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Abstract: Reinforcement learning is one of the artificial intelligence methods that enable robots to
judge and operate situations on their own by learning to perform tasks. Previous reinforcement
learning research has mainly focused on tasks performed by individual robots; however, everyday
tasks, such as balancing tables, often require cooperation between two individuals to avoid injury
when moving. In this research, we propose a deep reinforcement learning-based technique for robots
to perform a table-balancing task in cooperation with a human. The cooperative robot proposed
in this paper recognizes human behavior to balance the table. This recognition is achieved by
utilizing the robot’s camera to take an image of the state of the table, then the table-balance action is
performed afterward. Deep Q-network (DQN) is a deep reinforcement learning technology applied
to cooperative robots. As a result of learning table balancing, on average, the cooperative robot
showed a 90% optimal policy convergence rate in 20 runs of training with optimal hyperparameters
applied to DQN-based techniques. In the H/W experiment, the trained DQN-based robot achieved
an operation precision of 90%, thus verifying its excellent performance.

Keywords: reinforcement learning; deep Q-network; cooperative robot; human–robot interaction

1. Introduction

With recent technological advancements, various machines and robots with artificial
intelligence (AI) have emerged to work on behalf of people, ranging from washing machines
to robot cleaners. Reinforcement learning (RL) [1–5], an artificial intelligence technique,
is commonly applied in robot action learning. Several prior studies on RL have been con-
ducted to develop behavior-imitation robots [6,7] and robot navigation [8,9]. As AI robots
undertake human tasks, individuals have more time for leisure and self-development; as a
result, many people require robots to work instead of humans.

Daily human tasks are divided into those that can be completed alone and those
requiring cooperation between two or more people, such as moving an object. In most
previous studies using RL, robots perform tasks on their own on behalf of humans [8–17].
Various human–robot interaction (HRI) technologies [18–27] are being studied, but most
of them focus on research for robots to engage in conversation with humans [18–23]
or utilize human feedback for robot learning [26,27] rather than collaborating with humans
to perform tasks. In the industry, cobots (collaborative robots) are robots that cooperate
with humans without separating barriers, but most of them are fixed in specific places.
For such a robot to move objects on behalf of humans, cooperation is required to balance
objects with opponents holding objects. For instance, when moving objects such as tables
and televisions, it is necessary to balance objects parallel to the ground for free movement
and avoid damaging them. When a robot moves objects on behalf of humans, cooperation
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is required to balance objects with opponents holding objects. Cooperative object-balancing
methods were proposed in [28,29]. However, they are only limited to high-performance
devices and semi-automatic systems requiring human intervention.

Therefore, in this paper, we propose a deep-reinforcement-learning-based coopera-
tive robot technique for automatic table balancing using a general-purpose camera on a
humanoid robot. The proposed method’s operating principles are as follows. While a
human and a robot are holding a table, the robot recognizes the balance of the table that
varies depending on the human’s movements and adjusts the balance through appropriate
actions. The robot recognizes human actions via the camera and performs a balancing
operation appropriate for the state based on the policy that the robot learned.

In this paper, we used a humanoid robot, NAO V3.3 [30] (head V4.0, other parts V3.3),
to cooperate with a human. The reason for using a humanoid robot is that, for the purpose
of moving objects with humans, the robot needs to be able to hold objects with its hands
and move with its feet. The NAO used in this study is equipped with two MT9M114
cameras on its head, with the upper camera facing forward and the lower camera facing
downward. In this experiment, we utilized the lower camera, and detailed explanations
for why we used the lower camera are provided in Section 3. The NAO V3.3’s joints are
controlled by two types of motors, RE-Max 24 and RE-Max 17, with RE-Max 24 used in the
legs and RE-Max 17 used elsewhere.

This paper is organized as follows. Section 2 explores RL technology and previous
studies using reinforcement learning on robots, and Section 3 describes the proposed
method. In Section 4, we discuss the results of the experiments with the proposed technique.
Finally, Section 5 concludes this study and suggests future research directions.

2. Previous Work

RL does not require detailed expert supervision for all actions since it learns tasks
through rewards based on the agent’s trial and error. As a result, an RL agent sometimes
learns higher skills than humans. An example of this is how a deep Q-network (DQN)-
based agent achieved a high score in the Atari Breakout game [1] by learning to use the
ball to dig a tunnel through the center and sides of the brick, such that the ball repeatedly
bounces between the wall and the brick. With these out-of-the-box characteristics, various
problems have adopted RL to solve or train intelligent agents. RL has been studied in
a variety of ways, beginning with deep Q-network (DQN) [1], which combines neural
networks into Q-learning [2]. Since DQN, reinforcement learning techniques have been
studied to improve training stability, such as trust region policy optimization (TRPO) [3]
and proximal policy optimization (PPO) [4], which are updated by approximating the
region of trust, and deep deterministic policy gradient (DDPG) [5] for continuous behavior
of the agent.

AlphaGo [10] is a well-known application of applying RL to a game, competing against
world-famous Go players. AlphaGo (David Silver et al. [10]) improved its performance by
combining deep reinforcement learning with tree search, which is mainly used for Go AI.
As a result, AlphaGo won a number of victories against famous Go players. Like AlphaGo,
which played the game on its own, there are many studies in which robots learned natural
actions through RL, and behavior-imitation studies include human behavior imitation of
humanoid robots [6] and animal behavior imitation of animal robots [7]. By comparing
pre-recorded human gaits with the generated behavior, Josh Merel et al. [6] achieved a more
natural human gait for humanoid robots via RL imitation learning. X. B. Peng et al. [7]
researched animal robot behavior to learn behavior driving suitable for terrain change
using animal behavior data and RL.
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RL has been used for navigation robot research [8,9]. In the RoboCup Standard
Platform League (SPL), Kenzo Lobos-Tsunekawa et al. [8] implemented a mapless visual
navigation system in which robots used RL-generated paths without map information.
Shuhuan Wen et al. [9] investigated a navigation robot that used Q-learning and an extended
Kalman filter for simple localization and mapping (EKF-SLAM). In this previous research,
RL-based path finding for autonomous robots was developed.

Robots used RL to perform tasks such as bowling [11], standing up [13], balancing
and opening doors [14], catching and moving objects [15,16], and using trash cans [17].
Debnath and Nassour [11] improved the performance of bowling skills for a NAO robot
with RL by exploiting successful actions and exploring unsuccessful actions. M. Daniel [13]
investigated pose transition from lying to standing for an NAO robot using RL. Freek Stulp
et al. [14] applied RL to robot learning of two tasks: opening the door and balancing the
body based on the right arm operation. By recognizing 1100 different item kinds with
cameras, Sergey Levine et al. [15] developed object grip and transport behavior that was
optimized for a 7 DOF manipulator with RL. Robots learn more quickly when humans
provide guidelines, as demonstrated by Suay and Chernva [16]’s use of RL to transfer
objects to the left or right cup. Chang Wang et al. [17] used color image segmentation to
indicate the degree of trash can opening while learning how to use the trash can from
camera images with RL. The advantage of previous studies is that robots can operate
autonomously indoors; however, those studies are unsuitable for cooperative missions
because one robot is satisfied with proper actions without optimal action exploration,
another requires landmarks to check its current position, and robots work alone in stable
situations without any changes from humans or partners.

Additionally, researchers have proposed various HRI techniques [18–27]. These
preexisting HRI techniques span from empirical social rules [18–20] to an end-to-end
learning framework [21–23,26,27]. For the empirical social rules, refs. [18,19] proposed
a communication-initiation method by classifying whether a human has an intention to
interact with a robot. Bergstrom et al. [20] also proposed a classification of the move-
ment and interests of visitors around the robot using a laser range finder. However, these
empirical social rules require specific scenarios and sophisticated sensors. Refs. [21,22]
generated robot–human greetings using imitation learning for the end-to-end learning
framework. N. T. V. Tuyen et al. [21] trained the robot to express body language, and M.
Doering et al. [22] trained a robot to recommend travel packages as a travel agency staff
member. However, the above end-to-end framework studies have limitations in that the
generated greetings are limited to fewer than ten and suffer from unnaturally formed
conversations. To activate natural conversation timing, Yang Xue et al. [23] have developed
a technology that allows the robot to autonomously perceive and converse or guide a
human without a start command using vision. However, the process of creating datasets
for learning includes costly expert timing for when to talk. For human activity recognition
(HAR), several methods are proposed [24,25]. Beril Yalçinkaya et al. [24] enhanced the
predictability of human activity sequences by combining long short-term memory (LSTM)
and fuzzy logic. Imran Ullah Khan et al. [25] developed a hybrid model by incorporating a
convolutional neural network (CNN) and LSTM for activity recognition, where the CNN is
used for spatial feature extraction and the LSTM network is utilized for learning temporal
information. Other learning-based approaches include that of Huang and Mutlu [26], which
used dynamic Bayesian networks (DBNs) to model how robots adjust to a person’s voice,
gaze, and gestures in narration during human–robot learning. Ta- Chung Chi et al. [27]
applied a technique that allows the navigating agent to ask for human feedback about
uncertain prediction results during reinforcement learning training. Nonetheless, human
feedback for learning requires continuous human intervention, leading to high feedback
costs. Wen Qi et al. [31] recognized hand gestures using sensor fusion with LSTM-RNN.
In [32], data gathered from the chest band were saved on an iPhone 6 and then transmitted
to a computer via wireless networks. However, this required not only a robot and a device
but also additional installation of sensors such as a depth vision sensor, EEG, GPS, etc.
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The adoption of cobots in the industry for tasks such as picking, placing, and assem-
bling parts is on the rise. Thus, various studies are being conducted for its betterment.
Hang Su et al. [33] developed a human-activity-aware adaptive shared control solution
for human–robot interaction in surgical operations. Dorothea Schwung et al. [34] consid-
ered the problem of heterogeneous cooperative multi-robot control using an RL-based
algorithm. Although these techniques are powerful enough to allow humans to control
or hold objects stably, these are possible because the robots are immobile on fixed floors.
Control of mobile robots, such as humanoids, requires more complex manipulation. As [34]
mentioned, multi-agent systems have developed in variable ways. Yara Rizk et al. [35]
are especially focused on heterogeneous multi-agent systems (MAS). J. Krüger et al. [36]
proposed a framework to control stable and robust bimanual-manipulation tasks for a
dual-arm robot. Ruihua Han et al. [37] implemented a platform for multi-robot navigation
in dynamic environments using deep reinforcement learning to find the optimal path for
robots. Most proposed multi-robot systems recognize human motion to prevent human
damage or to work with humans. However, these robots communicate only with robots,
including systems to control multi-agents without human interaction.

Furthermore, researchers have investigated human–robot cooperation. In [28,29],
the human–robot cooperative task of table balancing was performed. The table-balancing
technology of the robot is composed of two controllers: a human-motion-prediction con-
troller and a robot motion controller for table balancing. Both controllers used table
coordinate information to output the results, and the coordinate information of the ta-
ble was obtained with the Vicon MX motion capture system [38], which included optical
marker labeling and multiple high-resolution cameras. However, the limitations of this
study, which collected table coordinate information, are that several high-performance cam-
eras are demanded in the Vicon MX motion capture system, and semi-automatic systems
requiring human intervention for marker labeling are also required.

To overcome these limitations, this paper utilizes vision technologies and a universal
camera mounted on robots to perform balancing tasks automatically without using high-
performance devices. In addition, the robot learns to interact with a human to perform
a table-balancing task without high-cost human feedback. We propose a table-balancing
cooperative robot technology based on RL. The proposed robot uses deep reinforcement
learning to recognize the action state of the human who moved the table as an image, then
performs the action and learns the optimal table-balance action. Furthermore, it is possible
to cooperate with humans by recognizing human actions in real time and performing
table-balancing actions.

3. Proposed Table-Balancing Cooperative Robot Based on Reinforcement Learning

The table-balancing task, as depicted in Figure 1, involves the robot cooperatively
balancing the table by recognizing the unbalanced table when both the human and the
robot are holding the table. To successfully perform cooperative balancing tasks, this study
proposes a balancing method based on reinforcement learning, and the overall workflow is
shown in Figure 2. First, when a human performs an action, the robot interface captures a
table image and sends it to component of the robot action prediction, which is based on
deep reinforcement learning. The robot action-prediction component recognizes the current
human action with the table image and predicts the robot action to be appropriate for the
current state. The robot drives the predicted robot action, and the environment sends a
reward to the robot action-prediction component based on the new state changed by the
robot action. Finally, the reward-based robot action-prediction component is updated. That
is, the robot is rewarded for the good or bad robot action predicted and learns to output
the optimal action in each state. The robot action-prediction component is achieved using
DQN, a deep reinforcement learning algorithm.
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Figure 1. Table-balancing task.

Figure 2. Proposed reinforcement learning framework between human and robot for table balancing.

The role of the robot interface (Figure 2) in this technology is literally to connect the
outside and inside of the robot. The details of its working are shown in Figure 3. Through
the robot interface, the robot captures table images (Figure 3a) and calculates and drives
robot motions (Figure 3b).

Given the table image from the robot interface, the principle of recognizing the human
action is shown in Figure 3a. When a human and a robot hold a table, the robot can see
the top of the table and the human action changes the shape of the table in the robot’s
view. In this paper, human actions are classified into five categories based on the degree
of raising and lowering the table: up a lot (supup), up (sup), keep (s0), down (sdown), and
down a lot (sdowndown). In the robot’s eyes, for example, when a human raises a table
(supup, sup), the area of the table increases in comparison to when the human lowers the
table (sdown, sdowndown). As a consequence, the robot recognizes the human action. In this
case, the robot’s sight is like classifying table shapes from table images.

Figure 3b shows the robot behavior and parameters for its calculation. As shown in the
image on the right-hand side of Figure 3b, there are five robot actions, adowndown, adown, a0, aup,
and aupup, which are divided according to the degree to which the robot’s hip goes up or
down, as in the state. When manipulating a robot arm, the complexity of the problem
increases as it requires modeling various balance states corresponding to different robot arm
positions. To solve this problem, a robot was constructed that restricts its arm movements
and achieves table balancing solely through the use of its legs. In addition, we only consider
the slope, excluding table movement, and assume that the slope of the surface held by the
robot or person with both arms is the same. As shown in Figure 3b, the hip height (H) is
calculated using the current leg angle to classify the behavior according to the robot’s hip
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position. The height to be operated is added, and the new robot leg angle is calculated and
driven. The height of the hip is calculated using the cosine, which is Equation (1).

H =
√

a2 + b2 − 2abcosθknee (1)

where a, b are the length of the NAO robot’s thigh and calf links, 100 mm and 102.9 mm,
respectively. θknee is the robot knee angle, the current knee angle obtained from the robot’s
built-in system. Prior to calculating the new leg joint angle according to the robot drive
height, we empirically experienced that the motion angle of the hip, knee, and ankle must
be balanced for the robot to drive reliably. As shown in Figure 3b, the motion angles of the
hip and ankle (θhip, θankle) should only be moved half of the motion angle of the knee (θknee)
so that the robot operates stably without falling over. If the angle is maintained as above,
the two gray lines around the hip and ankle in Figure 3b are to be parallel with the ground.
Then, the posture balance of the robot is stable. The computation of the knee angle (θknee)
for robot motion utilizes the inverse cosine function, which is Equation (2). In addition, the
angles of the hip and ankle (θhip, θankle) are expressed in Equation (3).

θknee = arccos
a2 + b2 − (H + h)2

2ab
(2)

θhip = θankle =
θknee

2
(3)

Figure 4 depicts a reward model for robot learning based on human action, with each
state showing the probable robot actions to transit to the next state. If the table is balanced,
a positive reward (0.5) is given; otherwise, a negative reward (−0.3) is given.

(a) Five (5) human state-actions and corresponding state images
from NAO camera.

(b) Five (5) robot actions and parameters.

Figure 3. Human state-action images and robot actions.

As earlier mentioned, DQN is a deep reinforcement learning technique. Fundamen-
tally, it combines artificial neural networks with Q-learning to approximate the action-value
function (Q-function); however, by adding a convolutional neural network (CNN) its
prediction of image-based states for action learning is more refined.

Figure 5 depicts the learning process of DQN’s robot action prediction for the proposed
table-balancing cooperative robot. First, the robot interface photographs the current table
image and sends it to the DQN’s main network ( 1©). The main network predicts the Q-
function for the robot action using the table image ( 2©) and determines the robot action
using Equation (4)’s ε–greedy policy.
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Figure 4. Five (5) human action states from table image and reward model of the table-balancing task.

Figure 5. DQN learning process for table balancing.

π(s) =

{
argmaxa∈AQ(s, a) n > ε

random action n ≤ ε
(4)

In Equation (4), π represents a policy, s represents a state, a represents a robot ac-
tion, and A represents a set of all robot actions; in this paper, the five robot actions are
adowndown, adown, a0, aup, aupup. argmaxa∈AQ(s, a) returns the robot action (a) with the high-
est Q-function value in that state (s). The probability of random action is denoted by ε. n is
a random variable. When several robot actions equally have the maximum Q value, one of
them is chosen at random ( 3©).
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In RL, if the agent learns only with exploitation, it could only learn the successful
action in the early stages, not the optimal policy. To solve this problem, we explore other
actions at random in Equation (4) to learn the optimal policy.

The same network structure is adopted for both the main and target networks, with
the details as follows:

• 16-channel convolution layer, 8 × 8 filter, stride = 4
• 32-channel convolution layer, 4 × 4 filter, stride = 2
• 256-unit fully-connected layer
• 5-unit fully-connected layer

The five actions predicted by the Q-function are represented by the last five-neuron
fully connected layer in both the main and target networks. After performing the robot
action predicted by the robot ( 3©), the table image is retaken from the robot interface ( 4©)
to predict the Q-function of the new state after the robot action in the target network
( 5©) and update the main network using it ( 6©). The following is the main network up-
date: the main network’s loss function uses the mean squared error (MSE), as shown in
Equations (5) and (6).

J(θt) =
1
2
(yt −Q(st, at; θt))

2 (5)

yt =

{
rt if episode done at t + 1
rt + γQ(s′, a′; θ−t ) otherwise

(6)

J represents a loss function, y represents a target function, and t of st, at represents an
episode. s′ is the next state that has driven at at st. Q(s′, a′; θt) is the action-value function
as determined by the main network. The target network predicts the future action-value
function Q(s′, a′; θ−t ) of the target function y. The weights of the main and target networks
are denoted by θ and θ−, respectively. Every five episodes (t), the target network is updated
in synchrony with the main network. rt is a reward for the robot action, and γ is a discount
factor that reduces the effect of the following states on the Q-value, with a value between 0
and 1.

In Equation (6), the future rewards may be considered high if the influence of the
following states (Q(s′, a′; θ−t )) is too large. If the influence is too small, the agent may not be
able to learn the optimal action because it focuses only on the present rewards. Therefore,
it is important to determine the appropriate discard factor.

Drastic updates can make the optimal policy convergence slow or fail to converge;
as such, Equation (7) is a gradient clipping that adjusts the amount of updates to prevent
these drastic updates.

ĝt =

{ threshold
|5θt J(θt)| 5θt J(θt) if | 5θt J(θt)| ≥ threshold

5θt J(θt) otherwise
(7)

ĝ is a loss function for the clipped gradient, and the threshold is set to be the maximum
loss limit. Finally, we update the main network using a stochastic gradient descent (SGD)
in Equation (8).

θt+1 = θt − αĝt (8)

α is the learning rate determining the weight update degree. If α is too high, it may
not converge; if it is too low, it slows down the training time.

By repeating this process, DQN learns robot action prediction for table balancing
under the constant effect of the model (Figure 4). As a result, the robot has a consistent
final policy that predicts the appropriate robot action in each state.
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4. Experimental Results

This section describes the experimental results used to validate the proposed table-
balancing cooperative robot based on deep reinforcement learning. This experiment is
described in the following order: constructing a dataset for predicting the robot action, de-
termining the optimal policy convergence performance based on DQN parameter changes,
and demonstrating the robot H/W performance. Softbank’s NAO robot [30] was used in
this paper, and the table is a rectangular table that is 31 cm wide, 23 cm long, and 6 cm
high, making it easy for the NAO robot to hold.

4.1. Dataset Construction

The dataset [39] created for robot action prediction is contains table state images tagged
with five human action states, as shown in Figure 3a. We generated a total of 7174 sheets of
table images for training the robot action-prediction component, as well as a dataset, by
photographing table changes based on human actions with a robot camera and converting
them to 320 × 240 images.

In taking these ground-truth images for each state (supup, sup, s0, sdown, sdowndown), the
table was set at 6°, 1° to 6°, 1° to −1°, −1° to −6°, and −6°, respectively.

An experiment was conducted to find an image optimized for robot learning, and
the image used in the comparative experiment is shown in Figure 6, with the RGB image
(original) and grayscale images adjusted to 128 × 170, 84 × 112, and 84 × 84.

If the image size is large, the computational cost increases. If it is small, the input
information may not be sufficient, so it is necessary to determine the appropriate size.

Table 1 displays the results of experiments conducted on image size and color to
be used for DQN training. In this image preprocessing experiment, the learning rate α
was 0.005, the discount factor γ was 0.9, the random action probability ε was 10%, and
the episode was repeated 50,000 times. The optimal policy convergence rate (OPCR) was
measured by repeating the process 30 times for each image in Figure 6. In Table 1, the OPCR
was observed to be 90 percent when using 128 × 170 RGB images, demonstrating the best
performance when compared to other preprocessing images, and 84 percent convergence
when using 84 × 112 grayscale images. According to the experimental results, the DQN
training image was a 128 × 170 RGB image.

Table 1. Optimal policy convergence rate (OPCR) according to RGB image and grayscale image
(α = 0.005, γ = 0.9).

Image Size Optimal Policy Convergence Rate
RGB Grayscale

128 × 170 90% 72%
84 × 112 86% 84%
84 × 84 84% 72%

Parameter-search experiments for the optimal learning rate α and discount factor γ
were conducted for the proposed method, that is, the greedy policy, the 10–greedy policy,
and the 20–greedy policy. Training DQN with this proposed method means the greedy
policy will always select the actions with the highest Q-value, while the 10–greedy policy
and the 20–greedy policy select random actions with 10% and 20% probability, respectively.

The learning rate α and discount factor γ in each policy were changed from 0.001
to 0.009 and from 0.1 to 0.9, respectively, and all experiments were repeated 20 times,
50,000 episodes per parameter change. Hyperparameter tuning is important because it
causes the best training performance and training time.
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(a) RGB (128× 170, 84× 112, 84× 84)

(b) Grayscale (128× 170, 84× 112, 84× 84)

Figure 6. Preprocessing images (RGB, grayscale).

Some of the experimental results from the optimal parameter experiment are depicted in
Figures 7–9. Figures 7–9 represent the average loss (Equation (5)) per 100 episodes. Figure 7
depicts the results of the greedy policy, Figure 8 depicts the results of the 10–greedy policy, and
Figure 9 depicts the results of the 20–greedy policy. First of all, Figure 7a demonstrates a loss
graph with a learning rate of 0.001 and a discount factor of 0.1 (blue line), 0.5 (orange line), and
0.9 (green line). The decreasing loss indicates that the policy is converging through learning,
and when the loss converges, it is analyzed to determine the policy. Figure 7a shows that when
the discount factor is 0.9, the loss convergence is the fastest, and the loss convergence appears
rapidly as the discount factor increases. The target yt in Equation (5) depends on the discount
factor, which affects the amount of the next-state information in the current state. As the
discount factor increases and amount of the next-state information decreases, the convergence
rate improves. As illustrated in Figure 7b, the convergence rate is fastest when the learning rate
is 0.009, and the convergence rate increases as the amount of updates increases in proportion
to the learning rate. According to the greedy policy parameters, the same pattern can be seen
in Figures 8 and 9, showing the 10–greedy policy and 20–greedy policy, respectively.

(a) α = 0.001, γ = 0.1, 0.5, 0.9 (b) α = 0.001, 0.005, 0.009, γ = 0.9

Figure 7. Greedy policy, loss graph of DQN with parameter changes (α = 0.001∼0.009, γ = 0.1∼0.9).
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(a) α = 0.001, γ = 0.1, 0.5, 0.9 (b) α = 0.001, 0.005, 0.009, γ = 0.9

Figure 8. 10–greedy policy, loss graph of DQN with parameter changes (α = 0.001∼0.009, γ = 0.1∼0.9).

(a) α = 0.001, γ = 0.1, 0.5, 0.9 (b) α = 0.001, 0.005, 0.009, γ = 0.9

Figure 9. 20–greedy policy, loss graph of DQN with parameter changes (α = 0.001∼0.009, γ = 0.1∼0.9).

4.2. Optimal Policy Convergence Performance with DQN Parameter Variation

Figure 10 depicts the experimental results for examining the convergence performance
to the optimal policy and expressing the OPCR in a 3D graph after 20 repetitions of
50,000 episodes in each policy and parameter. The optimal policy-learning ratio denotes
the rate at which the policy with the parameter condition converges to the optimal policy
after 20 instances of learning under the same conditions, and the optimal policy denotes
the robot actions that successfully reach the table-balancing state (s0) in each table state (s)
in Figure 4.

Figure 10a depicts the greedy policy, Figure 10b depicts the 10–greedy policy, and
Figure 10c depicts the 20–greedy policy. In Figure 10a, with the greedy policy, our model
shows a higher OPCR in lower discount factor settings. On the other hand, in Figure 10b,c,
with the 10–greedy policy and 20–greedy policy, respectively, the model achieved a high
OPCR in most learning rates and discount factors. Equation (6) shows that when using
the greedy policy, the higher the discount factor, the greater the impact on the future state,
so that other actions can be updated to have a higher value than the optimal policy. This
appears to be due to a lack of exploration, with the 10–greedy policy and 20–greedy policy
exploring 10% and 20% of the total action selection, respectively, allowing convergence
to be optimal without being biased toward the effects of future states. According to the
above learning results, a quick convergence of policy is observed at a 0.009 and 0.9 learning
rate and discount factor, respectively, thus making great parameters for the 10–greedy
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policy. However, Figure 10b shows that the OPCR is lower. The reason why the optimal
policy-learning ratio is lower than that of the surroundings at the learning rate of 0.009
and the discount factor of 0.9 is predicted to be due to rapid updates, so it is necessary to
investigate a lower learning rate. We concluded that a learning rate and discount factor of
0.005 and 0.9, respectively, in the 10–greedy policy achieved stable optimal policy learning
for the robot. Specifically, because the OPCR is highest at 90%, a similar convergence rate is
observed at a 0.009 learning rate (Figure 8b). The OPCR of each greedy policy is averaged
in Table 2. As previously noted, the OPCR is low due to a lack of exploration, whereas the
10–greedy policy and 20–greedy policy are sufficiently explored, resulting in a high OPCR
of 90%. The policy convergence is delayed as the number of explorations increases, so the
degree of exploration is deemed sufficient for a 10–greedy policy.

(a) Greedy (b) 10–greedy (c) 20–greedy

Figure 10. Optimal policy convergence rate (OPCR) [%] of DQN according to various hyperparame-
ters and policies.

Table 2. Optimal policy convergence rate (OPCR) of DQN according to random action ratio ε for
optimal hyperparameter (α = 0.005, γ = 0.9).

Policy Optimal Policy Convergence Rate

greedy 20%
10–greedy 90%
20–greedy 90%

Based on a series of experimental results, the proposed cooperative robot used the
fastest and highest convergence rate to the optimal policy in table-balancing learning, a
learning rate α of 0.005, a discount factor γ of 0.9, and a 10–greedy policy.

4.3. Prototype Robot Based on DQN

Figure 11 shows the H/W demonstration of cooperative table balancing between
human and robot using the DQN-trained RL agent. Through a series of experiments, the RL
agent learns under optimal conditions. The purpose of the H/W demonstration experiment
is to evaluate the balancing precision of this proposed technique. When a human operates
one of the operating states in Figure 3a, the robot drives the table-balancing action using
Equations (2) and (3). Two examples in Figure 11 show that when a human slightly
lowers a table (sdown), the robot slightly lowers the table, and when a human significantly
raises the table (supup), the robot also drives a suitable robot action according to the DQN
policy trained in the human action state. Table 3, which is the result of the numerical
representation of the two examples, clearly indicates the robot’s performance and also
the baseline’s performance (a cooperative robot based on Q-learning with AlexNet [39]).
The measured table angle after calibration is shown in Table 3, so that the table and the
ground are parallel when the table slope is 0°. For instance, when the angle is greater than
0° (sup,supup), the table is higher in the human direction than in the robot direction, and
vice versa when the angle is less than 0° (sdown, sdowndown). When the table was unbalanced
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due to human action at 7.47° and −2.64°, our model was able to predict the appropriate
action for the robot to balance the table (s0) with a table angle of 0.66° and −0.30°.

Table 3. Comparison of the precision and the measured angle of the table for the proposed model
(Figure 11) and baseline [39].

Model Precision State Angle Variation Angular Variation

Q-learning 67% supup 8.2°=⇒ 0.2° −8.0°
with AlexNet [39] sdown −1.2°=⇒ 0.30° +1.5°

DQN (ours) 90% supup 7.47°=⇒ 0.66° −6.81°
sdown −2.64°=⇒ −0.30° +2.34°

In a total of 100 real-time tests, the DQN-based robot drove the optimal table-balancing
action 90 times, and the operation precision for measuring the robot’s balancing perfor-
mance is shown in Equation (9).

Precision =
num. of balanced action

num. of trial action
(9)

The DQN-based cooperative robot’s real-time table-balancing precision calculated
using Equation (9) was 90% [40], indicating an excellent performance better than 67% [39].
Furthermore, even in a number of tests where the table was not balanced, the DQN-based
robot performed a robot action similar to the optimal table-balance action. This result
indicates that the robot correctly analyzed the human action state. The H/W demonstration
results of DQN-based cooperative robots are provided at the following link: https://youtu.
be/ovBOF1mxf-A, accessed on 17 December 2020.

Figure 11. Robot demonstration based on DQN for table balancing (robot demonstration video link,
https://youtu.be/ovBOF1mxf-A), accessed on 17 December 2020.

https://youtu.be/ovBOF1mxf-A
https://youtu.be/ovBOF1mxf-A
https://youtu.be/ovBOF1mxf-A)
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5. Conclusions

This study proposed an RL-based method that allows a human and a robot to maintain
table balance collaboratively. The human behavior was recognized via the captured table
image using a universal camera built into the robot. This has overcome the limitations of
previous research, such as the demand for high-performance devices, human intervention in
semi-automatic systems, and additional installation of sensors. To validate the performance
of the proposed method, dataset construction, table image experimentation, and parameter
experimentation were performed, and the proposed technique quickly converged to the
optimal policy for table balancing using an RGB image input of size 128 × 170, a learning
rate of 0.005, and a depreciation rate of 0.9 with a 10–greedy policy. Furthermore, the
superiority of the proposed technique was demonstrated by the fact that the table-balance
precision was observed to be 90% in the H/W test of the actual robot learning under the
aforementioned conditions. Our proposed method contributes to the field of human–robot
interaction through a human and a robot working together to balance a table simultaneously
in front of each other. Future research will expand on the proposed method to broaden the
range of human action states and robot actions, as well as to implement a more delicate
human–robot balancing method and apply it in real life by advancing the learning method.
An extended study of the customized table-balancing-robot method, voice-interactive
reinforcement learning for table-balancing robots [41], has already been presented at an
international conference. Furthermore, as a follow-up method, the method was developed
by applying transfer learning and continual learning to expand the object handled by the
proposed robot and is currently organizing data for publication.
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