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Abstract: In recent times, many studies concerning surgical video analysis are being conducted
due to its growing importance in many medical applications. In particular, it is very important to
be able to recognize the current surgical phase because the phase information can be utilized in
various ways both during and after surgery. This paper proposes an efficient phase recognition
network, called MomentNet, for cholecystectomy endoscopic videos. Unlike LSTM-based network,
MomentNet is based on a multi-stage temporal convolutional network. Besides, to improve the phase
prediction accuracy, the proposed method adopts a new loss function to supplement the general cross
entropy loss function. The new loss function significantly improves the performance of the phase
recognition network by constraining un-desirable phase transition and preventing over-segmentation.
In addition, MomnetNet effectively applies positional encoding techniques, which are commonly
applied in transformer architectures, to the multi-stage temporal convolution network. By using the
positional encoding techniques, MomentNet can provide important temporal context, resulting in
higher phase prediction accuracy. Furthermore, the MomentNet applies label smoothing technique to
suppress overfitting and replaces the backbone network for feature extraction to further improve the
network performance. As a result, the MomentNet achieves 92.31% accuracy in the phase recognition
task with the Cholec80 dataset, which is 4.55% higher than that of the baseline architecture.

Keywords: surgical phase recognition; Cholec80; moment loss; positional encoding; label smooth-
ing; EfficientNet

1. Introduction

The rapid development of artificial intelligence technology has influenced various
fields of interest; more specifically, deep learning technology is being adopted in numerous
ways in the field of medicine [1–6]. In particular, there is an increasing research focus
on deep neural networks that process image data for various medical applications [7–12].
However, there are relatively few cases that focus on analyzing and utilizing medical
videos (not still images) via deep learning techniques. This is mainly because it is quite
complicated to apply deep learning techniques to video analysis since it is necessary to
analyze not only each frame but also the correlation between frames.

The surgical video analysis algorithm can be described as the core of the medical
context aware system (CAS), and it plays the following important roles [13–15]. First,
during surgery, it monitors the status of the surgical procedure in real-time to detect
emergencies such as excessive bleeding or abnormal surgical procedures to be able to
prevent medical accidents in advance [16,17]. The medical CAS system can also aid the
decision-making process of medical staff. In addition, it can be used to optimize operating
room allocation and medical staff placement through surgical progress analysis [18–20]. For
example, the CAS system can monitor the current surgical phase and make this information
available for operation room resource management [21,22].
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The CAS system is important not only during surgery but also after surgery. For
example, the database indexing of surgical videos may be automated through the analysis
of surgical videos, and the indexed surgical videos may be used to train unskilled surgeons
and evaluate surgical skills [23–25]. In addition, the indexed surgical videos may also be
utilized to analyze statistical information and optimize surgical workflows [14,26].

In view of this, Twinanda et al. proposed EndoNet, a network model that handles
the phase recognition task in two steps. They also released the Cholec80 dataset to verify
their model, which consists of 80 cholecystectomy surgery videos recorded at the speed of
25 fps [22]. In the first step of EndoNet, each frame is analyzed independently by using
AlexNet [27] as the backbone architecture. However, the adjacent frames in a video are
temporally correlated. This means that phase prediction networks should efficiently utilize
this extra information for performance improvement. Thus, in the second step of EndoNet,
a two-level hierarchical hidden Markov model (HMM) is adopted to exploit the correlation
between different frames [22]. However, the HMMs assumes that the current state depends
only on the previous states. More so, the number of states is limited to the number of
classes defined in the problem.

To overcome this problem, Twinanda et al. published another paper in 2016, where
they used a long short-term memory (LSTM) network (instead of the hierarchical HMM) to
exploit the correlation information more efficiently [28]. By using the LSTM-based network,
they could improve the prediction performance.

Many studies after the EndoNet-LSTM model have adopted a similar approach. For
example, the SV-RCNet model in [13] also consists of two steps, where a feature extraction
network is used in the first step and an LSTM network is used in the second step. More
precisely, in the first step of SV-RCNet, ResNet [29] is used as the backbone architecture for
feature extraction. Next, the extracted feature vectors are fed to the LSTM, which predicts
the probability for each phase. The SV-RCNet used a down-sampled version of the feature
vector sequence for end-to-end training. The MTRCNet is another example where the
LSTM is adopted to exploit the temporal correlation information [17]. To improve the
prediction performance, the MTRCNet uses a new loss component that makes use of the
correlation between tool prediction and phase prediction.

Although LSTM-based networks could improve the performance of the phase recogni-
tion task, there are several drawbacks. First, the computational speed decreases significantly
as the sequence length increases because LSTM-based networks process data sequentially.
In addition, it is difficult to feed the whole video data to an LSTM at once. For example,
most videos in the Cholec80 dataset are over 30 min long, and even if they are sampled at
one frame per second (not at the original speed of 25 frames per second), they are still too
large to be fed to an LSTM as a whole. Thus, the input sequence is usually divided into
shorter (same-length) sequences before being fed to an LSTM. However, this procedure
prevents the network from having a larger temporal receptive field, which, in turn, limits
the performance improvement of the phase recognition network.

To solve this problem, TeCNO [30] took a different approach by adopting the idea of
a multi-stage temporal convolutional network (MS-TCN) [31]. The MS-TCN is a popular
method in the field of action segmentation and the core idea of MS-TCN is to introduce
atrous convolution (i.e., dilated convolution) on the phase decision network. Due to
the parallel characteristics of the atrous convolution, TeCNO could greatly reduce the
computational cost. Additionally, TeCNO has a significantly wider receptive field than
LSTM-based networks. As a result, TeCNO greatly improved the prediction performance
and outperformed all the previous LSTM-based methods.

This paper proposes an improved phase prediction network. The proposed method also
adopts the MS-TCN structure, but it exploits the inherent property of the Cholec80 surgery
videos more efficiently than TeCNO. In addition, the proposed method makes use of the
positional encoding [32–35] method, which is usually adopted in the transformer [32,33,36–40]
applications. To the best of our knowledge, the proposed MomentNet is the first one to
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adopt the positional encoding technique in the MS-TCN structure. The main contributions
of this paper are as follows:

1. Moment loss, which increases phase prediction accuracy by penalizing undesirable
phase transition and preventing over-segmentation.

2. Positional encoding technique, which aids the network in figuring out contextual
relations, which also improves the accuracy of the performance.

In addition, the proposed method applies a label smoothing technique to suppress
overfitting and consequently, prevent the network from becoming over-confident. Overall,
the techniques mentioned above, together with the replacement of feature extraction
network, greatly improves the phase prediction accuracy. As a result, MomentNet shows
significantly better prediction performance than the baseline architecture on the phase
recognition task with the Cholec80 dataset.

2. Materials and Methods

Figure 1 shows the overall block diagram of the proposed method. Consistent with
most conventional phase recognition networks, the proposed architecture also consists of
two parts, where the first part is for feature extraction, and the second part is for phase
decision. In the feature extractor, each video in Cholec80 dataset is sub-sampled at the
speed of 1 frame per second. Then, each frame is fed to the feature extraction network.
Following this, the extracted feature vectors (not the frames themselves) are fed to the
phase decision network.
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Figure 1. Overall block diagram of the proposed method.

As previously mentioned, the phase decision network of the proposed method is based
on the MS-TCN. Figure 2 shows the overall architecture of the proposed phase decision
network. Specifically, there are two stages in the MS-TCN of the proposed method, where
each stage consists of several layers (For simplification, Figure 2 shows only 3 layers per
each stage, but we use 8 layers in the proposed MomentNet). The spatially embedded
vectors in Figure 2 represent the feature vectors from the feature extraction network in
Figure 1. These input vectors are used as the input to the first stage, and the intermediate
phase prediction results are obtained after the first stage. Then, these phase prediction
results are refined in the second stage to produce the final phase prediction results.
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Figure 3 shows the operations performed in each layer of the phase decision network.
As shown, each layer consists of atrous convolution (i.e., dilated convolution), ReLU,
pointwise convolution (i.e., 1 × 1 × 1 convolution), and dropout operation. The following
equations show these operations in more detail.

zl = ReLU
(

W l
atrous∗ Xl−1 + bl

atrous

)
(1)

Xl = D
(

W l
pointwise∗ zl + bl
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In Equations (1) and (2), Xl−1 and Xl denote the input and output vectors of the l-th
layer, respectively, and the operator (∗) represents the convolution operation. The learnable
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parameters W l
atrous, bl

atrous, W l
pointwise and bl

pointwise denote the weight and bias parameters
of the atrous convolution and pointwise convolution, respectively. The function D means
the dropout operation [41] with the dropout probability of 0.5.

In the MS-TCN, the receptive field size can be made very large by using an increas-
ingly larger dilation factor in the atrous convolution as the layer number increases. In
MomentNet, the dilation factor for the l-th layer is given as follows, where N represents the
total number of layers in each stage:

Dilation(l) = 2l−1, where l ∈ [1, N] (3)

Then, assuming every kernel size of the atrous convolution layer is 3, the receptive
field of a single stage with N layers is given as follows:

Receptive Field(N) = 2N+1 − 1 (4)

It should be noted that this is a very large value compared to the receptive field used
in the LSTM-based models [13,17]. Although it is possible to have a large receptive field
(RF) value in the LSTM-based models, it would require huge computational cost due to the
sequential nature of LSTM models. The MomentNet not only exploits these advantages
of the MS-TCN, but also proposes several efficient techniques for further performance
improvement, which will be explained in the following sub-sections.

2.1. Moment Loss

Typically, most phase recognition networks use the cross-entropy loss in the optimiza-
tion process. The cross-entropy loss is certainly one of the most effective loss components,
but we discovered that it does not reflect all the important characteristics of the Cholec80
videos. That is, the following observations should be considered to improve the perfor-
mance of a phase recognition network.

First, the phase number does not decrease in most cases (i.e., it only increases or
maintains a constant value). For example, the phase number does not change from 2 to 1,
nor does it change from 4 to 3.

Second, the amount of phase change is usually 0 or 1. In other words, the phase
number does not change abruptly from 1 to 5, nor does it change from 2 to 7.

Finally, the phase transition occurs only a very few times (In most cases, the phase
transition occurs only 6 times because there are 7 phases, and the phase usually increases by 1).

It should be noted that this number (i.e., 6) is very small compared to the total number
of frames. For example, when a video is 30 min long, and if we sample the video at the
speed of 1 frame per second, there are 1800 frames. Thus, theoretically, the phase transition
can occur 1799 times, but, in reality, it occurs only 6 times. It should be noted that there are
a few exceptions in some of the videos. For example, some of the videos consist of only
6 phases (instead of the usual 7 phases), in which case the phase transition occurs only
5 times. In addition, the phase number sometimes decreases in some of the Cholec80 videos.
However, in most cases, Cholec80 videos satisfy the above-mentioned three properties.
Thus, a new loss component is required to reflect the following important observations.

(Obs1) The phase number does not decrease in most cases.
(Obs2) The amount of phase change is usually 0 or 1.
(Obs3) The phase change occurs only a very few times.
One simple way to reflect the above-mentioned observations would be to use the loss

function of the following form:

L(n) = |p(n)− y(n)| (5)

where p(n) is the final phase prediction and y(n) is the target class at time step n. However,
p(n) can be obtained only after the arg-max operation, which is not appropriate in a
loss function owing to the non-differentiable characteristics. To solve this problem, the
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proposed method introduces a new loss component called moment loss, which is based on
the following (1st) moment of the phase.

M(n) =
C=7

∑
c=1

c· p f inal(n, c) (6)

In Equation (6), p f inal(n, c) is the predicted probability that the phase is c at time
step n at the final stage of the MS-TCN. The number C denotes the number of phases (i.e.,
classes), which is 7 for the Cholec80 dataset. Then, the proposed moment loss at time step
n is given in the following three forms:

LmA(n) = ReLU
(
−M(n) +

1
P ∑n−1

k=n−P M(k)
)

, (7a)

LmB(n) = ReLU
(

M(n)− 1
P ∑n−1

k=n−P M(k)
)

, (7b)

LmC(n) =
∣∣∣∣M(n)− 1

P ∑n−1
k=n−P M(k)

∣∣∣∣ (7c)

In Equation (7), P is a hyperparameter that represents the number of past frames that
should be examined to find out the recent phase tendency. There are two components in all
three forms of Equation (7), where the first one is the moment at the current time step, and
the second one is the average moment of the past P frames. First, let us consider the loss
form in Equation (7a). There will be no loss when the current moment (i.e., M(n)) is larger
than the (average) past moment, but a loss will occur when the current moment is smaller
compared to the past moment. Thus, it is expected that LmA(n) will be effective in the
sense of (Obs1). Furthermore, it should be noted that LmA(n) will be effective in the sense
of (Obs3) as well because it suppresses excessive phase transition. Now, let us consider
the loss form in Equation (7b). As can be expected, LmB(n) will be effective in the sense of
(Obs2) and (Obs3). Finally, it can be seen that LmC(n) will be effective in the sense of all
three observations. Although the three forms of moment loss can be used independently,
they can be used in a combined way as follows.

Lmoment(n) = λ1LmA(n) + λ2LmB(n) + λ3LmC(n) (8)

Then, the total loss function for a whole video is given as follows:

Ltotal =
1
N

(
N

∑
n=1

LCE(n) +
N

∑
n=1

Lmoment(n)

)
(9)

where N is the total number of frames and LCE is the cross-entropy loss defined as follows:

LCE(n) = −
1
S

S

∑
s=1

C

∑
c=1

y(n, c) log p(s, n, c) (10)

In Equation (10), p(s, n, c) is the predicted probability that the phase is c at time step n
for the MS-TCN stage whose stage number is s. The number S represents the number of
stages, which is 2 in the proposed network. Thus, p(s, n, c) in Equation (10) is the same as
p f inal(n, c) in Equation (6) when s = S. In Equation (10), the one-hot encoded label y(n, c)
is given as follows, where c and n denote the class number and frame number, respectively:

y(n, c) =
{

1 when c is the target class at time step n
0 otherwise

(11)

It should be noted that both y(n, c) in Equation (11) and y(n) in Equation (5) represent
the target class (i.e., target phase) at time step n. However, they are different in that y(n, c)
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is represented in one-hot fashion, whereas y(n) is not (In other words, y(n) is a single
number). The effect of this new loss function will be discussed in more detail in Section 3.1.

2.2. Positional Encoding

Generally, most conventional phase recognition networks use LSTM-based networks to
analyze the temporal correlation between adjacent frames. On the other hand, MomentNet
uses a MS-TCN for the phase decision task. Although MS-TCNs have many merits over
LSTMs, there are some disadvantages as well. For example, it is difficult for MS-TCNs to
find out the order of the frames in a given video sequence because it processes all the input
frames in parallel. This is in contrast to LSTMs, where the order of frames can be easily
figured out because each input frame is fed to the decision network sequentially. To solve
this problem, the proposed method adopts the positional encoding technique, which was
first introduced for transformers [36]. To the best of our knowledge, this is the first attempt
to apply a positional encoding technique to MS-TCN.

Equations (12) and (13) show the positional encoding vector for each (pos, d, i), where
pos represents the vector position in a given sequence, d denotes the feature vector dimen-
sion, and i denotes the position index within a feature vector.

PEpos, 2i = sin
pos

Const
2i
d

(12)

PEpos, 2i+1 = cos
pos

Const
2i
d

(13)

In Equations (12) and (13), Const is a constant that should be determined appropriately
so that it can handle a very long input sequence (It is usually set to 10,000 in transformer
applications). The positional encoding vectors are added to the feature vectors (that are
the outputs from the feature extraction networks in Figure 1) to help the decision network
figure out the order of the input frames.

As will be shown in Section 3.2, this (basic) positional encoding technique improves
performance to some extent, but the proposed method uses the technique in an even more
efficient way. For this, we first investigated the characteristics of the Cholec80 dataset. The
lengths of the 80 videos are quite different from one another, and the shortest video is only
739 s (12 min and 19 s) long, while the longest video is 5995 s (99 min and 55 s) long. As a
result, the points at which the phase transitions occur are quite different for any two videos
with significantly different video lengths. This can be seen in Figure 4a, where the phase
transition points are shown in the unit of seconds for several sample videos in the Cholec80
dataset. However, if the phase transition points are shown in the unit of percentages, the
transition points are quite similar for all the videos, as can be seen in Figure 4b. Thus, it can
be expected that a relative positional encoding will be more effective.

One of the simplest ways to implement the relative positional encoding technique
is to use the variable-length positional encoding (VLPE) method in [35]. The following
equations show how the positional encoding vectors are generated by VLPE:

PEpos, 2i(Video Length) = sin
pos

Video Length
2i
d

(14)

PEpos, 2i+1(Video Length) = cos
pos

Video Length
2i
d

(15)

As can be seen, the VLPE uses the video sequence length in the denominators of
Equations (14) and (15), whereas the basic PE uses a constant. Thus, the VLPE can be used
only when the video length is known in advance, whereas the basic PE technique can be
used without knowing it. The effect of this technique (including the comparison between
basic PE and VLPE) will be shown in Section 3.2.
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2.3. FeatureNet Backbone Architecture and Label Smoothing

Typically, most conventional phase recognition networks are based on the ResNet
architecture, and TeCNO also uses ResNet50 for feature extraction. As the depth, width,
or resolution of a CNN increases, the performance of the CNN improves, but, at the same
time, the computational cost also increases. However, an absurdly large increase in any
one of these factors will result in an exponentially expensive computational cost, with very
little or no performance gain. Thus, it is important to determine these three factors (i.e., the
depth, width, and resolution) in a balanced way for the best trade-off between performance
and computational cost. To solve this problem, the EfficientNet [42] presents a scaling
technique called the compound scaling method to find the optimal ratio between these
three factors, which is given in the following equation.

depth = αφ, width = βφ, resolution = γφ,
s.t.α·β2·γ2 ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1

(16)

In Equation (16), α, β, γ are constants determined by a small grid search and the
coefficient φ denotes a hyper-parameter that can control the model scaling. The proposed
method chooses EfficientNetB4 as the backbone architecture for the feature extractor. As
shown in Table 1, EfficientNetB4 requires a similar number of mult-adds operations as
ResNet50, and it requires fewer parameters than ResNet50. However, EfficientNetB4
demonstrates a better performance than ResNet50, which will be discussed in more detail
in Section 3.3.

Table 1. Comparison between ResNet50 and EfficientNetB4.

ResNet50 EfficientNetB4

output feature vector size 2048 1792

# of parameters 26 M 19 M

# of operations 4.1 B Flops 4.2 B Flops

In general, the higher the number of classes, the lower the prediction accuracy in multi-
class classification tasks. However, in the phase recognition task with the Cholec80 dataset,
the phase prediction accuracy is usually not high enough although there are only 7 classes.
Since the prediction accuracy usually reaches 100% in the training stage, this implies that
a phase recognition network does not generalize well. We investigated the reasons for
this bad generalization and attributed this problem to the low variation between frames
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in the Cholec80 dataset. That is, most frames in a Cholec80 video share similar colors and
objects and consequently, there are only small differences between frames. Thus, a phase
recognition network should use this small difference as a clue to determine the current
phase, which, in turn, causes over-fitting. Thus, we decided to apply label smoothing [43]
to prevent the network from becoming over-confident and make the network generalize
well with un-seen data. In conventional phase recognition networks, the target label
is given in the one-hot fashion, as shown in Equation (11). On the other hand, in the
MomentNet, label smoothing is applied as follows, where C is the number of classes and α
is a smoothing parameter:

y(n, c) =

{
1− α when c is the target class at time step n

α

C− 1
otherwise (17)

The larger the α, the stronger the label smoothing effect. However, if α is too large,
the difference between 1− α and α/(C− 1) becomes too small, which, in turn, hinders
the training process. Thus, it is very important to carefully determine the value of α. The
optimal value of α and the effect of the label smoothing technique will be discussed in more
detail in Section 3.3.

2.4. Training Configuration

Figure 5 shows the overall training process of the MomentNet. As mentioned in
Section 1, the dataset that we used is Cholec80, which is the most popular public dataset
in the phase recognition field. There are 80 videos in the Cholec80 dataset, and the train,
validation and test dataset split ratio is 48:12:20. Each video in the Cholec80 dataset is
sub-sampled at the speed of 1 frame per second. The overall training process consists of
feature extractor training and decision network training.
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In the first step, each frame (in the train split) is fed to the feature extraction network
for training. To maximize the feature extractor performance, both tool detection information
and phase recognition information were exploited by using the binary cross entropy loss
function. For the feature extractor training, the sampled images were preprocessed via
resizing to 350 by 350 pixels, random cropping to 320 by 320 pixels, random horizontal
flipping with probability of 0.5, color jittering, and input normalization. As an optimizer,
the AdamW [44] was adopted with a batch size of 8, a weight decay of 1E-2, and a start
learning rate of 5E-4. Furthermore, as the learning rate scheduler, the cosine annealing
method [45] was applied. Specifically, the learning rate was reduced to 1E-6 by the end
of the 5th epoch, and subsequently, a fixed learning rate of 1E-6 was used for 5 more
epochs. At the end of each training epoch, validation was performed using the validation
set, and the validation loss and validation accuracy were recorded to check if there was any
abnormality in the training process.
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Then, in the second step, the vectorized feature dataset is built by using the pre-trained
feature extractor network. In this step, the input images were preprocessed via resizing to
350 by 350 pixels, center cropping to 320 by 320 pixels, and input normalization.

Finally, the vectorized dataset was used to train the phase decision network. It should
be noted that only the decision network is trained in this step (In other words, the learning
parameters in the feature extractor are not updated in this step). In this step, the AdamW
optimizer was used again as an optimizer, with a weight decay of 1E-2 and the start
learning rate of 5E-4. The learning rate was reduced to 1E-6 until the 40th epoch by the
cosine annealing method. The batch size is set to be equal to the length of each video.

3. Results
3.1. Effect of the Moment Loss Function

As explained in Section 2.1, three forms of moment loss can be used independently, or
they can be used in combination as shown in Equation (8). The row numbers 3 to 5 in Table 2
show the accuracy improvement when each of the three forms is used independently. The
baseline accuracy is based on the TeCNO model, which uses only the cross-entropy loss.
The hyperparameter P in Equation (7) is set to 10 in this experiment. Although the value of
P can be optimized for each case, one single value was used for convenience.

Table 2. The accuracy improvement due to different combinations of three moment loss components.

λ1 λ2 λ3 Accuracy Improvement

Baseline 87.76%

LmA only 15 89.00% 1.24%

LmB only 7 88.62% 0.86%

LmC only 5 88.65% 0.89%

Combination 10 3 89.61% 1.85%

It was first observed that the value of λ has a very important effect on the final
performance. As can be expected, when λ was very small, the results were not significantly
different from the baseline network that uses only LCE. On the other hand, when a very
large λ value was used, the network did not converge. Thus, the parameters λ1, λ2, and λ3
were optimized separately for each of the three cases by using the grid search method. As
can be observed, a performance improvement of at least 0.86% was observed when each of
the three forms was used independently.

It is also observed that the result with LmA(n) is most accurate, which implies that
(Obs1) and (Obs3) in Section 2.1 are relatively more important than (Obs2). It can also be
seen that the optimal λ1 is relatively larger than the optimal λ2 and λ3. This is because
the events that violate (Obs1) happen less frequently compared to the events that violate
(Obs2) or (Obs3) (Here, a violation of (Obs1) means that a predicted phase is smaller than
the average past phase). Thus, a relatively larger value of λ1 is required for appropriate
training. As shown in the final row of Table 2, the best result was observed when the three
forms were used in a combined way. In fact, the performance of MomentNet is 1.85% better
than that of the baseline network, which is a significant improvement in performance.

3.2. Effect of (Variable-Length) Positional Encoding

Table 3 shows the effect of the positional encoding technique presented in Section 2.2.
As shown in the table, both basic PE and VLPE techniques effectively improve the accuracy
of the baseline model. It is also observed that VLPE is more effective than basic PE. More
precisely, the accuracy of the proposed model based on PE is 0.53% higher than that of
the baseline model, while the accuracy of VLPE model is 1.31% higher. This is because a
relative position is a better position indicator when dealing with many videos with different
lengths. It should be noted that the VLPE technique can be used only when the video
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length is known in advance. Thus, it can be used only for ‘after-surgery’ applications, not
for ‘during-surgery’ applications. It should be noted that there are many ‘after-surgery’
applications as well as ‘during-surgery’ applications, as explained in Section 1. It should
also be noted that the basic PE can be used for both cases.

Table 3. The accuracy improvement due to (variable length) positional encoding.

Accuracy Improvement

Baseline Network 87.76%

(Basic) Positional Encoding 88.29% 0.53%

Variable-Length Position Encoding 89.07% 1.31%

3.3. Effect of Other Optimization Techniques

As explained in Section 2.3, EfficientNetB4 requires fewer parameters and approx-
imately the same number of operations, when compared with ResNet50. However, a
decent performance improvement was observed when EfficientNetB4 is used instead of
ResNet50 as the backbone architecture of the feature extraction network. Table 4 shows the
comparison results between the two backbone architectures (It should be noted that the
moment loss and the PE techniques were not used here. The comprehensive results will
be shown in Section 3.4). As can be seen, the accuracy with the EfficientNetB4 network is
0.85% higher than that of the ResNet50 case.

Table 4. Effect of other optimization techniques.

Feature Extractor Label Smoothing Accuracy Improvement

ResNet50

87.76%

0.01 88.43% 0.67%

0.05 88.98% 1.22%

0.10 89.07% 1.31%

0.20 89.20% 1.44%

0.30 89.00% 1.24%

0.40 88.97% 1.21%

EfficientNetB4

88.61% 0.85%

0.01 89.87% 2.11%

0.05 90.32% 2.56%

0.10 90.54% 2.78%

0.20 91.07% 3.31%

0.30 90.94% 3.18%

0.40 90.89% 3.13%

Table 4 also shows the effect of the label smoothing. As explained, when the label
smoothing parameter α is very small, the performance improvement is negligible. On
the other hand, as α increases, the accuracy begins to increase as well. However, when α
becomes too large, the performance begins to degrade, as can be seen in Table 4. According
to our simulations, the optimal α value was 0.20 for both ResNet50 and EfficientNetB4
backbone architectures.

3.4. Combined Results

Table 5 summarizes all the results shown in Sections 3.1–3.3. It also shows the com-
bined results when all the techniques are used together. It should be noted that the effect of
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one technique can affect the effect of another one. As a result, the optimal λ values in the
final two rows of Table 5 are slightly different from the ones shown in the third row. As
shown, when the base PE is applied, the final accuracy of the MomentNet is 91.90%, which
is 4.14% higher than that of the baseline architecture. On the other hand, when VLPE is
used, the accuracy of the MomentNet is 4.55% higher, which is a significant improvement
in performance. As explained, a proper PE technique should be used depending on the
application being considered.

Table 5. Summary of all the results of MomentNet.

Feature
Extractor

Label
Smoothing Moment Loss PE Accuracy Improvement

Single
Technique

ResNet50 87.76%

ResNet50 [λ1, λ2, λ3] = [10, 0, 3] 89.61% 1.85%

ResNet50 Basic PE 88.29% 0.53%

ResNet50 VLPE 89.07% 1.31%

ResNet50 0.20 89.20% 1.44%

EfficientNetB4 88.61% 0.85%

Combined
Results

EfficientNetB4 0.20 [λ1, λ2, λ3] = [5, 0, 2] Basic PE 91.90% 4.14%

EfficientNetB4 0.20 [λ1, λ2, λ3] = [5, 0, 2] VLPE 92.31% 4.55%

Figure 6 compares the confusion matrix of the baseline network with that of Moment-
Net. The options shown in the last row of Table 5 were used for the confusion matrix results
in Figure 6b. For convenience, let p(i, j) denote the probability that the predicted phase is j,
while the ground truth label is i. Then, the following equation should hold for all i:

7

∑
j=1

p(i, j) = 1 for 1 ≤ i ≤ 7 (18)
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From Figure 6, it is observed that the following property holds for the MomentNet
case, whereas it does not hold for the baseline model.

p(i, j) = 0 when |i− j| ≤ 3 (19)

This is mainly due to the moment loss, which penalizes the phases that are far from
the target phase (i.e., target class). Let us give an example. Suppose that the target phase
at the current time step n is 2. Then, among all p f inal(n, c) in Equation (6), p f inal(n, c = 2)
should be the highest (preferably with very large differences when compared with other
p f inal(n, c) values). This means that M(n) in Equation (6) will be very close to 2. Then,
considering the three observations in Section 2.1, (1/P)∑ M(k) in Equation (7) will also
be close to 2. Then, p f inal(n, c = 7) in Equation (6) will be suppressed because a large
p f inal(n, c = 7) would increase the value of M(n), which, in turn, would increase the
moment loss in Equation (7). Of course, p f inal(n, c = 6) will also be suppressed in this
example although the degree of suppression will be smaller than that for p f inal(n, c = 7)
case. It is also observed that p(i, i) of MomentNet is higher than that of the baseline model
for every i. Although Figure 6b is based on the options shown in the last row of Table 5, a
similar result was observed for a different option combination as long as the moment loss
is used.

Figure 7 shows three examples where the proposed method makes correct predictions
while the baseline method does not. More precisely speaking, the three figures in Figure 7
show examples where the baseline method fails to reflect (Obs1), (Obs2) and (Obs3) in
Section 2.1, respectively. On the other hand, the MomentNet successfully makes correct
predictions in the three cases by making use of the proposed moment loss.
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4. Conclusions

Surgical video analysis algorithms are very important in many medical applications.
In particular, phase recognition algorithms play very important roles both during and after
surgery. This paper proposed an efficient phase recognition network, called MomentNet,
for cholecystectomy endoscopic videos. To improve the performance of a phase recog-
nition network, it is important to constrain unwanted phase transitions. Because of the
non-differentiable characteristics of the argmax function, it is difficult to give a penalty
for undesirable phase transitions. However, by proposing a novel idea, called moment
loss, MomentNet successfully improved the phase recognition performance. It is also
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demonstrated that positional encoding can help improve performance. To the best of our
knowledge, MomentNet is the first attempt to apply a positional encoding technique to the
MS-TCN, although there have been very many papers that apply the positional encoding
technique to transformer architectures. Although both basic PE and VLPE improved the
phase prediction performance, VLPE was more effective because relative position is a better
position indicator. The replacement of the feature extraction architecture also proved to
be quite effective. Although EfficientNetB4 requires a similar number of operations and
fewer parameters, when compared with ResNet50, the new backbone architecture was
quite helpful in increasing the phase prediction accuracy. Finally, the label smoothing
technique prevented MomentNet from becoming over-confident and it also improved
the performance.

It should be noted that the three properties in Section 2.1 will also hold for most
other surgery videos. This means that the proposed moment loss can be used not only
for the Cholec80 dataset, but also for other surgery videos (although slight changes may
be required). This is another merit of the proposed method, and this topic should be
investigated further in future work. Finally, it should also be noted that action segmentation
is another area where the MS-TCN structure can be efficiently used. Thus, the proposed
moment loss and positional encoding idea may be applied to the action segmentation area,
which is another candidate for future work.
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