scale.
In: 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021.

Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A., 2019. Deep learning
for time series classification: a review. Data Min. Knowl. Discov. 33 (4), 917–963.

Franceschi, J.-Y., Dieuleveut, A., Jaggi, M., 2019. Unsupervised scalable representation
learning for multivariate time series. Adv. Neural Inf. Process. Syst. 32.

Fukushima, K., Miyake, S., 1982. Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In: Competition and Cooperation in
Neural Nets. Springer, pp. 267–285.

Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N., 2017. Convolutional
sequence to sequence learning. In: International Conference on Machine Learning.
PMLR, pp. 1243–1252.

Ghadami, N., Gheibi, M., Kian, Z., Faramarz, M.G., Naghedi, R., Eftekhari, M.,
Fathollahi-Fard, A.M., Dulebenets, M.A., Tian, G., 2021. Implementation of solar
energy in smart cities using an integration of artificial neural network, photovoltaic
system and classical Delphi methods. Sustainable Cities Soc. 74, 103149.

Gholizadeh, H., Fathollahi-Fard, A.M., Fazlollahtabar, H., Charles, V., 2022. Fuzzy
data-driven scenario-based robust data envelopment analysis for prediction and
optimisation of an electrical discharge machine’s parameters. Expert Syst. Appl.
193, 116419.

Graves, A., Schmidhuber, J., 2005. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18 (5–6), 602–610.

Guan, Y., Plötz, T., 2017. Ensembles of deep lstm learners for activity recognition using
wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (2), 1–28.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M., 2019. Bag of tricks for image
classification with convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 558–567.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H., 2017. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Huang, J., Lin, S., Wang, N., Dai, G., Xie, Y., Zhou, J., 2019. TSE-CNN: A two-stage
end-to-end CNN for human activity recognition. IEEE J. Biomed. Health Inf. 24
(1), 292–299.

Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K., 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model
size. arXiv preprint arXiv:1602.07360.

gnatov, A., 2018. Real-time human activity recognition from accelerometer data using
Convolutional Neural Networks. Appl. Soft Comput. 62, 915–922.

eon, Y., Kim, J., 2018. Constructing fast network through deconstruction of convolu-
tion. In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems. pp. 5955–5965.

arim, F., Majumdar, S., Darabi, H., Chen, S., 2017. LSTM fully convolutional networks
for time series classification. IEEE Access 6, 1662–1669.

ingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

oli, R.R., Bagban, T.I., 2020. Human action recognition using deep neural networks.
In: 2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4). IEEE, pp. 376–380.

wapisz, J.R., Weiss, G.M., Moore, S.A., 2011. Activity recognition using cell phone
accelerometers. ACM SigKDD Explor. Newsl. 12 (2), 74–82.

i, H., Shrestha, A., Heidari, H., Le Kernec, J., Fioranelli, F., 2019. Bi-LSTM network for
multimodal continuous human activity recognition and fall detection. IEEE Sens.
J. 20 (3), 1191–1201.

v, M., Xu, W., Chen, T., 2019. A hybrid deep convolutional and recurrent neural net-
work for complex activity recognition using multimodal sensors. Neurocomputing
362, 33–40.

a, N., Zhang, X., Zheng, H.-T., Sun, J., 2018. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 116–131.

ikolov, T., et al., 2012. Statistical language models based on neural networks. Present.
Google Mt. View 2nd April 80 (26).
13
Murad, A., Pyun, J.-Y., 2017. Deep recurrent neural networks for human activity
recognition. Sensors 17 (11), 2556.

Oluwalade, B., Neela, S., Wawira, J., Adejumo, T., Purkayastha, S., 2021. Human
activity recognition using deep learning models on smartphones and smartwatches
sensor data. arXiv preprint arXiv:2103.03836.

Ordóñez, F.J., Roggen, D., 2016. Deep convolutional and lstm recurrent neural networks
for multimodal wearable activity recognition. Sensors 16 (1), 115.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32,
8026–8037.

Peng, L., Chen, L., Ye, Z., Zhang, Y., 2018. Aroma: A deep multi-task learning based
simple and complex human activity recognition method using wearable sensors.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (2), 1–16.

Qi, J., Yang, P., Waraich, A., Deng, Z., Zhao, Y., Yang, Y., 2018. Examining sensor-based
physical activity recognition and monitoring for healthcare using internet of things:
A systematic review. J. Biomed. Inform. 87, 138–153.

Ravi, D., Wong, C., Lo, B., Yang, G.-Z., 2016. A deep learning approach to on-node
sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health Inf.
21 (1), 56–64.

Reiss, A., Stricker, D., 2012. Introducing a new benchmarked dataset for activity
monitoring. In: 2012 16th International Symposium on Wearable Computers. IEEE,
pp. 108–109.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520.

Shahsavar, M.M., Akrami, M., Gheibi, M., Kavianpour, B., Fathollahi-Fard, A.M.,
Behzadian, K., 2021. Constructing a smart framework for supplying the biogas
energy in green buildings using an integration of response surface methodology,
artificial intelligence and petri net modelling. Energy Convers. Manage. 248,
114794.

Shifaz, A., Pelletier, C., Petitjean, F., Webb, G.I., 2020. TS-CHIEF: a scalable and
accurate forest algorithm for time series classification. Data Min. Knowl. Discov.
34 (3), 742–775.

Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J., 2015. A survey of online
activity recognition using mobile phones. Sensors 15 (1), 2059–2085.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z., 2020. Deep learning models for real-time
human activity recognition with smartphones. Mob. Netw. Appl. 25 (2), 743–755.

Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L., 2019. Deep learning for sensor-based
activity recognition: A survey. Pattern Recognit. Lett. 119, 3–11.

Wang, J., Wang, Z., Li, J., Wu, J., 2018. Multilevel wavelet decomposition network
for interpretable time series analysis. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. pp. 2437–2446.

Wang, Z., Yan, W., Oates, T., 2017. Time series classification from scratch with deep
neural networks: A strong baseline. In: 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE, pp. 1578–1585.

Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Gholaminejad, A., Gonzalez, J.,
Keutzer, K., 2018. Shift: A zero flop, zero parameter alternative to spatial convo-
lutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 9127–9135.

Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1492–1500.

Xu, C., Chai, D., He, J., Zhang, X., Duan, S., 2019a. InnoHAR: A deep neural network
for complex human activity recognition. IEEE Access 7, 9893–9902.

Xu, M., Qian, F., Zhu, M., Huang, F., Pushp, S., Liu, X., 2019b. Deepwear: Adaptive
local offloading for on-wearable deep learning. IEEE Trans. Mob. Comput. 19 (2),
314–330.

Yu, J., Yang, L., Xu, N., Yang, J., Huang, T., 2018. Slimmable neural networks. In:
International Conference on Learning Representations.

Zebin, T., Scully, P.J., Peek, N., Casson, A.J., Ozanyan, K.B., 2019. Design and imple-
mentation of a convolutional neural network on an edge computing smartphone
for human activity recognition. IEEE Access 7, 133509–133520.

Zhang, X., Zhou, X., Lin, M., Sun, J., 2018. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6848–6856.

http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb19
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb19
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb19
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb22
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb24
http://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb28
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb28
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb28
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb30
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb30
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb30
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb30
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb30
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb31
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb31
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb31
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb35
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb35
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb35
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb36
http://arxiv.org/abs/2103.03836
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb39
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb40
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb40
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb40
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb40
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb40
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb47
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb47
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb47
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb58
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb58
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb58
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb58
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb58
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00727-3/sb59

	GTSNet: Flexible architecture under budget constraint for real-time human activity recognition from wearable sensor
	Introduction
	Related Work
	 Problem Statement
	Proposed Method
	Major Factor of Backbone Network
	Grouped Temporal Shift Module
	Complexity-based Network Design Strategy

	Experimental Results
	Experimental Settings
	Comparison Results
	Ablation Study

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

