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Abstract: With the popularity of virtual reality (VR) games and devices, demand is increasing for
estimating and displaying user motion in VR applications. Most pose estimation methods for VR
avatars exploit inverse kinematics (IK) and online motion capture methods. In contrast to existing
approaches, we aim for a stable process with less computation, usable in a small space. Therefore,
our strategy has minimum latency for VR device users, from high-performance to low-performance,
in multi-user applications over the network. In this study, we estimate the upper body pose of a VR
user in real time using a deep learning method. We propose a novel method inspired by a classical
regression model and trained with 3D motion capture data. Thus, our design uses a convolutional
neural network (CNN)-based architecture from the joint information of motion capture data and
modifies the network input and output to obtain input from a head and both hands. After feeding
the model with properly normalized inputs, a head-mounted display (HMD), and two controllers,
we render the user’s corresponding avatar in VR applications. We used our proposed pose estimation
method to build single-user and multi-user applications, measure their performance, conduct a user
study, and compare the results with previous methods for VR avatars.

Keywords: avatar; immersion; pose estimation; virtual reality

1. Introduction

Immersion requires self-representation in the virtual environment, thus a virtual
body [1]. The focus on presence and immersion requires connecting a user and a virtual
body. It requires approximating the location of a human body to create a visualization that
makes sense to the avatar’s owner. This field has been growing recently at an impressive
rate. Nevertheless, the exploitation of immersive virtual reality (VR) has enabled a refram-
ing of whether and to what extent it is possible to experience the same sensations with a
virtual body inside an immersive virtual environment as with a biological body [2].

For a user to feel ownership of the VR body, it is necessary to estimate and visualize
the user’s motion [3]. Therefore, pose estimation is among the most widely discussed
topics in VR, with different techniques such as motion capture and inverse kinematics
(IK) methods. Furthermore, we believe that considerable care is necessary for the upper
body of a VR user. While VR users rarely glance at their legs, adding arms has a high
potential to improve embodiment because the arms are often visible when interacting with
the environment [4]. Thus, we focus on the upper body of the real-world user.

VR applications capture the user’s movements in the physical world using various
devices and synchronize the avatar’s movements in a virtual world. Various devices
include motion capture systems, depth sensors, trackers, etc. A conventional device is a
motion capture system that is accurate. However, such motion capture devices require
a significant amount of room, and the user’s wearing a special suit. Moreover, motion
capture devices are typically not affordable for personal users. In contrast, inexpensive
depth sensors such as Microsoft Kinect do not have a sufficiently high resolution [5,6]
or frame rate to compete with professional devices for motion capture. VR devices with
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hand-held controllers and eye trackers provide limited motion information. Based on
limited motion data, an IK method estimates the upper body pose, and a machine-learning
classification method even identifies the user from human kinesiological movements [7].

For enhanced immersion in multi-user VR applications, a user must see other users’
realistic motion at approximately 60 frames per second (fps). Personal VR users typically
have limited space, but existing real-time motion capture equipment requires ten by ten
meters. So, motion capture equipment is not possible for personal users. Due to differences
in the hardware performance and the network speed of various users, it is challenging to
guarantee real-time pose estimation and visualization, especially in low-performance VR
devices operating with a relatively slow network speed. We achieve pose-mimicking in
real-time, with lower computational requirements, using a data-driven approach based on a
motion capture dataset and deep learning rather than pose estimation using the IK method.

We aim for the upper body animation of a VR avatar with low cost and high per-
formance. One objective is to estimate and visualize the self-avatar following the user’s
poses with only a head-mounted display (HMD) and controller data. Another objective
is performance so that our system produces an avatar with minimum latency while mini-
mizing the delay even with low-performance hardware and slow networks of multi-user
environments. Our method requires that a VR user has a HMD and controllers, a relatively
low cost compared to a motion capture system, and shows the upper body of an avatar
computationally more efficiently than an IK method. By employing our method, personal
VR users are able to visualize the upper body of their self-avatars with minimum latency.
However, VR developers are required to use expensive motion capture systems to acquire
the pose data or use available public human pose data.

We use a commercial VR system to capture hand and head motions and a machine-
learning approach to improve the presentation of the upper body features in the VR system.
Our learning architecture is able to use either a public pose dataset or a collected pose
dataset, and apply a modified neural network architecture. In VR experiments, we visualize
the upper body of the corresponding avatar as the user moves based on the trained model.
We then build single-user and multi-user VR applications, evaluate the performance and
naturalness of our method by comparing it with an IK-based approach, and conduct a user
study for embodiment.

Our study’s main contributions are:

e  We estimate and visualize the VR user’s pose naturally and efficiently using a deep
learning method.

e  We apply the training results to a VR environment to generate upper body pose ani-
mation in real time by minimizing the latency, even for users with a low-performance
machine and a relatively slow network.

e  We design and test single-user and multi-user VR applications with upper body pose
animated avatars that match the user’s motion.

e  We evaluate the performance of the proposed upper body pose estimation method
and compare it with the performance of a pose estimation method using IK; we also
assess user immersion.

The remainder of the paper is structured as follows. Section 2 reviews previous work
related to our study, and Section 3 explains our proposed pose regression method for
the VR environment. Section 4 describes pose regression results, including performance
evaluation and accuracy. Section 5 presents the design and procedure of VR experiments.
Section 6 evaluates VR experiments’ results by analyzing user studies statistically. Section 7
discusses, Section 8 presents the limitations, and Section 9 concludes.

2. Related Works

Some humanities scholars have begun to use the term “presence” (from the scientific
literature on VR), defined loosely as the feeling of being there. The terms immersion
and presence are increasingly seen together, although both have been so loosely defined
as interchangeable—which they often are [8]. Presence induced by technology-driven
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immersion is a form of illusion because, in VR, stimuli are merely a form of energy projected
onto our receptors. Examples include light from pixels on a screen or sound waves recorded
at different times and places emitted from speakers [9]. Other researchers distinguish
various forms of presence from unique perspectives. Presence is divided into four core
components that are merely illusions of a non-existent reality. Based on our study’s scope,
we only discuss the illusion of self-embodiment and the illusion of social communication.

Self-embodiment is the perception that the user has a body within the virtual world.
Presence is greatly strengthened and experienced more deeply if a user sees a visual object
touching the skin while a physical object also touches the skin [10]. Gall et al. [11] prove that
an illusion of embodiment intensifies the emotional processing of the virtual environment.
Even if the VR body does not look similar to one’s own body, the presence of a virtual body
can be compelling. In contrast to physical attributes such as body shape and color, the
importance of motion cannot be overstated. A discrepancy between visual body motion
and actual physical activity can result in a breakdown of presence.

Social presence refers to the sense that a user is genuinely communicating, both
verbally and through nonverbal cues such as body language, with other entities in the same
environment, whether they be computer-controlled or operated by other users. Physical
realism is not a prerequisite to social realism. Users have been found to express anxiety
when they cause pain to low-fidelity virtual characters [12], and when users with a fear of
public speaking must talk in front of a low-fidelity virtual audience [13]. While the level
of social presence can increase as the realism of human behavior and objects (referred to
as behavioral realism) improves, the mere tracking and rendering of a few key points on
human users can effectively create a compelling experience [14].

Most of the research on the presence of VR uses expensive motion capture sys-
tems [15,16]. Consumer-grade depth sensors such as a Kinect detect body tracking [17],
but do not provide the necessary accuracy. A Kinect v1.0 is limited: a low-resolution RGB-
depth camera with a 320 x 240 16-bit depth sensor and a 640 x 480 32-bit color sensor, at a
capture rate of 30 Hz. This low spatial and temporal resolution favors interactive gaming
experiences over accurate pose reconstruction, resulting in the loss of crucial information
for faster motion. A Kinect v1.0 device also limits the capture space to a small region of
approximately two square meters [18].

Steed et al. [19] demonstrate that incorrect poses could decrease embodiment, sug-
gesting that it might be more helpful not to display limbs if their poses are not sufficiently
accurate. Consequently, the proposed method must obtain an accurate position to create a
true sense of embodiment for a VR user. This study uses a data-driven solver method to
predict upper body poses by integrating pose estimation in VR.

Some companies combine IK with VR, which can animate 3D characters of any shape
or size in real time. Studies present an entire body using IK without running a user study to
evaluate embodiment [20,21]. The result can be a virtual avatar that responds with natural
movements, creating a stronger sense of VR immersion. However, many iterations are
mandatory before converging on a solution that may ultimately generate improper joint
orientations [22]. Nonetheless, the evidence for this is inconclusive.

Researchers have introduced deep learning methods to estimate human body poses.
Zhou et al. [23] propose a body pose estimation approach using a regression model based
on a deep neural network (DNN) with images as the input. Tekin et al. [24] embed a
kinematic model into the deep learning architecture to impose kinematic constraints. They
also propose a deep regression architecture combining a traditional convolutional neural
network (CNN) for supervised learning and an auto-encoder that implicitly encodes 3D
dependencies between body parts.

Recent studies have introduced a Transformer model, a sequence-to-sequence encoder-
decoder model, to vision problems [25,26], and pose regression problems [27-29].
Yang et al. [27] propose a transformer network, Transpose, which estimates 2D pose from
images. Lin et al. [28] combine CNNs with transformer networks in their method METRO
(Mesh Transformer) to reconstruct the 3D pose and mesh vertices from a single image.
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Zheng et al. [29] present a spatial-temporal transformer called PoseFormer to exploit the
keypoint correlation of the human joints for each frame and the temporal correlations and
to produce temporally coherent 3D human poses from videos.

In addition, researchers have used deep learning for multi-person pose estimation
from an image-based standpoint. OpenPose [30] is one of the most popular bottom-up
approaches for multi-person human pose estimation. DeepCut [31] is another bottom-up
approach for multi-person human pose estimation, and AlphaPose, based on the regional
multi-person pose estimation (RMPE) framework [32], is a popular top-down method
of pose estimation. Whereas the datasets for these methods include images, this study
investigates estimating the human upper body pose using a numerical dataset.

Moreover, researchers have used motion capture in data-driven deep learning methods.
Toshev et al. [33] formulate pose estimation as a DNN regression problem by localizing the
body’s joint positions from images. The data-driven clarifier is based on motion capture
data the researchers collect to identify a solution similar to the current pose [34-36].

This study proposes a pose regression model to predict human upper body joint poses
using deep learning. We then apply our model in a VR environment to evaluate our results
in real time.

3. Pose Regression Methods
3.1. System Overview

Figure 1 illustrates an overview of the proposed method. Our method comprises
two parts, A and B. Part A is dedicated to the training step of pose regression, and part B
focuses on the avatar animation step. Part B renders avatars in virtual reality following
users’ motions in the physical world.

Pose regression model

1. Tracking the user’s motions from
head-mounted display (HMD) and
controllers

2. Convolutional neural
network (CNN) model

Figure 1. Our proposed pose estimation method for an avatar. Part A is network architecture for
pose regression and Part B is the avatar animation step.

As depicted in Figure 1, part A illustrates the comprehensive view of the training
procedure. To prepare the dataset, we collect the positions and orientations of the upper
body joints of a user from a diverse range of gestures and movements in every frame.
Subsequently, we perform preliminary noise reduction and normalization processing on
the dataset. We consider the positions and orientations of the head and two hands as
inputs to our pose regression model. Our model is based on a classical regression model,
comprising four convolutional layers and two fully connected (FC) layers. The resulting
hyper-parameters of our pose regression model are utilized in B to estimate the upper body
pose based on the VR user’s controllers and head-mounted display (HMD) data.
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3.2. Data Acquisition

In traditional pose regression studies, researchers use images as inputs to train the
neural networks and pose estimation is considered a classification problem. In contrast,
our method diverges from traditional approaches by utilizing numerical 3D data to train
our pose regression model. We acquire the numerical 3D data by attaching optical motion
capture sensors to specific body joints, a standard method of obtaining human motion
capture data. We focus more on VR interaction poses, considering that VR users stay in
a limited space and perform actions such as twisting their bodies, talking with moving
arms, sitting, standing, and selecting and manipulating objects using their arms. Public
human datasets, such as CMU [37], PENN [38], and MHAD [39], have walking, running,
stepping, and sports motions. These public datasets are deficient regarding the selection
and manipulation motions utilizing arms.

Our motion-capturing strategy is one way to achieve various human poses within a
limited time frame. To focus more on VR interaction poses, we hire four choreographers
to design moves to meet our requirements. We use an OptiTrack motion capture device
while the subjects pose the moves according to the music. Our datasets expand further by
capturing more human poses while a human performs activities in different environments
and incorporating the public human pose datasets. The resulting data serves as a testbed
for our VR pose regression model, providing a comprehensive and diverse representation
of VR interaction poses.

From a total duration of approximately 2838 s, we select 60 fps out of 200 fps by
filtering out similar poses. Consequently, our pose dataset includes 170,280 pose data
samples divided into 80 to 20 between train and test data. We use nine upper body joints
for our pose regression model with 54 parameters. For every joint, the dataset includes six
values, local positions in the x-, y-, and z-coordinates, and local orientation angles about
the x-, y-, and z-axes.

As depicted in Figure 2, we name each joint in order: head, left hand, right hand,
left elbow, right elbow, left shoulder, right shoulder, spine, and pelvis, referred to as j1, ja,
3, jas J5, je, j7, j8, and jo, respectively. Let p; = (pxi, pyi, pzi) and r; = (rx;, 1yi, rz;) be the
position and orientation of a joint j; in three dimensions. As depicted in Figure 2, our global
coordinate system is defined as follows: the x-coordinate is from the left shoulder to the
right shoulder, the y-coordinate is upward, and the z-coordinate is forward. Other than
the head and the root joint, the other joints” orientations are relative to the corresponding
parent joints. This approach correlates highly with Ben-Ari [40] and further supports the
concept of IK [9] for orientation. We normalize our dataset before training.

Ji

Figure 2. Upper body joints ji, jo, j3, j4, j5, je, j7, js, and jg indicate the head, left hand, right hand, left
elbow, right elbow, left shoulder, right shoulder, spine, and pelvis.
3.3. Pose Regression Model

The entire process of a pose regression model is shown in Figure 3. Through com-
parison, we find CNN outperforms DNN in our problem. The hierarchical structures of
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features in CNNs contribute the superior performance. Of paramount importance, our
input data comprises two distinct types: position and orientation. We maintain minimal
connectivity between these two data types to ensure optimal performance. The correlation
between these two different data types is not relevant to our objective of inferring the
position of the joints. Separately, treating the position and orientation data is optimal rather
than trying to find a correlation between position and orientation values. In light of this,
we leverage and adapt an existing CNN architecture to derive separate feature maps from
the positions and orientations.

depth2
X7 IX; IX3 ~_input
Iy, | 1yz | Tys -~ depthl

X X | px
rz; | 1z, |rzy || PX1| PXe| PXs

\ PY1| Py2 | PY3
T~ | Pz1| P22 | Pz
v ;7
e o - > . Pi
i=45,6789
3x3x32 3x3x64 3x3x128 3x3x256 | | output

2304
Convolutional layer
) Fully connected layer
Rectified linear unit (ReLU)
Dropout
i Reshaping

Figure 3. Our pose regression model.

We modify the existing Conv2D layer to incorporate the position and orientation data
in different depths of our input matrix. Convolutional layers generate feature maps that
separately have the position and orientation information. Without this consideration, one
datatype could dominate the other after convolution, resulting in the loss of one of the
features. Since our architecture has the position and orientation data in different depths,
our convolutional layer keeps the position and orientation features rather than one fading
away. Position and orientation data in our architecture works similarly to the red, green,
and blue channels in the conventional Conv2D layer for image-related problems.

The input matrix components are as depicted in Equation (1). Given the 18 input
values, which are the position and orientation values of ji, j», and j3, our pose regression
model estimates the position values for the target joints jg, s, js, j7, js, and jo. In the input
matrices, the width is the joint index of the head, left-hand, and right-hand joints, the
height is the values along x-, y-, and z-axes, respectively, and the depth is the position and
orientation data.

PX; PX, pPxs| [xq1 rxo rx3
PY1 PY2 PYs| |TV1 Y2 13 @
Pz, Pz, PzZ3| [rz1 rz0 123

The structure of our convolutional layers includes a convolution layer with a ReLU ac-
tivation and two dropout layers, followed by two fully connected layers. The convolutional
layer has a filter size of 3 X 3 X 2 along the width and height; the stride in the horizon-
tal and vertical directions is one. Our convolution is applied to the cells, and the same
weights are applied to the position data in the first depth and orientation data in the second
depth. This allows for treating position and orientation as a group and deriving features
between joints. A zero-padding solution controls the shrinkage of the output dimension
from each convolution layer, and we add zero-padding on the borders. The convolutional
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layer derives the features from the input matrices. The first convolutional layer operates
on the input matrix to perceive the corresponding features within each frame. The next
convolutional layer detects the relevant features from the previous layer’s feature map.
After a convolution operation, the obtained feature map is equivalent to the corresponding
feature detection results. After each convolutional layer, the dimension of the feature map
is pdim layer =3 X 3 X (24 +1ayer) In the end, the fully connected layer applies the obtained
dependency of the input to the output. The model repeats regression steps for each of
the outputs being estimated. The target values of our model are the positions of the six
joints, p4, Ps, Pe, P7, P8, and pg, which are the left elbow, the right elbow, left shoulder,
right shoulder, spine, and pelvis positions, respectively.

In order to mitigate the issue of overfitting, we employ two strategies: dropout and
dataset augmentation. We apply a dropout solution to the first convolution layer and the
first fully connected layer. Therefore, a neuron stops working at 0.7 probability—a 30%
probability of dropping the neuron from the network. Furthermore, after acquiring the
captured data, we re-generate the in-between pose data by applying linear interpolation of
the position and orientation values of the joints.

Finally, we use the mean squared error (MSE) loss function and obtain a continuous
numerical output. Equation (2) defines how we calculate the MSE in our model, where
n is the number of iterations (150 for the target joint) in one epoch, and R; and R; are the
ground truth and predicted values, respectively. Here, k is the counter for training steps for
a specific target joint (from 0 to n). We train the network with five epochs and the Adam
optimizer [41] with a learning rate of 0.001.

" 52
MSE — M @)

3.4. Validation of the Pose Regression Model

Our pose regression model optimizes to minimize the overall MSE in Equation (2).
During training our model for 5 epochs and 150 iterations, the calculated MSE decreases
gradually, as depicted in Figure 4. As can be seen in Figure 4, the graph illustrates the
relationship between the number of iterations in the fifth epoch (horizontal axis) and the
calculated mean squared error (MSE) (vertical axis). The MSE decreases as the number
of iterations increases, indicating that our model’s choice of optimization method was
appropriate. Figure 5 compares the output of the predicted values to the ground truth
of the right shoulder. The horizontal axis represents the number of iterations, while the
vertical axis illustrates the mean absolute error (MAE) between the y values of the joint j;.
From this comparison, it can be inferred that our model’s prediction of joint j; values is in
close alignment with the ground truth, further validating the effectiveness of the chosen
optimization method. As Figure 5 shows, the MAE decreases within an acceptable range
and is small enough to be unnoticeable in practice. Overall, these results demonstrate the
validity and accuracy of the proposed model.

We validate our pose regression model by applying the pose regression model to both
the training and test data and then calculate the MSE for the ground truth. The mean MSE
of the joints is 0.0277 for the training data and 0.0448 for the test data. Table 1 shows the
MSE of the joints; j4, s, j, j7, j8, and jo. Small MSEs for the test data indicate that our
regression method yields accurate results.

To conduct a comprehensive comparison between our method and the IK method,
we calculate the MSE between the ground truth position of the joints and the output of
the Final IK [42] method. The results of this comparison are presented in Table 2 and
demonstrate that our method results in lower errors with an MSE of 0.0448, compared to
the Final IK method with an MSE of 0.8066. Furthermore, Table 3 compares the MAE of the
right shoulder joint from the test dataset using both our method and the Final IK method.
The results indicate that our method surpasses the performance of the Final IK method.
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Figure 4. Mean squared error(MSE) of our pose regression model in the last (5th) epoch.

A

3x101 3x10' 1x10?

MAE of the right shoulder

1x10?2
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Training iterations of the last epoch

Figure 5. Mean absolute error(MAE) of the predicted values and the ground truth data of the right
shoulder or joint jy of the last (5th) epoch.

Table 1. MSE values for jy, js, jg, j7, js, and jo.

Joints MSE of Training Data (cm) MSE of Test Data (cm)
ja 0.0245 0.0342
js5 0.0387 0.0456
j6 0.0336 0.0448
j7 0.0267 0.3870
is 0.0242 0.3940
o 0.0382 0.4270

Table 2. MSE values of the test data.

Methods MSE of Test Data (cm)
Final IK 0.8066
Ours 0.0448

Table 3. MAE values of the right shoulder of the test data.

Methods MAE of the Right Shoulder of Test Data (cm)

Final IK 0.1587
Ours 0.0610
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For further evaluation, we employ the MPJPE (mean per joint position error) [43]
metric, a widely accepted standard for evaluating human pose estimation. We evaluate the
accuracy of the upper body tracking on a sample of 27,056 frames drawn from our train
and test datasets each. Table 4 shows the calculated MPJPE metric by comparing the local
positions of the joints in the reconstructed motion to those in the reference.

Table 4. Mean per joint position error (MPJPE) values for our method.

Joints MPJPE of Training Data (cm) MPJPE of Test Data (cm)
Our method 2.4026 1.7301

3.5. Avatar Pose Regression

In VR applications, we can obtain the position of the VR user’s specific body joints in
the real world. The HMD and controllers track the user’s head and both hands. We then
apply our pose regression model to estimate the other body joints. The input to the pose
regression model is the positions p1, p2, and p3, and orientations 11, 12, and r3 of a HMD,
left controller, and right controller, respectively. It appraises the values of p4, ps, Ps, pP7, Ps.
and pg as outputs for the avatar. After estimating the positions of the joints, we calculate
the orientation of the joints of the entire upper body of the VR user.

We use the avatar’s parent—child hierarchy to estimate the orientation angles of joints.
We compute the range of orientation angles of the neck, shoulders, pelvis, and spine joints
using the estimated positions of the joints and the known orientation angles of the head
and wrist joints. The neck joint is oriented using the values of the head joint and its position.
Let the directional vector from the neck and head joints be the y-axis of the neck. We then
determine the orientation angles of the neck by rotating the head coordinate system to align
its y-axis with that of the neck.

Similarly, we determine the orientation angles of the shoulders, pelvis, and spine joints.
For the shoulder joints, the positions of the left and right shoulders are used to define the
x-axis of the shoulder coordinate system. The neck coordinate is rotated to align its x-axis
with the shoulder coordinate system. The coordinates of the pelvis and spine joints are
defined using both the coordinates of the neck and shoulders.

After these steps, we calculate the orientation angles of the elbow joints. With known
position and orientations of the wrists and shoulders, the orientation values of the elbow
joints are calculated as follows. The y-axis is computed as the unit vector along the line
from the elbow to the wrist joint locations, an x-axis is a unit normal vector to the plane
defined with three points, including the elbow, wrist, and shoulder joint locations, and the
z-axis is a cross product of the x- and y-axes. We point an imaginary line from the shoulder
to the hand, compute the distance to determine the threshold value of the elbow using the
cosine rule [44], and produce the most probable state of the elbow.

4. Pose Regression Results

In VR systems, our method obtains input data of the head and two controllers of
the user from the physical world, estimates the upper body pose, and visualizes the
corresponding pose of the avatar in VR. We implement our algorithm in Python using
TensorFlow to evaluate our neural network. The neural network model requires 22 MB
of memory. We speed up the neural network operation using a GPU (NVIDIA GeForce
GTX1080) with an HTC VIVE VR device and Unity version 2019.3.11f1.

The resulting upper body pose estimation of the avatar is depicted in Figure 6. The left
image is the self-avatar estimated using our method in VR, and the right image is the user
in the physical world. As users move their heads and controllers, the self-avatar follows
the users’ motion. Our proposed method can successfully generate the upper body of the
avatar in a consumer VR system with reasonable accuracy in a short time from the HMD
and controllers, maintaining temporal consistency between frames. Since Parger et al. [4]
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previously confirmed that using an IK system with a fair price achieves results comparable to
a full motion capture system, we do not compare our model with a motion capture method.

Figure 6. Comparison of the virtual reality(VR) user (right) and the corresponding self-avatar using
our method (left).

To compare our pose regression results with IK results, we test several poses of a user
and estimate the upper body poses using both the IK and our methods. We use the Final
IK [42] tool from RootMotion in Unity to estimate the upper body pose using an IK method.
Figure 7 illustrates the example comparison of our results and IK results for interaction
motions such as left-hand blocking in Figure 7a, right-hand blocking in Figure 7b, swaying
in Figure 7¢, lifting in Figure 7d, right-hand in front in Figure 7e, and folding arms motion
in Figure 7f. The red lines are IK results, and the blue lines are our results from the users
in the physical world. Figure 8 displays the avatar pose estimation results in VR using
two methods; our results in the middle row and IK in the bottom row as the VR user in the
top row grabs and throws a ball in the physical world. As depicted in Figure 8, both our
pose-estimated avatar and the IK-based avatar follow the motion of the VR user similarly.
The IK-based avatar throws a ball naturally, and our pose-estimated avatar also throws
a ball naturally. The MSE of our method is about 0.041 cm, and that of the IK method is
about 0.042 cm for 6736 frames while playing the standalone VR applications.

We also compare the performance of our regression method and that of IK in sample
VR applications. We measure the computation times per frame while users play sample VR
games and analyze the minimum, maximum, and average computation times. We use the
Unity Profiler, a CPU usage profiler module that tracks the time spent on the application’s
main thread per frame. For computation time calculation, we accumulate time spent on
rendering, scripts, physics, and animation categories. We conduct these experiments with
standalone and multi-user VR applications over the network.

Table 5 for a standalone VR application, presents the computation times of our method
and the IK method. The computation time to render a self-avatar using our method is
between 3.19 and 14.75 milliseconds for 6736 frames (70 s). As in Table 5, the average
computation time to generate a frame is 6.73 milliseconds using our method and 10.23
milliseconds using the IK method. Moreover, our method’s maximum computation time is



Appl. Sci. 2023, 13, 2460 11 0f 22

almost five milliseconds faster than IK. Consequently, our approach is generally faster with
lower latency than the IK method.

Figure 7. Comparison of our results in blue (left) and inverse kinematics (IK) in red (middle) from
the user (right) (a) left-hand blocking, (b) right-hand blocking, (c) sway motion, (d) lift motion,
(e) right-hand in front motion, and (f) folded arms motion generation.

Figure 8. Comparison of our results (middle) and IK results (bottom) from the user (top).
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Table 5. Performance evaluation in a standalone VR application.

Solution Minimum (ms) Maximum (ms) Average (ms)
Our method 3.19 14.75 6.73
IK 3.81 19.65 10.23

The computation time of multi-user VR applications includes rendering and network-
ing time. Table 6 compares the performance of our method and IK in a multi-user applica-
tion. Our approach minimizes the computational time between 3.36 and 17.1 milliseconds
for 8661 frames (90 s) in a multi-user game environment. The average computational time
is 9.21 milliseconds using our method and 16.78 milliseconds using the IK method. Our
approach is faster than an IK system—our method minimizes latency even for a multi-user
VR system.

Table 6. Performance evaluation in a multi-user game.

Solution Minimum (ms) Maximum (ms) Average (ms)
Our method 3.36 17.01 9.21
IK 4.28 2241 16.78

Our pose estimation method predicts the upper body from the head and two hand-
held controllers, similar to the IK method. Moreover, the performance evaluation of
computations shows that our process yields lower latency than the IK method.

5. VR User Experiments

We design and conduct a VR user study to investigate whether our estimated avatars
enhance the feeling of presence in VR comparable to the IK method. A motion capture
system and an IK system were compared by Parger et al. [4] for an upper body pose in VR,
and an IK system achieves significantly different results than a full motion capture system
in user studies. Therefore, we compare our model with an IK method excluding a motion
capture method. Considering the pose estimation results that our method is accurate and
more efficient, we construct three hypotheses:

H1. Our method generates a naturally looking avatar comparable to the IK method.

H2. Our method’s display of the upper body in VR provides the illusion of self-~embodiment, similar
to the IK method.

H3. Our method’s lower latency than the IK method results in less break-in-presence and enhances
user experience.

We used a within-subject design and divided the process into two tasks. The first task
includes self-embodiment in a single-user VR application, for which we implement an archery
game. The second task is a multi-user environment application where users throw and catch
balls. Please also refer to the Supplementary Video S1 for additional visual findings.

5.1. VR Game Design

We create a single-user VR system: an archery game using a virtual bow and arrow
that a single user uses to shoot at a target in VR, as shown in Figure 9. Our scene contains
four marks at different distances from the user’s position. In this game, a user begins at the
center of a specific zone and shoots the targets. The targets are at distances of 4.5, 6.5, 8.5,
and 10.5 m from the user and are worth 5, 10, 15, and 20 points, respectively. The further the
target is, the more points the user earns. Each user can shoot up to five arrows at the targets
within a limited time of 70 s. Figure 9 shows an archery game with our pose-estimated
avatar in the leftmost column, the IK-based avatar in the middle column, and the VR user
in the rightmost column. As a user manipulates hand-held controllers, avatars mimic the
user’s motion to shoot the arrows.
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Figure 9. Archery game in two modes. Camera view of the user playing the archery game (right)
using our method (left) and the IK method (middle).

We design a ball-grabbing VR game as a user study of the proposed pose regression
method in a multi-user environment. In a ball-grabbing VR game shown in Figure 10,
a user throws a ball toward the basket, and another receives a ball using the holding
basket. Figure 10 shows the avatars in a ball-grabbing game using our method at the top,
an IK method in the middle, and VR users at the bottom. Ball grabbing and throwing
poses of avatars match the poses of the users in both IK and our method modes. A user
throwing a ball needs to pay attention to the pose of another user with a basket. Vice
versa, a user receiving a ball needs to pay attention to the pose of the throwing user. We
asked 15 participants to form five groups of three users randomly. As depicted in Figure 10,
two users grab the balls and throw them toward the target basket held by the third user
from a distance of 5 m. Users have a total of 20 balls, a successful ball-grabbing score is 1,
and the game time is limited to 90 s. Consequently, 20 is the maximum score for each group.

5.2. Questionnaires

We ask participants to answer seven questions for the archery game and five questions
for the ball-grabbing game. Each question has to be answered on a five-point Likert scale
from one (very poor) to five (excellent). For both tasks, most questions are about presence,
embodiment, sense of moving, accuracy, and being natural. Tables 7 and 8 indicate our
questions after the archery and ball-grabbing tasks.

5.3. Experimental Procedure

We recruited 15 healthy college students to play under three different modes including
a tutorial in hands-only mode, our method mode, and an IK mode. At first, we asked for
a demographic questionnaire. The demographic questionnaire includes the gender, age,
major field of study, and information on the participant’s prior experience with virtual
environments (VEs). Among the participants, 9 (60%) were male, 12 (80%) were right-
handed, and all were majoring in computer science. The average age of our participants
was 26.1333, with a standard deviation (STD) of 1.9223. Four participants indicated that
they had used the HTC VIVE system. Three subjects stated that they had used the Oculus
system. Furthermore, 40% of the selected participants had impaired vision but could either
wear contact lenses or customize the VR HMD to have good eyesight.
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Figure 10. Ball-grabbing game in two modes. Camera view of three users (bottom) playing the
ball-grabbing game using our method (top) and the IK method (middle).

Table 7. Questionnaire for the archery game.

Number Question
Q1 How strongly did you feel a sense of presence while using this method?
Q2 How strongly did you feel a sense of embodiment while using this method?
Q3 How compelling was your sense of moving around inside the virtual environment?
Q4 How accurate was the environment for actions you are in?
Q5 To what extent did you observe a delay between actions and the expected outcomes?
Q6 How natural did your interactions with the environment seem?
Q7 Do you prefer this method overall (for a single-user virtual game)?

Table 8. Questionnaire for the ball-grabbing game.

Number Question
Q8 How strongly did you feel a sense of presence while using this method?
Q9 How strongly did you feel like your virtual body was your own while using
this method?

How well were you able to predict the outcome of your actions in the
virtual environment?
Q11 How easily were you able to move and manipulate objects in the
virtual environment?
Q12 Would you say you prefer this method over others for a multi-user virtual game?

Q10
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The participants’ first task was to play a single-user game, the archery game. The
single-user experiments were conducted in two sets, beginning with a hands-only mode,
followed by an IK mode and our method mode in random order. Participants were not
informed of the modes they were playing in advance. The hands-only mode was a trial, so
a participant could get used to the game’s rules. IK and our methods are the modes we
evaluate and analyze. This task was tested on a PC with one HTC VIVE, two controllers,
and two base sensor stations. The participants initially stood in an arrow zone of 110 cm by
100 cm in the set-up room and were guided to stay inside the arrow zone during the game.
They then wore the HMD and stated any discomfort to ascertain the best experience. They
posed similar to an archer with their hands and got ready to shoot toward the target. They
moved one hand to shoot the arrow and the other to adjust the bow. The game was over
when all the arrows were used, or when the time limit was exceeded. After finishing the
first set of two modes, participants took a rest for the 60 s. Participants answered seven
questions (Table 7) in seven minutes. This procedure was repeated for the other set.

Then, groups of participants gathered to play a multi-user game, a ball-grabbing
game. In the ball-grabbing game, three participants in a group throw and grab a ball at
each other in a virtual shared space while they are physically located in different places.
One room, where two participants played, was equipped with two PCs, two HMD devices,
four controllers, and two base sensor stations, and the other room, where one participant
played, was equipped with one PC, one HMD, two controllers, and two base sensor stations.
Our experiment uses a client-server network. In other words, PCs with the HMDs are
clients and communicate through a local server that a game engine provides over the
game engine’s network. So, network communication among VR participants begins with
one HMD, goes through the connected PC, network router, and the VR virtual server of
our game engine, and comes back to the network router and PCs connected to the other
HMDs. Five teams of three participants played the ball-grabbing game. Each team played
the ball-grabbing game in a hands-only mode to get used to the game. After 60 s of rest,
participants were randomly assigned to play one of the two modes without knowing what
it was and played the game in the assigned mode for 90 s. Participants rested for 60 s
and filled out the questionnaire (Table 8) in seven minutes. Then, participants played the
ball-grabbing game in the other mode for 90 s, rested, and filled out the questionnaire.

We obtain 45 observations each for the single-user and multi-user game environments.
Our observations include the performance measurements, the rendering time per frame,
game scores, and the user study of the IK method and our method.

6. VR User Experiments’ Results
6.1. Single-User Archery Game Evaluation

We summarize the archery game’s questionnaire results using our proposed method
and an IK method in Figure 11. On a scale from one (very poor) to five (excellent), partici-
pants rate their experiences in the single-user VR game. We review the means of question-
naire results for each question. Figure 11 illustrates that the majority of the participants
voted for our suggested method in Q1 (mean = 4.80), Q2 (mean = 4.86), Q3 (mean = 4.53),
Q4 (mean = 4.73), Q5 (mean = 4.93), Q6 (mean = 4.80), and Q7 (mean = 4.93). Participants
favored our method in all the questionnaires.



Appl. Sci. 2023, 13, 2460

16 of 22

2 3 4

Average Scores of Questionnaire
Results in the Archery Game
1

=5 |4 — T ‘ 426 |l6 |433 =2
o — |l
Q1 Q2 Q3 Q4 Q5 Q6 Q7
Figure 11. Questionnaire results in the archery game. B Our proposed method and M IK.

We compare the post-questionnaire results using a paired ¢-test with significant impor-
tance of 0.05 for either accepting or rejecting the null hypothesis. The paired t-test results
with p < 0.05 indicate that our method significantly differs from an IK method. Table 9 is
the statistical analytics of the archery game questionnaire under our method and the IK
method. Table 9 illustrates that the difference between our method and IK in Q1 (t = 4.582,
p =0.003), Q2 (t = 3.567, p = 0.003), Q4 (t = 2.167, p = 0.047), Q5 (t = 2.449, p = 0.028), Q6
(t=2.167, p = 0.047), and Q7 (t = 3.674, p = 0.002) are substantial. The paired t-test results
show that the p-value of Q3 is high, so the difference between our method and IK for a
sense of moving is insignificant.

Table 9. Statistical analysis of questionnaire of the archery game under our method and the IK method.
* marks the questions with insignificant differences.

Group (Mean) Ours-IK
Question
Ours IK t p
Q1 4.80 420 4.582 0.003
Q2 4.86 4.20 3.567 0.003
Q3 4.53 4.20 1.434 0.173 %
Q4 473 426 2.167 0.047
Q5 1.06 1.46 2.449 0.028
Q6 4.80 4.38 2.167 0.047
Q7 493 433 3.674 0.002

The paired t-test reveals significant differences in the presence (Q1) and embodiment
(Q2). This validates hypothesis H2 that our method of displaying the upper body in a
single-user VR environment increases the feeling of presence more than the IK method.
The t-test result of accuracy (Q4) and naturalness (Q6) tells that our method is significantly
favorable with an IK method with p < 0.05 and confirms hypothesis H1 that our method
generates natural-looking avatars in VR. The t-test result of the Q5 shows that our method
has less delay with a significant importance of 0.028, and therefore confirms hypothesis H3
that our lower latency method enhances user experiences and presence. The t-test result of
Q3 shows that our and IK’s methods are similar. This result makes sense, considering that
our experiments include the minimal moving of participants. Therefore, participants feel
less sense of moving around in a virtual environment no matter what.

Furthermore, we compare the points participants earned after playing the archery
game under two modes. The bar chart in Figure 12 illustrates all participants” average
points for two modes. With our pose regression solution, participants obtained average
points of 42.66 (85.32% of the highest possible points) and 35.73 (71.46% of the highest
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possible points) using an IK solution. Participants obtained higher average points with our
proposed pose regression method.
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Figure 12. Average of total points in percentage in the archery game. M Our proposed method and
B IK.
6.2. Multi-User Ball-Grabbing Game Evaluation

Figure 13 shows the questionnaire results of the multi-user VR experiences. Partic-
ipants favor our pose regression model for the Q8 (mean = 4.66), Q9 (mean = 4.73), Q10
(mean = 4.53), and Q11 (mean = 4.73). Figure 13 illustrates that most participants prefer our
model with Q12 (mean = 4.66) rather than IK.

. 64 26 - 34 % 1 T ey
: : |393 413 I ‘
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Figure 13. Questionnaire results in the ball-grabbing game. M Our proposed method and M IK.

Average Scores of Questionnaire
Results in the Ball Grabbing Game

For statistical analysis, we conducted a paired ¢-test with a p-value borderline of 0.05.
Table 10 shows the paired f-test’s statistical analytics under our and IK methods. The
results illustrate that the differences between our method and IK are significant in Q8
(t=3.055, p < 0.01), Q9 (t = 3.500, p < 0.005), Q10 (t = 3.674, p < 0.005), Q11 (t = 2.304,
p <0.005), and Q12 (t = 2.449, p < 0.05). The Q10 about accuracy of actions and Q11 about
manipulation, with p < 0.005, support hypothesis H1 strongly that the avatar’s motions
are natural. Moreover, Q8 about presence and Q9 about ownership, with p < 0.01, proves
hypothesis H2 that displaying the upper body in a multi-user VR environment increases
the feeling of presence. The questionnaire about overall user satisfaction reveals that the
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users preferred our proposed model over the IK method. A significant difference exists
between our proposed method and IK (p = 0.028 < 0.05) for this satisfaction factor.

Table 10. Statistical analysis of the questionnaire after the ball-grabbing game.

0 Group (Mean) Ours-IK
uestion
Ours IK t p
Q8 4.66 426 3.055 0.008
Q9 4.73 4.26 3.500 0.003
Q10 453 3.93 3.674 0.002
Q11 473 413 2.304 0.002
Q12 4.66 4.26 2.449 0.028

The five groups obtained different scores while playing the ball-grabbing game in
two modes. The bar chart in Figure 14 illustrates the average number of balls grabbed.
Participants scored an average of 19 points (95% of the highest possible points) using our
pose regression method and 16.6 points (83% of the highest possible points) using an IK
solution. These results confirm hypothesis H3 that our lower latency method enhances the
participants’ performance.
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80

40
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ours IK

Figure 14. Average of total balls grabbed by the users in percentage in the ball-grabbing game. M Our
proposed method and M IK.

7. Discussion

Our study investigates the effectiveness of a deep learning method to render the
mimicked upper body avatar in VR that follows the motion of a user in the physical
world. The proposed learning-based method predicts the location of the joints of the
upper body, including the neck, pelvis, elbows, and shoulders, from the data of the HMD
and two controllers. Our pose learning method produces reliable inference of the upper
body joints, validated for test data in Section 3.4. Our method predicts the avatar’s upper
body given a VR user’s HMD and controller data, as in Section 3.5. We compare our
pose regression results with the IK results in Section 4 regarding visual accuracy and
performance. Our resulting avatar looks visually similar to the avatar made from an IK
method for the motion test that a user blocks, sways, and lifts. This visual resemblance
tells us that our method may be a substitute for a widely used IK method in visualizing
an upper body self-avatar of a VR user. Section 4 also compares our and the IK methods’
performance evaluation. The computation time of our method is shorter than an IK method
by approximately 60%. VR applications require 60-80 frames per second and should
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guarantee the rendering time of each frame under a specific time limit to prevent possible
motion sickness. Therefore, our low-latency method is desirable to avoid the potential
decrease in the feeling of presence due to break-in-presence.

We conducted VR user experiments on single-user and multi-user VR applications
in Section 5 and analyzed the user experiments’ results in Section 6. We paid attention to
reducing bias by randomly allocating the experimental units across the participant groups.
These evaluations show that our result significantly differs from an IK result in most aspects,
including presence, embodiment, manipulation, accuracy, delay, and naturalness. The
sense of moving is the only factor whose difference is insignificant. Statistical analysis of
these user evaluations reports that our hypotheses are accepted. We hypothesized in H1
and H2 that our method could be similar to an IK method but better. Our testing verifies
that our method generates a natural avatar and yields self-embodiment similar to and
even better than an IK method. In addition, H3 testing confirms that our lower latency
enhances presence with less break-in presence. Our user evaluation supports that our
method significantly differs from the IK method.

Surprisingly, our user evaluation confirms that the learning-based upper body is better
than the IK upper body. The IK upper body is a typical method to visualize an avatar in
VR corresponding to the pose of a user due to its ease of use and naturalness. Comparable
to an IK, we tested our learning method for an upper body expecting that both ways
produced similar results. The resulting statistical analysis of user evaluation shows that
our learning method is better in most factors than an IK method. We guess that the lower
latency of our method, as shown in Section 4, plays a crucial benefit because it minimizes
the possible break-in presence and embodiment during VR experiences. In our multi-user
VR experiments, the users are close to each other in the same building; therefore, they share
the same network server. In practice, users communicate over the network worldwide
during VR experiences, increasing latency. Our proposed pose estimation method is faster
with lower latency than the IK method, which yields less interference with the feeling
of presence, especially in multiuser VR over a worldwide network. We infer that being
visually similar looking and with lower latency are the reasons for user preferences.

We aimed for a low-cost and high-performance method to estimate a user’s upper
body and animate the corresponding avatar in VR. Our method applies to any user with
only essential VR equipment and therefore is low-cost compared to VR experiences with
onsite motion capture equipment and operational staff. However, our learning method
requires motion capture datasets acquired using an expensive capturing system. As such,
our method is not low-cost in terms of acquiring datasets. VR developers may use the
public human pose datasets or obtain datasets by renting a motion capture studio for a
couple of days to minimize the cost of acquiring datasets. As for VR users, our method is
low-cost and high-performance.

Our pose learning method is stable enough to apply to other datasets, including
famous ones. These public human pose datasets mainly cover locomotion such as walking,
running, kicking, climbing, etc. Moreover, we can extend our datasets, including the
necessary ones, whenever a new VR application requires specific poses that are not typical
in general VR applications. We made our pose datasets focus on the dynamic arm gestures
in the limited space because most VR users stay in a small room and use their upper body
and arms for interaction. We used rhythmic choreographies, but others may use sports
action, game action, and other possible actions. Our datasets are a testbed to see that
our proposed system works. Our proposed method can extend and replace the datasets
if necessary.

8. Limitations

Still, our method has limitations in estimating large and weird postures, especially
the poses not in our learning dataset. One impossible posture could be the twisted legs
and arms observed in yoga. These postures are challenging to acquire even with real-time
motion capturing due to the obstruction of the sensors from the cameras. Our proposed
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learning method has limitations in predicting the accurate pose of these twisted poses. A lot
of human pose datasets may overcome this limitation. If VR developers want to acquire lots
of human poses, data acquisition becomes more expensive due to renting a costly motion
capture system. VR developers may consider that our method is not low-cost, especially if
they capture many poses to estimate even the weird poses. More public datasets of human
poses should help reduce the efforts and cost of acquiring datasets.

In VR, the avatar with hand and finger movements is important for presence and
embodiment. Researchers have investigated the problem of predicting the finger move-
ments of the user in the physical world and rendering the corresponding hand in VR.
To build the hand and finger motion datasets to learn, motion capture devices for the
body are improper devices because of their inaccuracy for the small finger joints. Special
devices, including the leap motion and wearable gloves, are necessary to capture finger
motions. Since these devices have different capturing rates and timings with a motion
capture system, combining the finger and body data requires challenging synchronization.
Therefore, hand and finger motion studies have been developed separately from body
motion studies for decades. Combining the body and hand motions is an interesting and
open problem. In the future, we would like to extend our study to hand motion, which is
crucial in gesture-based interactions, and the whole body, including the lower body, for
better embodiment.

9. Conclusions

This work enhances the presence and embodiment that VR experiences display the
mimicked upper body avatar of a user. To track a user’s motion and visualize a correspond-
ing avatar in VR, on-site motion capture equipment is the most accurate method. Motion
capture equipment, however, requires 10 m by 10 m space and an operating engineer.
Therefore, on-site motion capture equipment is a choice for theme parks and training cen-
ters with spacious areas and staff. An IK method is an alternative if VR experiences track
and visualize only the upper body. An IK method is feasible because it has no minimum
space and staff requirements. A learning-based method is a promising alternative to motion
capture equipment for the upper body avatar, similar to an IK method.

According to the statistical analysis of user evaluation, our proposed learning model
achieves significantly higher than the IK method. Performance evaluation of our learning
method is better than the IK method, and it yields significant differences in user evaluation.
In addition, our learning method has the potential to improve its accuracy by training the
network with targeted datasets for specific VR experiences. Therefore, our learning method
is a substitute for the IK method and a new method with endless potential for the upper
body avatar in VR.
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