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1 Introduction

Positivity bounds are the general feature of a local Quantum Field Theory (QFT) embeddable
into the Ultra-Violet (UV) complete theory [1–3]. We rely on the fundamental principles in
QFT such as special relativity, conservation of probability, and causality, which correspond
to Lorentz invariance, unitarity, and analyticity of transition amplitudes, respectively. Then,
also using the dispersion relation and the optical theorem, we can obtain positivity bounds
for the local operators in Effective Field Theory (EFT).

The best bounds on the dimension-8 operators can be obtained from the forward limit
of elastic scattering (i.e. t = 0), thanks to the crossing symmetry [4]. There are more bounds
obtainable in the other approaches using the superposition of the states and extremal rays
than in the elastic scattering approaches [4–10]. It is remarkable that the extremal ray
approach may give a chance to expose other bounds, enabling us to connect the region of
the Wilson coefficient space bounded by positivity to the UV physics.

In this article, considering the effective theory for the Higgs fields in the Standard
Model (SM) and scalar dark matter with Z2 parity, we derive the positivity bounds on the
dimension-8 derivative Higgs-portal couplings from the forward 2 → 2 elastic scattering
amplitudes. To this purpose, it is sufficient for us to take the superposed states for Higgs
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and scalar dark matter, because it does not rely on a precise form of the UV physics. On
top of the positivity bounds, we also impose various phenomenological constraints from dark
matter relic density, direct and indirect detection for dark matter, and show the interplay
of them with the positivity bounds in constraining the effective Higgs-portal couplings.
We discuss the positivity bounds in relation to the effective theory obtained after massive
graviton and/or radion are integrated out.

The paper is organized as follows. First, we introduce the general effective interactions
for Higgs and scalar dark matter up to dimension-8 operators and show some benchmark
UV models where a set of correlated effective interactions is obtained after massive graviton
or radion are integrated out. Next, we show the positivity bounds on the dimension-8
Higgs-portal interactions based on the elastic scattering for the superposed states. Then,
we consider the dark matter relic density, direct and indirect detection, and Large Hadron
Collider (LHC) constraints on the effective Higgs-portal interactions. Finally, conclusions
are drawn. There is one appendix dealing with the one-loop corrections to the Higgs-portal
dimension-8 operators in the presence of dimension-6 operators.

2 Higgs-portal couplings in EFT

We take the effective Lagrangian for the real scalar dark matter ϕ and the Higgs doublet
H, up to dimension-8 operators, as

LHiggs−portal = L1 + L2 (2.1)

with

L1 = − 1
6Λ4

(
c1m

4
ϕϕ

4 + 4c2m
4
H |H|4 + 8c′2λHm2

H |H|6 + 4c′′2λ2
H |H|8

+ 4c3m
2
ϕm

2
Hϕ

2|H|2 + 4c′3λHm2
ϕϕ

2|H|4
)

+ 1
6Λ4

(
d1m

2
ϕϕ

2(∂µϕ)2 + 4d2m
2
H |H|2|DµH|2 + 4d′2λH |H|4|DµH|2

+ 2d3m
2
ϕϕ

2|DµH|2 + 2d4m
2
H |H|2(∂µϕ)2 + 2d′4λH |H|4(∂µϕ)2

)
, (2.2)

L2 =
C

(1)
H2ϕ2

Λ4 O
(1)
H2ϕ2 +

C
(2)
H2ϕ2

Λ4 O
(2)
H2ϕ2

+
Cϕ4

Λ4 Oϕ4 +
C

(1)
H4

Λ4 O
(1)
H4 +

C
(2)
H4

Λ4 O
(2)
H4 +

C
(3)
H4

Λ4 O
(3)
H4 (2.3)

where c1,2,3, d1,2,3,4 and primed quantities are dimensionless parameters, and C(1)
H2ϕ2 , C(2)

H2ϕ2 ,
Cϕ4 and C(1,2,3)

H4 are the Wilson coefficients for the dimension-8 operators containing four
derivatives listed in table 1, and Λ is the cutoff scale.

We assume the Z2 symmetry for the scalar dark matter, so the effective Higgs-portal
interactions include only even numbers of scalar dark matter particles. Moreover, the
Higgs mass parameter m2

H is introduced in the parametrization of the effective Higgs-portal
couplings, so it can be rewritten as m2

H = −λHv2 after electroweak symmetry is broken
dominantly for the renormalizable Higgs potential.
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O
(1)
H2ϕ2 = (DµH

†DνH)(∂µϕ∂νϕ) O
(2)
H2ϕ2 = (DµH

†DµH)(∂νϕ∂νϕ)

Oϕ4 = ∂µϕ∂
µϕ∂νϕ∂

νϕ

O
(1)
H4 = (DµH

†DνH)(DνH†DµH) O
(2)
H4 = (DµH

†DνH)(DµH†DνH)

O
(3)
H4 = (DµH

†DµH)(DνH
†DνH)

Table 1. Dimension-8 operators for Higgs and real scalar dark matter.

After electroweak symmetry breaking with H = (0, v)T /
√

2 and using m2
H = −λHv2,

the effective Higgs-portal interactions linear in the Higgs boson h are given by

Lh,linear = 1
3Λ4 h

[
2(c3 − c′3)λHv3m2

ϕϕ
2 − (d4 − d′4)λHv3(∂µϕ)2

]
, (2.4)

which vanishes for c′3 = c3 and d′4 = d4. Then, there is no effective linear Higgs-portal
coupling to scalar dark matter, so there is no tree-level contribution to dark matter
annihilation or DM-nucleon scattering processes with Higgs exchanges, being consistent
with the results for the massive spin-2 particle in refs. [11, 12]. The origin of the effective
Higgs-portal couplings will be discussed shortly. Henceforth, we also use the physical Higgs
mass, m2

h = 2λHv2 = −2m2
H , alternatively.

2.1 Graviton-like interactions

The dimension-8 operators as well as the lower dimensional operators in eqs. (2.2) and (2.3)
can be originated from the exchanges of a massive spin-2 particle Gµν [13]. Introducing
the interactions between a massive spin-2 particle and Higgs/dark matter by the energy-
momentum tensors,

LG = −cH
M

GµνTHµν −
cϕ
M

GµνTϕµν (2.5)

where THµν , Tϕµν are the energy-momentum tensors for Higgs and dark matter, given by

THµν = (DµH)†DνH + (DνH)†DµH − gµν [gρσ(DρH)†DσH]
+ gµν(m2

H |H|2 + λH |H|4), (2.6)

Tϕµν = ∂µϕ∂νϕ−
1
2gµν(gρσ∂ρϕ∂σϕ) + 1

2gµνm
2
ϕϕ

2, (2.7)

and cH , cϕ are dimensionless parameters, and M is the suppression scale for the spin-2
interactions. Then, after integrating out the massive spin-2 particle, we obtain the effective
Lagrangian for Higgs and scalar dark matter [11, 12], as follows,

LG,eff = 1
2m2

GM
2 T

µνPµν,αβT
αβ

= 1
4m2

GM
2

(
2TµνTµν −

2
3T

2
)
, (2.8)
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where Tµν = cHT
H
µν + cϕT

ϕ
µν , T = cHT

H + cϕT
ϕ with TH = TH,µµ , Tϕ = Tϕ,µµ , and the

polarization tensor for the massive gravition is given by Pµν,αβ = 1
2
(
gµαgνβ + gµβgνα −

2
3gµνgαβ

)
. Then, we get the effective dimension-8 operators with the Wilson coefficients,

C
(2)
H2ϕ2

Λ4 = −1
3
C

(1)
H2ϕ2

Λ4 = − 2cHcϕ
3m2

GM
2 , (2.9)

and the effective lower dimensional Higgs-portal operators with

c
(′)
3

Λ4 = d3
Λ4 = d

(′)
4

Λ4 = cHcϕ
m2
GM

2 = 1
2
C

(1)
H2ϕ2

Λ4 . (2.10)

Similarly, we can also match the effective self-interactions for Higgs and scalar dark
matter due to the spin-2 exchanges, as follows,

Cϕ4

Λ4 =
c2
ϕ

3m2
GM

2 = cϕ
6cH

C
(1)
H2ϕ2

Λ4 , (2.11)

C
(1)
H4

Λ4 =
C

(2)
H4

Λ4 = −3
2
C

(3)
H4

Λ4 = c2
H

m2
GM

2 = cH
2cϕ

C
(1)
H2ϕ2

Λ4 , (2.12)

c1
Λ4 = d1

Λ4 =
c2
ϕ

m2
GM

2 = cϕ
2cH

C
(1)
H2ϕ2

Λ4 , (2.13)

c
(′,′′)
2
Λ4 = d

(′)
2

Λ4 = c2
H

m2
GM

2 = cH
2cϕ

C
(1)
H2ϕ2

Λ4 . (2.14)

In this case, we can find the correlations between the effective couplings for Higgs and scalar
dark matter up to dimension-8 operators from the tree-level matching conditions in terms
of a single effective portal-coupling, C(1)

H2ϕ2 , whereas the Higgs and scalar self-interactions
are subject to one more parameter, cϕ

cH
, originated from a more fundamental theory.

Consequently, for cHcϕ > 0, which is the case for the attractive force between Higgs and
dark matter, we obtain C(1)

H2ϕ2 = −3C(2)
H2ϕ2 > 0 for the dimension-8 Higgs-portal couplings

at the matching scale of the massive spin-2 particle.

2.2 Radion-like interactions

We now consider another way to match the effective Higgs-portal interactions in the
presence of a radion-like scalar particle r [13]. We introduce the interactions between
the radion from the extra dimension (or dilaton) and Higgs/matter by the trace of the
energy-momentum tensors,

Lr = crH√
6M

rTH +
crϕ√
6M

rTϕ (2.15)

with radion couplings, crH , crϕ. Then, integrating out the dilaton-like scalar r, we obtain the
effective Lagrangian in the following form,

Lr,eff = 1
12m2

rM
2 T

2 (2.16)
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with T = crHT
H + crϕT

ϕ. Therefore, the Wilson coefficients of the resultant effective
dimension-8 operators become

C
(1)
H2ϕ2 = 0,

C
(2)
H2ϕ2

Λ4 =
crHc

r
ϕ

3m2
rM

2 , (2.17)

and the effective lower dimensional Higgs-portal operators are given by

c
(′)
3

Λ4 = d3
Λ4 = d

(′)
4

Λ4 = −
2crHcrϕ
m2
rM

2 = −6
C

(2)
H2ϕ2

Λ4 . (2.18)

Thus, as for the massive spin-2 particle, for c′3 = c3 and d′4 = d4, there is no effective linear
Higgs-portal coupling to scalar dark matter.

Similarly, the effective self-interactions for Higgs and dark matter are given by

Cϕ4

Λ4 =
(crϕ)2

12m2
rM

2 =
crϕ

4crH

C
(2)
H2ϕ2

Λ4 , (2.19)

C
(1)
H4 = C

(2)
H4 = 0,

C
(3)
H4

Λ4 = (crH)2

3m2
rM

2 = crH
crϕ

C
(2)
H2ϕ2

Λ4 , (2.20)

c1
Λ4 = d1

Λ4 = −
2(crϕ)2

m2
rM

2 = −
6crϕ
crH

C
(2)
H2ϕ2

Λ4 , (2.21)

c
(′,′′)
2
Λ4 = d

(′)
2

Λ4 = −2(crH)2

m2
rM

2 = −6crH
crϕ

C
(2)
H2ϕ2

Λ4 . (2.22)

Consequently, for crHcrϕ > 0, which is the case for the attractive force between Higgs
and dark matter due to the radion, we obtain C(2)

H2ϕ2 > 0 for the dimension-8 Higgs-portal
couplings at the matching scale of the radion.

Summing up both massive spin-2 and radion couplings in eqs. (2.9)–(2.14) and (2.17)–
(2.22), we get the effective Higgs-portal interactions,

C
(1)
H2ϕ2

Λ4 = 2cHcϕ
m2
GM

2 ,
C

(2)
H2ϕ2

Λ4 = − 2cHcϕ
3m2

GM
2 +

crHc
r
ϕ

3m2
rM

2 , (2.23)

c
(′)
3

Λ4 = d3
Λ4 = d

(′)
4

Λ4 = cHcϕ
m2
GM

2 −
2crHcrϕ
m2
rM

2 = −3
2
C

(1)
H2ϕ2

Λ4 − 6
C

(2)
H2ϕ2

Λ4 , (2.24)

and the effective self-interactions,

Cϕ4

Λ4 =
c2
ϕ

3m2
GM

2 +
(crϕ)2

12m2
rM

2 , (2.25)

C
(1)
H4

Λ4 =
C

(2)
H4

Λ4 = c2
H

m2
GM

2 ,
C

(3)
H4

Λ4 = − 2c2
H

3m2
GM

2 + (crH)2

3m2
rM

2 , (2.26)

c1
Λ4 = d1

Λ4 =
c2
ϕ

m2
GM

2 −
2(crϕ)2

m2
rM

2 , (2.27)

c
(′,′′)
2
Λ4 = d

(′)
2

Λ4 = c2
H

m2
GM

2 −
2(crH)2

m2
rM

2 = −3
C

(1)
H4

Λ4 − 6
C

(3)
H4

Λ4 . (2.28)

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
4

Here, we note that only the massive spin-2 particle contributes to C(1)
H2ϕ2 while both massive

spin-2 particle and radion contribute to C(2)
H2ϕ2 . On the other hand, the dimension-4 and

dimension-6 Higgs-portal couplings are universally determined in terms of C(1)
H2ϕ2 and C(2)

H2ϕ2

in eq. (2.24), so there is no tree-level contribution to the DM-nucleon scattering, as discussed
below eq. (2.4) in the beginning of this section. Moreover, the dimension-4 Higgs portal
coupling, ϕ2|H|2, is doubly suppressed by m2

ϕ

Λ2 and m2
H

Λ2 .

3 Positivity bounds on dimension-8 Higgs-portal

In this article, we derive the positivity bounds on the dimension-8 derivative Higgs-portal
couplings for scalar dark matter.

3.1 Scattering amplitudes for superposed states

Briefly speaking, the statement of the positivity bounds is that the second order s-derivative
of the amplitudes with poles subtracted must be positive. For the case of the superposed
elastic scattering process, ab → ab, where a and b states are superposition states with
coefficients characterized by u and v vectors,

|a〉 = ui |i〉 , |b〉 = vi |i〉 , (3.1)

we get the positivity bounds by

uivju∗kv∗lM ijkl ≥ 0, (3.2)

where i, j, k, l indices run through the number of the states involved in the superposition and

M ijkl = 1
2
d2

ds2M(ij → kl)(s, t = 0)
∣∣∣∣
s→0

. (3.3)

Here, we assumed that the low-energy poles are subtracted in the scattering amplitude
M(ij → kl).

In the case of a real scalar dark matter with Higgs-portal couplings, a and b states in
ab→ ab scattering, correspond to

|a〉 =
4∑
i=1

ui |φi〉+ u5 |ϕ〉 , (3.4)

|b〉 =
4∑
i=1

vi |φi〉+ v5 |ϕ〉 , (3.5)

respectively. Here, ϕ is the real scalar dark matter field and the SM Higgs doublet H is
written in terms of four real scalar fields, φi(i = 1, 2, 3, 4), as follows,

H = 1√
2

(
φ1 + iφ2
φ3 + iφ4

)
. (3.6)
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The effective operators involved in this superposed elastic scattering process are not
only Higgs-portal operators for real scalar dark matter given in the first line in table 1, but
also operators including the dark matter only (in the second line) and the Higgs doublet only
(in the third and fourth lines), respectively. The full operators involved in this superposed
elastic scattering process contributing on the positivity bounds are listed in table 1.

Performing the calculations of all the amplitudes involved in the processes by FeynRules,
FeynArts and FormCalc [14–16], we find the amplitude for the superposed states,

M ≡ uivju∗kv∗lM ijkl = (X1 + Y1 + Z1)C(2)
H4 + Y1C

(3)
H4 + (X1 + Y1)C(1)

H4

+ (X2 + Z2)C(1)
H2ϕ2 + 2Z2C

(2)
H2ϕ2 + 4Y2Cϕ4 ≥ 0 (3.7)

where

X1 = 1
2(−u4v1 − u3v2 + u2v3 + u1v4)2 + 1

2(−u3v1 + u4v2 + u1v3 − u2v4)2, (3.8)

Y1 = (u1v1 + u2v2 + u3v3 + u4v4)2, (3.9)

Z1 = (u2v1 − u1v2 + u4v3 − u3v4)2, (3.10)

X2 = 1
2
(
u2

5(v2
1 + v2

2 + v2
3 + v2

4) + v2
5(u2

1 + u2
2 + u2

3 + u2
4)
)
, (3.11)

Y2 = (u5v5)2, (3.12)

Z2 = u5v5(u1v1 + u1v2 + u3v3 + u4v4). (3.13)

Here, we took the same combinations for X1, Y1, and Z1 as in ref. [9], and the coefficients
ui and vi are assumed to be real numbers for simplicity, but taking them to be complex
numbers does not give rise to additional constraints, thanks to the crossing symmetry of
the forward scattering amplitudes [9].

3.2 Positivity bounds

In order to derive the positivity bounds, we now rewrite the amplitude in eq. (3.7) as

M = M1X1 +M2Y1 +M3Z1 +M4X2 +M5Y2 +M6Z2 ≥ 0 (3.14)

where

M1 = C
(1)
H4 + C

(2)
H4 , M2 = C

(1)
H4 + C

(2)
H4 + C

(3)
H4 , M3 = C

(2)
H4 ,

M4 = C
(1)
H2ϕ2 , M5 = 4Cϕ4 , M6 = C

(1)
H2ϕ2 + 2C(2)

H2ϕ2 . (3.15)

As Xi, Yi, and Zi (i = 1, 2) are quartic polynomials of uj and vj (j = 1− 5) in eqs. (3.8)–
(3.13), we find the ranges for them under which eq. (3.14) is positive semidefinite, as follows,

X1 ≥ 0, Y1 ≥ 0, Z1 ≥ 0, Y2 ≥ 0, Z2 = ±
√
Y1Y2, (3.16)

X2 ≥
√
Y2(2X1 + Y1 + Z1). (3.17)
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Here, we note that the bounds in eq. (3.16) are obtained simply from their definitions in
eqs. (3.8)–(3.10) and eqs. (3.12)–(3.13), and eq. (3.17) can be derived from

X2
2 − Y2(2X1 + Y1 + Z1) = 1

4
(
u2

5(v2
1 + v2

2 + v2
3 + v2

4)− v2
5(u2

1 + u2
2 + u2

3 + u2
4)
)2
≥ 0.

(3.18)

First of all, taking M ≥ 0 from the positivity argument, we immediately obtain

M1 ≥ 0, M2 ≥ 0, M3 ≥ 0, M4 ≥ 0, M5 ≥ 0. (3.19)

For example, we obtain M1 ≥ 0 by setting X1 6= 0 and others to zero by u1 = 1, v3 = 1 but
other coefficients set to zero. Then, this corresponds to the positivity bound for the elastic
forward scattering with |φ1〉 and |φ3〉.

For deriving the other bounds, we should minimize eq. (3.14) in the ranges of eqs. (3.16)
and (3.17). When Y1 = 0, we just obtain a trivial result, M ≥ 0. So, we concentrate on a
nonzero Y1, i.e., Y1 > 0 from eq. (3.16). Then, the problem becomes to minimize

X1M1 + Y1M2 + Z1M3 +X2M4 + Y2M5 + Z2M6 (≥ 0), (3.20)

subject to

X1 ≥ 0, Y1 > 0, Z1 ≥ 0, X2 ≥
√
Y2(2X1 + Y1 + Z1), Y2 ≥ 0, Z2 = ±

√
Y1Y2. (3.21)

Knowing M4 ≥ 0 from eq. (3.19), we take X2 =
√
Y2(2X1 + Y1 + Z1) to minimize the

amplitude M . Moreover, as |M6| ≥ 0, we can take M6Z2 = −
√
Y1Y2|M6|. Then, after

dividing the amplitude M by Y1, the problem (3.20) is now to minimize

f(x,y,z) =x2M1+y2M5+z2M3−y
(
|M6|−

√
2x2+z2+1M4

)
+M2 (≥ 0), (3.22)

subject to
x ≥ 0, y ≥ 0, z ≥ 0, (3.23)

where x =
√

X1
Y1

, y =
√

Y2
Y1
, and z =

√
Z1
Y1
. Since M1 ≥ 0, M3 ≥ 0, and M4 ≥ 0 from

eq. (3.19), we further take x = z = 0 and now only have to minimize

f(0, y, 0) = y2M5 − y(|M6| −M4) +M2 (≥ 0), (3.24)

for y ≥ 0. Since f(0, y, 0) has a minimum for y = |M6|−M4
2M5

, we obtain

M2 −
(|M6| −M4)2

4M5
≥ 0, for |M6| ≥M4, (3.25)

or
M2 ≥ 0, for |M6| ≤M4, (3.26)

from eq. (3.19). Since M2 ≥ 0 and M5 ≥ 0 from eq. (3.19), the condition in eq. (3.25) is
the same as

2
√
M2M5 ≥ |M6| −M4. (3.27)

Here, we omitted |M6| ≥M4 because eq. (3.27) is automatically satisfied for |M6| < M4.
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Bounds Channels (|1〉+ |2〉 → |1〉 + |2〉)

C
(1)
H4 + C

(2)
H4 ≥ 0 |1〉 = |φ1〉 , |2〉 = |φ3〉

C
(1)
H4 + C

(2)
H4 + C

(3)
H4 ≥ 0 |1〉 = |φ1〉 , |2〉 = |φ1〉

C
(2)
H4 ≥ 0 |1〉 = |φ1〉 , |2〉 = |φ2〉

C
(1)
H2ϕ2 ≥ 0 |1〉 = |φ1〉 , |2〉 = |ϕ〉

Cϕ4 ≥ 0 |1〉 = |ϕ〉 , |2〉 = |ϕ〉

2
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 |1〉 = 2

√
Cϕ4 |φ1〉+

√
−(C(1)

H2ϕ2 + C
(2)
H2ϕ2) |ϕ〉,

≥ −
(
C

(1)
H2ϕ2 + C

(2)
H2ϕ2

)
|2〉 = |1〉

2
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 ≥ C(2)

H2ϕ2

|1〉 = 2
√
Cϕ4 |φ1〉+

√
C

(2)
H2ϕ2 |ϕ〉,

|2〉 = −2
√
Cϕ4 |φ1〉+

√
C

(2)
H2ϕ2 |ϕ〉

Table 2. Positivity bounds on the left column and the corresponding forward elastic scattering
channels on the right column.

Substituting the Wilson coefficients with eq. (3.15) in the positivity conditions in
eq. (3.19), we finally arrive at

C
(1)
H4 + C

(2)
H4 ≥ 0, (3.28)

C
(1)
H4 + C

(2)
H4 + C

(3)
H4 ≥ 0, (3.29)

C
(2)
H4 ≥ 0, (3.30)

C
(1)
H2ϕ2 ≥ 0, (3.31)

Cϕ4 ≥ 0, (3.32)

4
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 ≥

∣∣∣C(1)
H2ϕ2 + 2C(2)

H2ϕ2

∣∣∣− C(1)
H2ϕ2 . (3.33)

The corresponding forward elastic scattering channel for each bound is summarized in
table 2. Here, for the final two elastic scattering channels, we can divide the positivity
condition in eq. (3.33) into the cases, C(1)

H2ϕ2 + 2C(2)
H2ϕ2 ≤ 0 and C(1)

H2ϕ2 + 2C(2)
H2ϕ2 ≥ 0.

Denoting A ≡
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 , we can rewrite the positivity condition in

eq. (3.33) as −C(1)
H2ϕ2 − 2A ≤ C(2)

H2ϕ2 ≤ 2A. As a result, for C(2)
H2ϕ2 = +1 and C(1)

H2ϕ2 ≥ 0, it
is interesting to find that the positivity condition in eq. (3.33) leads to A ≥ 1

2 , which sets
the lower bound on the product of the dimension-8 derivative self-interactions for Higgs and
scalar dark matter. On the other hand, for C(2)

H2ϕ2 = −1, we get the positivity condition in
eq. (3.33) as C(1)

H2ϕ2 ≥ 1− 2A. In this case, the dimension-8 self-interactions for Higgs and
scalar dark matter can be small, being compatible with the positivity bounds. Therefore,
we focus on the case with C(2)

H2ϕ2 < 0 in the later discussion.
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In the case with the massive spin-2 particle and the radion in section 2, from eqs. (2.23),
(2.25) and (2.26), we can check the positivity bounds, as in the following,

C
(1)
H4 + C

(2)
H4 = 2c2

HΛ4

m2
GM

2 ≥ 0, (3.34)

C
(1)
H4 + C

(2)
H4 + C

(3)
H4 = 4c2

HΛ4

3m2
GM

2 + (crH)2Λ4

3m2
rM

2 ≥ 0, (3.35)

C
(2)
H4 = c2

HΛ4

m2
GM

2 ≥ 0, (3.36)

C
(1)
H2ϕ2 = 2cHcϕΛ4

m2
GM

2 ≥ 0, for cHcϕ ≥ 0, (3.37)

Cϕ4 =
c2
ϕΛ4

3m2
GM

2 +
(crϕ)2Λ4

12m2
rM

2 ≥ 0, (3.38)

2
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 ≥ −

(
C

(1)
H2ϕ2 + C

(2)
H2ϕ2

)
= −4cHcϕΛ4

3m2
GM

2 −
crHc

r
ϕΛ4

3m2
rM

2 , (3.39)

2
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 ≥ C(2)

H2ϕ2 = −2cHcϕΛ4

3m2
GM

2 +
crHc

r
ϕΛ4

3m2
rM

2 . (3.40)

First, we note that eqs. (3.34), (3.35), (3.36) and (3.38) are trivially satisfied. Then, as far
as cHcϕ ≥ 0, we obtain C(1)

H2ϕ2 ≥ 0 in eq. (3.37), and the last two nontrivial conditions in
eqs. (3.39) and (3.40) are also satisfied automatically.

Before concluding this section, we also remark the effects of loop corrections on the
positivity bounds. In particular, the dimension-6 operators present in the effective theory
can also contribute to the Wilson coefficients of the dimension-8 operators at one-loop [10].
Focusing on the Higgs-portal dimension-8 operators, we find that the one-loop corrections
give rise to the shifts in the renormalized Wilson coefficients in dimensional regularization,
as follows,

Ĉ
(1)
H2ϕ2 = C

(1)
H2ϕ2 + 1

648π2Λ4

(
13(d̃2

3 + d̃2
4) + 20d̃3d̃4

)
+ 1

108π2Λ4 (d̃3 + d̃4)2 ln µ
2

|s|
, (3.41)

Ĉ
(2)
H2ϕ2 = C

(2)
H2ϕ2 −

5
1296π2Λ4 (d̃3 + d̃4)2

− 1
432π2Λ4 (d̃3 + d̃4)2 ln µ

2

|s|
(3.42)

where d̃3 ≡ d3m
2
ϕ and d̃4 ≡ d4m

2
H with d3, d4 given in eq. (2.2), µ is the renormalization scale.

Here, we took the four-momenta for the four-point vertex to ϕ(k)− ϕ(k′)−H(p)−H†(p′)
where k, k′, p are incoming toward the vertex and p′ is outgoing from the vertex. We also
chose the limit of k = k′ and s = (p+ k)2 is assumed to be spacelike in the above results
for simplicity. Then, the Wilson coefficients for both Higgs-portal dimension-8 operators
are corrected due to the Higgs-portal dimension-6 operators, so the positivity bounds for
the Higgs-portal dimension-8 operators in eqs. (3.31) and (3.33) are modified by those with
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Figure 1. Feynman diagrams for dark matter annihilations due to dimension-6 and dimension-
8 operators.

C
(1)
H2ϕ2 , C

(2)
H2ϕ2 being replaced by Ĉ(1)

H2ϕ2 , Ĉ
(2)
H2ϕ2 , respectively. Thus, for the cutoff scale Λ

parametrically larger than the dark matter mass considered in the later discussion, the loop
corrections renormalized at µ = Λ give rise to small modifications in the positivity bounds,
so it is sufficient to consider the positivity bounds on the dimension-8 operators at tree
level as discussed in this section.

We also note that the dimension-6 operators with Higgs fields only can also modify
the dimension-8 operators in the SM, but we only have to replace C(1)

H4 , C
(2)
H4 , C

(3)
H4 by the

shifted ones [10].

4 Phenomenological constraints

In this section, we consider various constraints on the effective Higgs-portal couplings from
dark matter relic density, direct and indirect detection as well as the LHC bounds. We
show the interplay of direct detection, relic density and positivity bounds in constraining
the dimension-8 derivative Higgs-portal couplings and the other Higgs-portal couplings.

4.1 Dark matter relic density

In order to determine the relic density by a freeze-out mechanism, we need to consider the
annihilation channels for scalar dark matter with the effective Higgs-portal interactions.

For non-derivative Higgs-portal couplings with c′3 6= c3 and d′4 6= d4 in eq. (2.2), there
are tree-level Higgs exchanges for dark matter annihilation as in usual Higgs-portal scenarios,
such as ϕϕ → ff̄ , V V, hh with f being the SM fermions and V = W,Z. For c′3 = c3 and
d′4 = d4, the dark matter annihilations, ϕϕ→ ff̄ , are absent at tree level, whereas derivative
Higgs-portal couplings for dark matter annihilation coming from Higgs-portal dim-6 and
dim-8 interactions, contribute to the other processes for dark matter annihilation, as shown
in figure 1.

The number density for the dark matter nϕ is governed by the following Boltzmann
equation,

ṅϕ + 3Hnϕ = −〈σvrel〉eff
(
n2
ϕ − (neq

ϕ )2
)
, (4.1)

where

〈σvrel〉eff = 2〈σvrel〉ϕϕ→hh+2〈σvrel〉ϕϕ→W+W− +2〈σvrel〉ϕϕ→ZZ+2〈σvrel〉ϕϕ→ff̄ , (4.2)
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neq
ϕ is the number density in thermal equilibrium, and the annihilation cross sections are

given by

〈σvrel〉ϕϕ→ij = |Mϕϕ→ij |2

32πm2
ϕ

√√√√1− m2
i

m2
ϕ

. (4.3)

Here, (i, j) denotes (h, h), (W+,W−), (Z,Z), (f, f̄), respectively, mi is the mass of i field,
and the s-wave contribution is dominant for the annihilation cross sections in the limit
vrel → 0. The squared matrix element, |Mϕϕ→ij |2, includes the symmetric factor for
identical particles in initial states (i.e. a dark matter particle pair ϕϕ) and final states (i.e.
hh and ZZ). Then, we get the squared scattering matrix elements for electroweak final
states as

|Mϕϕ→hh|2 =
m4
ϕ

9Λ8(m2
h−4m2

ϕ)2

[(
2c3−d3+d4+3C(2)

H2ϕ2

)
m4
h

+
(
4c3−12c′3+6d3+2d4−6d′4−3C(1)

H2ϕ2−18C(2)
H2ϕ2

)
m2
hm

2
ϕ

+4
(
−2d3+3C(1)

H2ϕ2 +6C(2)
H2ϕ2

)
m4
ϕ

]2
, (4.4)

|Mϕϕ→W+W− |2 =
2π2α2m4

ϕv
4

9Λ8m4
W s

4
W

[
9(C(1)

H2ϕ2)2(m2
ϕ−m2

W )2−
6C(1)

H2ϕ2

m2
h−4m2

ϕ

(m2
ϕ−m2

W )(2m2
ϕ−m2

W )

×
{(

2(c3−c′3)+d3+d4−d′4−3C(2)
H2ϕ2

)
m2
h+4

(
−d3+3C(2)

H2ϕ2

)
m2
ϕ

}
+ 1

(m2
h−4m2

ϕ)2 (4m4
ϕ−4m2

ϕm
2
W +3m4

W )

×
{(

2(c3−c′3)+d3+d4−d′4−3C(2)
H2ϕ2

)
m2
h+4

(
−d3+3C(2)

H2ϕ2

)
m2
ϕ

}2 ]
,

(4.5)

|Mϕϕ→ZZ |2 = 1
2 |Mϕϕ→W+W− |2(mW →mZ ,sW → sW cW ) (4.6)

where cW = cos θW , sW = sin θW , θW is the Weinberg angle, α is the fine structure
constant, and v is the vacuum expectation value of the SM Higgs field. Moreover, the
squared scattering matrix elements for ϕϕ→ ff̄ , with ff̄ = tt̄, bb̄, are given by

|Mϕϕ→ff̄ |
2 =

4m2
fm

4
hm

4
ϕ(m2

ϕ −m2
f )

3Λ8(m2
h − 4m2

ϕ)2 ·
(
2(c3 − c′3) + d4 − d′4

)2
, (4.7)

where mf = mt,mb are top and bottom quark masses.
Consequently, all the annihilation channels in the effective theory approach, if allowed,

are dominated by the s-wave in the generic parameter space. This is in contrast with
the case with a massive graviton mediator where ϕϕ→ hh, f f̄ become d-wave suppressed
and ϕϕ→ V V become also d-wave suppressed for the universal couplings of the massive
graviton to electroweak bosons in the SM including the gauge kinetic terms [13].
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For the universal couplings for dimension-4 and dimension-6 operators, c3 = c′3 = d3 =
d4 = d′4 = −3C(1)

H2ϕ2/2− 6C(2)
H2ϕ2 , which is the case with graviton and radion from eq. (2.24),

we can simplify the squared matrix elements for ϕϕ→ hh,WW , as follows,

|Mϕϕ→hh|2 =
m4
ϕ

Λ8 (m2
h + 2m2

ϕ)2
(
C

(1)
H2ϕ2 + 3C(2)

H2ϕ2

)2
, (4.8)

|Mϕϕ→W+W− |2 =
2π2α2m4

ϕv
4

9Λ8m4
W s

4
W

[
36(C(1)

H2ϕ2 + 3C(2)
H2ϕ2)2m4

ϕ

− 54(C(1)
H2ϕ2 + 2C(2)

H2ϕ2)(C(1)
H2ϕ2 + 3C(2)

H2ϕ2)m2
ϕm

2
W

+ 9
4
(
11(C(1)

H2ϕ2)2 + 60C(1)
H2ϕ2C

(2)
H2ϕ2 + 108(C(2)

H2ϕ2)2
)
m4
W

]
, (4.9)

and the squared matrix elements for ϕϕ→ ff̄ vanish. With the graviton only, we can take
a further condition, C(2)

H2ϕ2 = −C(1)
H2ϕ2/3, from eq. (2.9). In this case, the squared matrix

elements for ϕϕ→ hh also vanish at s-wave [13], but ϕϕ→ V V is s-wave dominant, because

|Mϕϕ→W+W− |2 =
2π2α2m4

ϕv
4

9Λ8s4
W

(C(1)
H2ϕ2)2. (4.10)

Therefore, in the effective theory stemming from the massive graviton, there is no strong
bound from indirect detection experiments for either ϕϕ→ hh or ϕϕ→ ff̄ [13, 17].

By solving the Boltzmann equation in eq. (4.1), we can obtain the abundance for dark
matter in terms of YDM = nϕ/s at present, as follows,

ΩDMh
2 = 0.2744

(
YDM
10−11

)(
mϕ

100 GeV

)
. (4.11)

The present abundance for dark matter is approximated [18–20] to

YDM '
√

45g∗
πg2
∗s

xf
mϕMpl〈σvrel〉eff

, (4.12)

where

xf ' ln yf −
1
2 ln ln yf , yf = 1

2π3

√
45
8g∗

mϕMpl〈σvrel〉eff , (4.13)

where Mpl = 1.22× 1019 GeV is the Planck mass, and g∗, g∗s are the effective numbers of
relativistic degrees of freedom in radiation and entropy, respectively.

4.2 Direct detection

The effective Higgs-portal couplings, c3, c′3, d4, and d′4, give rise to the effective interactions
between dark matter and quarks through Higgs boson exchanges in the t-channel, as follows,

Leff,ϕ−q = −
(2(c3 − c′3)− d4 + d′4)mqm

2
ϕ

6Λ4 ϕ2q̄q. (4.14)

Then, we obtain the cross section for the spin-independent scattering between dark matter
and nucleus, as follows,

σϕ−X = µ2
N

πm2
ϕA

2

(
Zfp + (A− Z)fn

)2
(4.15)
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Figure 2. Upper: parameter space for C(1)
H2ϕ2 vs C(2)

H2ϕ2 , satisfying positivity and relic density.

We took A ≡
√

(C(1)
H4 + C

(2)
H4 + C

(3)
H4)Cϕ4 = 0.1 and mϕ = 3mh(950 GeV) for the left(right) figures.

Lower: parameter space for mϕ vs C(1)
H2ϕ2 , satisfying positivity and relic density, for C(2)

H2ϕ2 = −1.
We took Λ = 1(2)TeV for the left(right) figures in each panel. The relic density for dark matter is
overproduced in orange regions, namely, Ωh2 > 0.12, and it saturates the observed value along the
boundary of the orange region. The positivity bounds in eq. (3.31) are satisfied in green regions. In
all the plots, we set c3 = d3 = c′3 = d4 = d′4 = 0.

where Z,A − Z are the number of protons and neutrons in the detector nucleus, µX =
mϕmX/(mϕ +mX) is the reduced mass for the DM-nucleus system, and the nucleon form
factors are given by

fp,n = −
(2(c3 − c′3)− d4 + d′4)mp,nm

2
ϕ

6Λ4

( ∑
q=u,d,s

fp,nTq + 2
9f

p,n
TG

)
, (4.16)

with fp,nTG = 1−
∑
q=u,d,s f

p,n
Tq . Here, fNTq is the mass fraction of quark q inside the nucleon

N , defined by 〈N |mq q̄q|N〉 = mNf
N
Tq, and fNTG is the mass fraction of gluon G the nucleon

N , due to heavy quarks. The numerical values are fpTu
= 0.0208 ± 0.0015 and fpTd

=
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Figure 3. The same as in figure 2, but with c3 = d3 = c′3 = d4 = d′4 = 2.

0.0411 ± 0.0028 for a proton, fnTu
= 0.0189 ± 0.0014 and fnTd

= 0.0451 ± 0.0027 for a
neutron [21], and fp,nTs

= 0.043± 0.011 for both proton and neutron [22].
Taking the universal Higgs-portal couplings for dimension-4 and dimension-6 operators,

c′3 = c3 and d′4 = d4, the momentum transfer independent part of the direct detection
cross section in eq. (4.15) vanishes, so there is no strong bound from the direct detection
experiments. The effective theory obtained from graviton and radion respects such universal
relations for effective couplings, as shown in eq. (2.24), which could be ensured at the cutoff
scale. Of course, in the effective theory where we are agnostic about the origin of the
effective couplings, the direct detection can constrain only the combination of the effective
low-energy couplings to 2(c3 − c′3) = d4 − d′4, from eq. (4.15).

In figure 2, we show the parameter space in C(1)
H2ϕ2 and C(2)

H2ϕ2 in the upper panel and mϕ

and C(1)
H2ϕ2 with C(2)

H2ϕ2 = −1 in the lower panel, satisfying the relic density for dark matter
and positivity bounds. We have fixed Λ = 1, 2 TeV on left and right figures, respectively,
and mϕ = 3mh, 950 GeV on the left and right figures in the upper panel, respectively. We
set dimension-4 and dimension-6 couplings to zero, namely, c3 = d3 = c′3 = d4 = d′4 = 0,
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Figure 4. The same as in figure 2, but with c3 = d3 = c′3 = d4 = d′4 = −1.5C(1)
H2ϕ2 − 6C(2)

H2ϕ2 for
graviton and radion.

for all the plots in figure 2. The relic density with Ωh2 < 0.12 is achieved outside the
orange regions, so the observed relic density, Ωh2 = 0.12, is explained along the boundary
of the orange region, and the positivity bounds are satisfied in the green regions. The direct
detection bounds for dark matter are satisfied for all the plots.

For the plots in the upper panel of figure 2, we also took the combina-
tion of the dimension-8 derivative self-interactions for Higgs and dark matter by
A ≡

√(
C

(1)
H4 + C

(2)
H4 + C

(3)
H4

)
Cϕ4 = 0.1. However, for given LHC bounds on the Wil-

son coefficients of the Higgs self-couplings up to order one discussed in section 4.4, we can
also allow for a larger value of A because Cϕ4 is unconstrained for WIMP-like dark matter,
so the positivity bounds are satisfied even for positive values of C(2)

H2ϕ2 in the upper panel.
In figures 3 and 4, we present the similar results as in figure 2, except with c3 = d3 =

c′3 = d4 = d′4 = 2 for the former case and c3 = d3 = c′3 = d4 = d′4 = −1.5C(1)
H2ϕ2 − 6C(2)

H2ϕ2 in
the latter case. Dimension-4 and dimension-6 Higgs portal couplings are (un-)correlated
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Figure 5. Parameter space for C(1)
H2ϕ2 vs c′3 = d′4. The present relic density for dark matter goes

beyond the measured value in orange regions, namely, Ωh2 > 0.12. The gray regions are excluded by
the LZ experiment [23]. The positivity bounds are satisfied in green regions. We took Λ = 1(2)TeV
and mϕ = 3mh(950 GeV) for the left(right) figure, and c3 = d3 = d4 = 2 and C

(2)
H2ϕ2 = −1 for

both plots.

to dimension-8 operators in the latter(former) cases, and the latter case can be derived
from graviton and radion. Then, in figure 3, the relic density condition shifts the allowed
parameter for C(2)

H2ϕ2 towards more positive values, because the dimension-4 and dimension-6
Higgs portal couplings also contribute to the relic density. On the other hand, in figures 4,
the relic density condition makes the allowed parameter space for C(1)

H2ϕ2 and C(2)
H2ϕ2 narrower,

due to the correlation between dimension-8 and lower-dimensional Higgs-portal couplings.
Therefore, the relic density condition depends crucially on the presence of the dimension-4
and dimension-6 Higgs portal couplings.

In figure 5, we depict the parameter space in C(1)
H2ϕ2 and Higgs-portal couplings with

c′3 = d′4, satisfying the relic density and the positivity conditions as well as the direct
detection bound from the LUX-ZEPLIN(LZ) experiment [23]. We chose c3 = d3 = d4 = 2
and C(2)

H2ϕ2 = −1 for both plots and Λ = 1, 2TeV and mϕ = 3mh, 950 GeV for the left and
right figures, respectively. For relatively light dark matter on left, the consistent parameter
space remains close to the universal couplings, c3 = d4 = c′3 = d′4, outside the gray region
excluded by the LZ experiment. On the other hand, for heavy dark matter on right, there is
still a lot of parameter space left to be compatible with the direct detection bound. We find
that the positivity bounds in green are complementary to the bounds from direct detection
in gray and relic density in orange in constraining the Higgs-portal effective interactions.

4.3 Indirect detection

Dark matter can annihilate into ff̄ , V V with V = W,Z or hh without velocity suppression
for the generic parameter space of the effective theory approach. In this case, the effective
Higgs-portal couplings can be constrained by indirect detection experiments [24, 25] such
as Fermi-LAT dwarf galaxies [26], HESS gamma-rays [27], AMS-02 antiprotons [28], and
Cosmic Microwave Background measurements [29].
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q

q

H

χ

χ

Figure 6. (Left) Feynman diagram for the dark matter production. (Right) Feynman diagram for
a signal process with an invisible decay of additional scalar boson. Adapted from figure 1 in [36].
Here, χ corresponds to DM or an invisible particle and H is an additional scalar boson.

On the other hand, for universal effective couplings for dimension-4 and dimension-6
operators, as discussed in the previous subsection, ϕϕ → ff̄ is absent, so the s-wave
dominant channels, ϕϕ→ hh, V V , can be constrained importantly by indirect detection. In
particular, the strong bounds from direct detection can be satisfied for c′3 = c4 and d4 = d′4,
leading to interesting signatures for indirect detection from heavy bosons in the SM. The
dark matter annihilation into heavy gauge bosons has been less constrained by indirect
searches [30, 31], but it is potentially discoverable by the Milky Way Galactic Center from
Fermi-LAT [32] and more data with indirect detection.

If we further impose the correlation between dimension-8 and lower-dimensional Higgs-
portal couplings as in eq. (2.24) with eq. (2.9), the ϕϕ→ hh channel is velocity-suppressed,
as discussed below eq. (4.8), whereas the ϕϕ→ V V channels are still s-wave and they could
lead to interesting signatures in cosmic ray observations.

4.4 LHC searches

In this subsection, we discuss the current limits on the dimension-8 operators for Higgs only
in the third line of table 1 and discuss the dark matter production at HL-LHC, induced by
the dimension-8 Higgs portal operators, i.e, the first line of table 1.

First, the dimension-8 derivative self-couplings for the Higgs are constrained most by
the same sign W boson pairs at the LHC to C(2)

H4/Λ4 = [−7.7, 7.7] TeV−4 and C(3)
H4/Λ4 =

[−21.6, 21.8] TeV−4 at 95% CL [33] (See also the weaker limits from theWZ boson pairs [34]),
but there is no limit shown for C(1)

H4 , although a similar limit is expected. Moreover, the
combined WW,WZ,ZZ channels in association with two jets lead to stronger limits,
C

(2)
H4/Λ4 = [−2.7, 2.7] TeV−4 and C(3)

H4/Λ4 = [−3.4, 3.4] TeV−4 at 95% CL [35].
On the other hand, the signal process for DM production in our work is based on

pp→ ϕϕjj, (4.17)

where j = u, d, c, s, b (and their antiparticles). The Feynman diagram for main signal
processes is shown in figure 6.

The main background process is

pp→ νν̄jj, (4.18)
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√
s = 13TeV LHC, Lint = 139 fb−1 σVBF ×Binv = 0.11 pb (mH = 1TeV)

Λ = 1TeV, mϕ = 375GeV cross section from EFT operators

(C(1)
H2ϕ2 , C

(2)
H2ϕ2) = (40, 40) 0.28 pb

(C(1)
H2ϕ2 , C

(2)
H2ϕ2) = (32, 32) 0.11 pb

(C(1)
H2ϕ2 , C

(2)
H2ϕ2) = (40, 0) 0.012 pb

(C(1)
H2ϕ2 , C

(2)
H2ϕ2) = (0, 40) 0.097 pb

Table 3. Comparison between a cross section at 95 % CL upper limit in figure 14 in [36] (first line)
and cross sections from the dimension-8 Higgs portal operators (3rd–6th lines). In the first line, mH

is the mass of a heavy scalar mediator. The mediator decays invisibly with a branching ratio Binv.
In the 3rd–6th lines, the DM mass is fixed with 375GeV ∼ 3mh and Λ = 1TeV.

where ν (ν̄) is (anti-) neutrino and is summed over three flavors and j not only includes
u, d, c, s, b (and their antiparticles) but also gluons. Because there is no interference between
the SM background process (4.18) and the signal process (4.17), the cross section is
suppressed by C2/Λ8 schematically, with C being the Wilson coefficient.

Before discussing the HL-LHC search, we briefly mention the current ATLAS measure-
ment with 139 fb−1 of LHC pp collision data at a center-of-mass energy of

√
s = 13TeV

recorded by ATLAS detector [36]. They considered a signal process of (4.17), but a scalar
boson was introduced as a mediator to the DM, as shown on the right plot of figure 6.

The dimension-8 effective operators in our work are regarded as a consequence of
integrating out heavy resonances. For a heavy scalar mass of 1TeV, we take the bounds
on dark matter production from the results of figure 14 in ref. [36]. As shown table 3,
we set Λ = 1TeV and the DM mass mϕ = 375GeV ∼ 3mh, and show that the Wilson
coefficients above C(1)

H2ϕ2 = C
(2)
H2ϕ2 = 32 are excluded by the current LHC data. When either

of coefficients is turned off, C(2)
H2ϕ2 can undergo more severe constraints than C(1)

H2ϕ2 .
We can translate the mass of a new heavy resonance of M ≥ 1TeV to the Wilson

coefficients of the dimension-8 operators [37] by

Λ
(|C|)1/4 ≥

1 TeV
√
g
, (4.19)

where C is the Wilson coefficient of a dimension-8 operator and g is the coupling of the
heavy resonance. Then, if we take g =

√
4π at maximum and Λ = 1TeV, we have |C| ≤ 13.

Thus, C = 40 corresponds to Λ ∼ 400GeV (∼ 1 TeV/
√

6.3) for the normalization |C| = 1,
which is slightly smaller than 1 TeV/√g ∼ 530GeV for g =

√
4π ∼ 3.5, so it might be

acceptable to scan up to |C| ≤ 40 in our EFT analysis.
For the HL-LHC search, we can benefit from different features of a signal from each

operator, O(1)
H2ϕ2 or O(2)

H2ϕ2 . They may show different kinematical distributions similarly
to refs. [37–39]. The scattering processes, W+W− → ϕϕ and ZZ → ϕϕ, shows different
dependencies on the Mandelstam variables, depending on the operators. Namely, with

– 19 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
4

O
(2)
H2ϕ2 only, we have the Mandelstam variable s and mass dependencies, whereas there is

an additional dependency on the Mandelstam variable t in the presence of O(1)
H2ϕ2 .

5 Conclusions

We have presented the positivity bounds on the dimension-8 Higgs-portal interactions for
WIMP scalar dark matter by taking the superposed states for Higgs and scalar dark matter.
From the results, we showed that the positivity bounds can curb out the part of the parameter
space for the effective couplings, otherwise unconstrained by phenomenological consideration,
such as dark matter relic density, direct and indirect detection and LHC constraints.

Motivated by the effective theory coming from massive graviton or radion, we worked
closely to the parameter space where the universal condition for other effective Higgs-portal
couplings is imposed and the strong bounds from direct detection experiments such as the
LZ experiment can be avoided. Even in this case, we showed that there are interesting
signatures for cosmic ray observations due to the dark matter annihilations into a pair of
heavy gauge bosons such as a pair of Higgs bosons, WW or ZZ.

A One-loop corrections to the positivity bounds

In this appendix, we consider the one-loop corrections to the Wilson coefficients for the Higgs-
portal dimension-8 operators in the presence of dimension-6 operators in the effective theory.

We first consider the dimension-6 Higgs-portal terms with two derivatives introduced
in the text, in the following,

Ldim−6 = 1
3Λ4

(
d̃3ϕ

2|DµH|2 + d̃4|H|2(∂µϕ)2
)

(A.1)

with d̃3 ≡ d3m
2
ϕ, d̃4 ≡ d4m

2
H . So, the Feynman rule for the Higgs-portal four-point vertex

is given by

[ϕ(k), ϕ(k′), H(p), H†(p′)]dim−6 = 2i
3Λ4

(
d̃3(p′ · p)− d̃4(k · k′)

)
(A.2)

where k, k′, p are the incoming momenta into the vertex and p′ is the outgoing momentum
from the vertex.

On the other hand, we also list the dimension-8 Higgs-portal terms with four derivatives,
as follows,

Ldim−8 =
C

(1)
H2ϕ2

Λ4 (DµH)†(DνH)∂µϕ∂νϕ+
C

(2)
H2ϕ2

Λ4 (DµH)†(DµH)∂νϕ∂νϕ. (A.3)

Then, the corresponding Feynman rule is

[ϕ(k), ϕ(k′), H(p), H†(p′)]dim−8 = −
iC

(1)
H2ϕ2

Λ4

(
(p · k′)(p′ · k) + (p · k)(p′ · k′)

)
−

2iC(2)
H2ϕ2

Λ4 (p · p′)(k · k′)

→
iC

(1)
H2ϕ2

4Λ4 (u2 + s2) +
iC

(2)
H2ϕ2

2Λ4 t2. (A.4)
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Here, in the second arrow, we took the massless limit for which s = (p+k)2 = 2p·k = −2p′ ·k′,
t = (p − p′)2 = −2p · p′ = 2k · k′ and u = (p + k′)2 = 2p · k′ = −2p′ · k, and the energy
conservation, p+ k = p′ − k′.

The dimension-6 operators in eq. (A.1) give rise to one-loop corrections to the Higgs-
portal four-point vertex, as follows,

M =M1 +M2 (A.5)

where

M1 =
(

i

3Λ4

)2 ∫ d4q

(2π)4

[
i

q2 −m2
ϕ

][
i

(p+ k − q)2 −m2
H

]
N (A.6)

with
N ≡ 4

(
d̃3p · (p+ k − q) + d̃4(k · q)

)(
d̃3p
′ · (p+ k − q)− d̃4(k′ · q)

)
, (A.7)

andM2 =M1(k ↔ k′).
Then, using the momentum conservation, p+ k = p′− k′, we can rewrite the numerator

in eq. (A.7) as

N = 4
(
d̃3p · (p+ k − q) + d̃4(k · q)

)(
d̃3p
′ · (p′ − k′ − q)− d̃4(k′ · q)

)
→ 4

(
d̃3p · (k − q) + d̃4(k · q)

)(
− d̃3p

′ · (k′ + q)− d̃4(k′ · q)
)
. (A.8)

Here, we took the massless limit for the external states in the arrow, because we are
interested in the corrections to the dimension-8 operators.

We first recast the loop momentum integral in the Feynman parametrization and with
a shift in the loop momentum by l = q − x(p+ k), as follows,

M1 = 1
9Λ8

∫ 1

0
dx

∫
d4l

(2π)4
N (q = l + x(p+ k))

(l2 −∆)2 (A.9)

with
∆ = −x(1− x)(p+ k)2 + (1− x)m2

ϕ + xm2
H . (A.10)

We note that

p · q = p · l + xp · (p+ k)→ p · l + xp · k, (A.11)
k · q = k · l + xk · (p+ k)→ k · l + xk · p, (A.12)
p′ · q = p′ · l + xp′ · (p+ k) = p′ · l + xp′ · (p′ − k′)→ p′ · l − xp′ · k′, (A.13)
k′ · q = k′ · l + xk′ · (p+ k) = k′ · l + xk′ · (p′ − k′)→ k′ · l + xk′ · p′, (A.14)

where we dropped the mass terms after the arrows. Then, we get

N = 4
((

(1− x)d̃3 + xd̃4
)
(p · k)− (d̃3p− d̃4k) · l

)
×
((
− (1− x)d̃3 − xd̃4

)
(p′ · k′)− (d̃3p

′ + d̃4k
′) · l

)
→ −4

(
(1− x)d̃3 + xd̃4

)2
(p · k)(p′ · k′)

+ 4
(
(d̃3p− d̃4k) · l

)(
(d̃3p

′ + d̃4k
′) · l

)
. (A.15)
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Using the non-vanishing loop momentum integrals in dimensional regularization with
d = 4− ε,

µ4−d
∫

ddl

(2π)d
1

(l2 −∆)2 = i

(4π)2

(2
ε
− γ + ln 4π − ln ∆

µ2

)
, (A.16)

µ4−d
∫

ddl

(2π)d
lµlν

(l2 −∆)2 = igµν

2(4π)2 ∆
(2
ε
− γ + ln 4π − ln ∆

µ2

)
, (A.17)

we obtain

M1 = 1
9Λ8

i

(4π)2

∫ 1

0
dx

(2
ε
− γ + ln 4π − ln ∆

µ2

)
×
[
− 4

(
(1− x)d̃3 + xd̃4

)2
(p · k)(p′ · k′)

+ 2∆(d̃3p− d̃4k) · (d̃3p
′ + d̃4k

′)
]
. (A.18)

Similarly, we also get

M2 =M1(k ↔ k′)

= 1
9Λ8

i

(4π)2

∫ 1

0
dx

(2
ε
− γ + ln 4π − ln ∆(k → k′)

µ2

)
×
[
− 4

(
(1− x)d̃3 + xd̃4

)2
(p · k′)(p′ · k)

+ 2∆(k → k′)(d̃3p− d̃4k
′) · (d̃3p

′ + d̃4k)
]
. (A.19)

In order to write the loop corrections in the form of dimension-8 operators, we take

− 4(p · k)(p′ · k′)→ s2, −4(p · k′)(p′ · k)→ u2, (A.20)

and
2∆(d̃3p− d̃4k) · (d̃3p

′ + d̃4k
′)→ −2x(1− x)A (A.21)

with

A = (p+ k)2(d̃3p− d̃4k) · (d̃3p
′ + d̃4k

′)

= (p+ k)2
(
d̃2

3(p · p′)− d̃2
4(k · k′)− d̃3d̃4(k · p′ − k′ · p)

)
→ −1

2(d̃2
3 + d̃2

4)st+ d̃3d̃4su. (A.22)

Similarly, we get

2∆(k → k′)(d̃3p− d̃4k
′) · (d̃3p

′ + d̃4k)→ −2x(1− x)A′ (A.23)

with

A′ = (p+ k′)2(d̃3p− d̃4k
′) · (d̃3p

′ + d̃4k)

= (p+ k′)2
(
d̃2

3(p · p′)− d̃2
4(k · k′)− d̃3d̃4(k′ · p′ − k · p)

)
→ −1

2(d̃2
3 + d̃2

4)ut+ d̃3d̃4su. (A.24)

Here, we ignored the mass terms in ∆.
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As a result, from eqs. (A.18) and (A.19), the one-loop corrections to the dimension-8
operators are identified, as follows,

M1 = 1
9Λ8

i

(4π)2

∫ 1

0
dx

(2
ε
− γ + ln 4π − ln

[(1− x)m2
ϕ + xm2

H − x(1− x)s]
µ2

)
×
[(

(1− x)d̃3 + xd̃4
)2
s2 + x(1− x)

(
(d̃2

3 + d̃2
4)st− 2d̃3d̃4su

)]
, (A.25)

and

M2 = 1
9Λ8

i

(4π)2

∫ 1

0
dx

(2
ε
− γ + ln 4π − ln

[(1− x)m2
ϕ + xm2

H − x(1− x)u]
µ2

)
×
[(

(1− x)d̃3 + xd̃4
)2
u2 + x(1− x)

(
(d̃2

3 + d̃2
4)ut− 2d̃3d̃4su

)]
. (A.26)

Taking s ' u to be space-like and |s| � m2
ϕ,m

2
H and performing the integral for the

Feynman parameter, we obtain

M1 = 1
9Λ8

i

(4π)2

(2
ε
− γ + ln 4π + ln µ

2

|s|

)
×
[1

3
(
d̃2

3 + d̃2
4 + d̃3d̃4

)
s2 + 1

6
(
(d̃2

3 + d̃2
4)st− 2d̃3d̃4su

)]
+ 1

9Λ8
i

(4π)2

[(13
18(d̃2

3 + d̃2
4) + 5

9 d̃3d̃4
)
s2 + 5

18
(
(d̃2

3 + d̃2
4)st− 2d̃3d̃4su

)]
, (A.27)

and

M2 = 1
9Λ8

i

(4π)2

(2
ε
− γ + ln 4π + ln µ

2

|s|

)
×
[1

3
(
d̃2

3 + d̃2
4 − d̃3d̃4

)
u2 + 1

6
(
(d̃2

3 + d̃2
4)ut− 2d̃3d̃4su

)]
+ 1

9Λ8
i

(4π)2

[(13
18(d̃2

3 + d̃2
4) + 5

9 d̃3d̃4
)
u2 + 5

18
(
(d̃2

3 + d̃2
4)ut− 2d̃3d̃4su

)]
. (A.28)

Summing eqs. (A.27) and (A.28), we obtain the full one-loop corrections as

M = 1
9Λ8

i

(4π)2

(2
ε
− γ + ln 4π + ln µ

2

|s|

)
×
[1

3
(
d̃2

3 + d̃2
4 + d̃3d̃4

)
(s2 + u2) + 1

6
(
(d̃2

3 + d̃2
4)(s+ u)t− 4d̃3d̃4su

)]
+ 1

9Λ8
i

(4π)2

[(13
18(d̃2

3 + d̃2
4) + 5

9 d̃3d̃4
)
(s2 + u2) + 5

18
(
(d̃2

3 + d̃2
4)(s+ u)t− 4d̃3d̃4su

)]
= 1

9Λ8
i

(4π)2

(2
ε
− γ + ln 4π + ln µ

2

|s|

)
×
[1

3(d̃3 + d̃4)2(s2 + u2)− 1
6(d̃3 + d̃4)2t2

]
+ 1

9Λ8
i

(4π)2

[(13
18(d̃2

3 + d̃2
4) + 10

9 d̃3d̃4
)
(s2 + u2)− 5

18(d̃3 + d̃4)2t2
]
. (A.29)
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Here, in the second line, we used s+u = −t and su = 1
2(s+u)2− 1

2s
2− 1

2u
2 = 1

2(t2−s2−u2).
Therefore, in MS scheme for which the divergent terms in combination of 2

ε − γ + ln 4π are
subtracted, the dimension-8 operators in eq. (A.3) get renormalized at the renormalization
scale µ as

Ĉ
(1)
H2ϕ2 = C

(1)
H2ϕ2 + 1

9(4π)2Λ4

(26
9 (d̃2

3 + d̃2
4) + 40

9 d̃3d̃4
)

+ 1
9(4π)2Λ4

4
3(d̃3 + d̃4)2 ln µ

2

|s|
, (A.30)

Ĉ
(2)
H2ϕ2 = C

(2)
H2ϕ2 −

1
9(4π)2Λ4

5
9(d̃3 + d̃4)2

− 1
9(4π)2Λ4

1
3(d̃3 + d̃4)2 ln µ

2

|s|
. (A.31)

The above results are quoted in the text for the modified positivity bounds.
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