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Abstract: Many vehicles are connected to the Internet, and big data are continually created. Various
studies have been conducted involving the development of artificial intelligence, machine learning
technology, and big data frameworks. The analysis of smart mobility big data is essential and helps
to address problems that arise as society faces increased future mobility. In this paper, we analyze
application issues such as personal information leakage and data visualization due to increased data
exchange in detail, as well as approaches focusing on analyses exploiting machine learning and
architecture research exploiting big data frameworks, such as Apache Hadoop, Apache Spark, and
Apache Kafka. Finally, future research directions and open challenges are discussed.
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1. Introduction

In the era of the fourth Industrial Revolution, the importance and value of big data
are emphasized. Thus, numerous forms of transportation data are collected for analysis.
Exploiting transportation data is critical. Accidents and congestion can be predicted
using data analysis, and security issues are also prominent with the advent of connected
vehicles, which exchange data among themselves. Thus, research on smart mobility and
transportation big data has been conducted, such as regression analysis using transportation
data, the investigation of security issues between vehicle networks, and prediction of
accidents and congestion using machine learning and deep learning. Smart mobility is
a combination of information technology and personal transportation, such as shared
electric kickboards, autonomous vehicles, and unmanned aerial vehicles. In this paper,
we introduce analysis methods and applications for smart mobility and explore future
research directions.

Smart mobility is a practical example of the Internet of Things (IoT), whereby mobile
users can communicate over a wireless network. Accordingly, users can make the best
choice for traffic routes while increasing safety, minimizing travel time, reducing congestion
and environmental pollution, and maximizing productivity. In addition, the Canadian
global market research firm Precedence Research expects the global smart mobility market
to grow to USD 57.88 billion by 2022 and to USD 250.3 billion by 2030 [1]. Thus, research
on smart mobility and big data analysis is very valuable and significant.

This paper is organized into six sections. Section 2 describes the paper’s research
method and citation statistics, and Section 3 references papers that explain smart mobility
and big data analysis methods. Section 4 analyzes transportation big data and describes
applications applied to smart mobility. In Section 5, we suggest future research trends and
the limitations of research. Finally, in Section 6, we present our conclusions suggest future
research directions.

The contributions of this paper are as follows:
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• A comprehensive review of approaches to transportation big data, such as analysis
and data processing methods proposed in recent years;

• An introduction to smart mobility services and applications of the latest trends, such
as artificial intelligence, big data frameworks, machine learning, and security;

• Exploration of the limitations of the current study and directions for future research.

2. Bibliographic Analysis

This paper closely analyzes 96 papers—94 published between 2015 and 2023, one in
2012, and one in 2014—with more than 30 citations and an average of 110 citations. China
was the country that published the most papers in this domain, with 21 submitted papers;
followed by the United States of America, with 15; Republic of Korea, with 14 published
papers. The number of submissions by country was determined by the nationality of
the institution, not by the nationalities of the authors. In addition, 6 out of 92 papers
were published by IEEE Transactions on Intelligent Transportation Systems, the most
common journal. Figure 1 presents the most common keywords for the reviewed papers in
a word cloud.

Figure 1. Keywords of the analyzed papers in a word cloud.

3. Methods and Technologies for Smart Mobility

In this section, we discuss how to analyze and store smart mobility data and exploit
machine learning algorithms and big data frameworks. We also provide a detailed review
of approaches, citing various studies on efficient storage and analysis of big datasets that
grow over time.
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3.1. Machine Learning

In this section, we detail the results of smart mobility big data analysis using vari-
ous machine learning algorithms. Machine learning is a representative method for the
implementation of artificial intelligence and is a subset that focuses on building systems
that learn or improve performance based on data. It has a narrower scope than artificial
intelligence and a more comprehensive meaning than deep learning.

3.1.1. Predicting Traffic Accidents

Radar sensors and rear cameras have been used to prevent or reduce accidents. How-
ever, research on accident prevention and anomaly detection of vehicles has not yet reached
the commercialization stage due to other aspects of the road surface. In this section, we
review research on accident prevention methods using smart mobility.

In [2], the authors proposed SafeDrive to detect anomalous driving behavior. SafeDrive
detects abnormal driving habits through unsupervised learning according to features such
as rapid acceleration, sudden braking, RPM–speed mismatch, speeding, RPM anomalies,
rapid swerving, and neutral taxing. In [3], the Hadoop framework was used to efficiently
process and analyze numerous traffic data using sampling methods to solve the data
imbalance problems. Accordingly, the prediction system first preprocesses and analyzes
big data on traffic to generate data for the learning system. The imbalance in the generated
data is corrected using the sampling method. The modified data were classified into several
groups, and classification analysis was applied to improve the prediction accuracy. In
addition, a MapReduce-based synthetic minority oversampling technique (SMOTE) was
devised to solve the data imbalance.

In [4], the authors predicted the exact arrival time using linear regression, naive
Bayes, and distributed random forest to reflect it in the algorithm before accidents and
congestion occur in order to minimize the expected arrival time variation due to these
variables. The authors of [5] proposed a real-time autonomous accident detection system
based on computer intelligence technology. The proposed system uses k-nearest neighbor
(KNN), regression trees, and feed-forward neural network models to predict the likelihood
of accidents.

Finally, in [6], the authors implemented various classification models, such as logistic
regression, artificial neural networks, decision trees, k-nearest neighbors, and random
forests, to predict incident severity and demonstrate the performance of the proposed
model with significant accuracy through experimental results. They also implemented a
web-based message alert system to warn users through IoT devices.

3.1.2. Traffic Flow Prediction

Congestion prediction is one of the most common subjects in smart mobility research
because, with the advent of connected vehicles (CV), the importance of research has
increased as vehicles share their coordinates. This section includes an introduction to
research on congestion prediction, optimal route selection, and arrival time prediction.

The authors of [7] focused on traffic delay factors. The multilayer perceptron (MLP),
convolution neural network (CNN), long short-term memory recurrent neural network
(LSTM RNN), gated recurrent unit recurrent neural network (GRU RNN), and autore-
gressive integrated moving average (ARIMA) methods were used for smart mobility data
analysis. In [8], the authors predicted traffic flow, exploiting the stacked autoencoder (SAE)
model. The proposed method was compared with backpropagation, random walk, support
vector machine (SVM), and radial basis function (RBF) methods.

In addition, in [9], the authors proposed prediction of vehicle speed by exploiting
route types, route curvature, driver behavior, weather, and traffic condition data. The
model uses big data analytics and an adaptive neuro-fuzzy inference system (ANFIS).
In [10], the authors proposed a system to reduce travel time and CO2 emissions using
connected vehicles to detect traffic congestion and allow users to change the paths to
faster routes. A Cassandra-based big data cluster was developed, and simulation of urban
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mobility (SUMO) and OMNet++ discreet event network simulators were used to evaluate
the proposed system. Moreover, in [11], the authors proposed a fuzzy theory and an
SVM-based real-time highway traffic congestion prediction model. The model exploits
Apache Storm’s spout and bolt using road density, traffic condition, and rainfall data. The
authors of [12] investigated the feasibility of an active real-time traffic monitoring strategy
that simultaneously evaluates operation and safety. A real-time collision prediction model
was implemented using data mining algorithms, such as random forest and Bayesian
inference techniques.

Furthermore, the authors of [13] proposed strong reliance on results from big data
prediction systems that predict accidents, estimated arrival time, and custom clearance
times. Accident analysis and research revealed that driver mistakes are the main cause
of car accidents. Fully autonomous vehicles eliminate human error and reduce accidents.
The authors proposed a very light and simple algorithm for identification and calculation
of optimal trajectories. A framework for calculation of safety indices and travel time was
proposed in [14], exploiting real-time data collected from connected vehicles. The results
revealed that the proposed algorithm can provide different paths when considering the
safety index and travel time.

Moreover, in [15], the authors implemented an artificial neural network (ANN) com-
posed of three layers to predict traffic flow. The ANN was trained to exploit forward
propagation and backpropagation learning according to the date, time, traveler’s vehicle,
commercial vehicles, number of vehicles occupying the road segment, and vehicle speed.
A CNN, Region-CNN (R-CNN), Fast R-CNN, and Faster R-CNN were used in [16] to
recognize vehicle models or identify vehicle classifications and locations. These methods
focus on building a current road traffic situation recognition system. A graph was gen-
erated using traffic data observations (TDOs) to determine the historical average of the
traffic flow in [17]. Finally, regression models, such as linear regression, sequential minimal
optimization regression, and M5-based regression trees, were used to determine traffic data
and annual average daily traffic (AADT).

A multilevel strategy was introduced in [18] to process raw big data into a compressed
time series. This strategy employed Granger causality and Lasso regression, which are
suitable for causal and regression analysis, respectively, to better prepare the data for
traffic modeling. In addition, an objective methodology based on engineering judgment
considering the traffic accident rate of the road section, the degree of roadside development,
and the geometric characteristics of the road section on urban roads was developed in [19].

Furthermore, the authors of [20] discussed an extended smart traffic management plat-
form (STMP) based on unsupervised online incremental machine learning, deep learning,
and deep reinforcement learning. STMP integrates heterogeneous big data streams, such
as IoT, smart sensors, and social media, to detect conceptual drift; distinguish between
repetitive and non-recurring traffic events; and determine impact propagation, traffic flow
prediction, commuter sentiment analysis, and optimized traffic control. In [21], the authors
aimed to develop tools for accurate and timely prediction of traffic flow information. The
authors proposed a traffic flow prediction system with reduced complexity using machine
learning, genetic algorithms, soft computing, and deep learning algorithms.

In [22], the authors presented a decision support system (DSS) framework that pro-
poses alternative travel strategies for car use by assessing large volumes of traffic system
data from different devices. The proposed framework was structured to collect, integrate,
aggregate, converge, manage, and disseminate open big data. The framework architecture
is based on a centralized database management system (DBMS) aimed at performing geo-
graphic data mining analysis. In addition, a regression model based on LSTM to predict 4 h
of traffic data was proposed in [23]. The proposed system collects 24 h of traffic data online
and labels it to construct an LSTM model. The proposal proves its efficiency by comparing
the performance to logistic regression. The authors of [24] exploited a deep neural network
(DNN) to classify traffic congestion in non-congested and congested areas. The ANN was
composed of three layers, and the results indicated 99% accuracy.
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Nei-TTE, a neighborhood-based deep learning method for travel time estimation, was
discussed in [25]. Nei-TTE divides the entire trajectory into several separate segments
and uses historical trajectory data that are perfect at the time level. The proposed model
captures the characteristics of each segment and uses the trajectory characteristics of
adjacent segments when the road network topology and speed interact. In [26], the authors
proposed intelligent transportation based on real-time traffic conditions using graphs.
They suggested an architecture that efficiently processes real-time vehicle big data using a
parallel processing system and big graph processing technology. In addition, various graph
algorithms were used to intelligently respond to user queries.

A traffic image analysis system based on computer vision techniques was proposed
in [27]. The system core detects and classifies vehicles in traffic images. Thus, two models
were implemented. The first model is an MoG and SVM system, and the second is based
on Fast R-CNN for object detection in images.

Furthermore, a general architecture for fog computing applications and services in a
vehicle ad hoc networks (VANET) environment was proposed in [28]. A proof-of-concept
system was provided for data analysis in a hybrid VANET/fog environment. The system
was used in two fog applications: one for detection of road traffic anomalies and the other
for prediction of bus arrival times. A graph-oriented mechanism for implementation of
smart city transportation systems was proposed in [29]. Deploying sensors on roads for
traffic data collection generates numerous IoT big data, and an efficient architecture was
proposed using Giraph tools and parallel processing servers to generate big graphs.

In [30], the authors proposed an optimized prediction algorithm for a radial basis
function neural network based on an improved artificial bee colony (ABC) algorithm in
a big data environment. Due to the uncertainty of traffic flow, the existing linear model
had difficulty eliciting user satisfaction. The proposed method adopts the ABC algorithm
and analyzes a nonlinear time series to optimize the weights and thresholds of the radial
basis function (RBF) neural networks. Therefore, this model performed better than the
KNN, RBF neural network, IBP neural network, and CARBF neural network models. The
author’s goal in [31] was to propose a new statistical modeling method that determines
the optimal historical dataset through various analyses for each link and provides more
accurate traffic flow predictions by day of the week. A three-step filtering algorithm based
on change point analysis, correlation analysis, and Monte Carlo simulations was suggested
to determine the optimal historical date range.

Finally, Sipresk, a platform that analyzes urban traffic data to gain insight into traffic
patterns, was suggested in [32]. Sipresk consists of data, analysis, and management layers
and has several verified use cases, such as finding the average speed and congestion
sections on specific highways.

3.1.3. Predict and Minimize Transportation Emissions

Many cars still use fossil fuels. Fossil fuels are essential to our lives, but they pollute the
environment. In this section, we review papers investigating prediction and minimization
of vehicle emissions.

In [33], the authors proposed a three-layer perceptron neural network to learn and
predict carbon emissions. The authors exploited five features: global positioning systems
(GPS), carbon emissions, roads, POIs, and meteorology. The prediction results were good
compared to Gaussian naive Bayes, linear regression, logistic regression, stacked denois-
ing autoencoder, and deep belief network. Moreover, the authors of [34] estimated fuel
consumption and emissions by exploiting GPS data. They proposed an N-dimensional
representation to analyze and visualize GPS data. Another study [35] demonstrated that
pavement quality, traffic volume, and the climate of roads affect energy consumption and
CO2 emissions. The proposed ranking algorithm was called recommend paths.

Furthermore, the authors of [36] developed an urban atmospheric dataset by installing
a pollution measurement platform on Google Street View vehicles and repeatedly sampling
all distances in an area of about 30 km2. An analysis of these collected data revealed that
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the map of annual weekly NO, NO2, and black carbon results had a steeply persistent
pattern of contamination of up to 5 to 8 times. The authors of [37] proposed a system that
recommends routes and vehicle speeds that minimize NOx emissions and use on-demand
route optimization. Finally, In [38], a spatial econometric model was used to study the
impact of smart transportation on CO2 emissions in China.

3.2. Big Data Framework

Many big data frameworks are available to store and analyze the growing amount
of big data. In this section, we discuss approaches to architectures that effectively store
and analyze smart mobility big data using various big data frameworks, such as Apache
Hadoop and Apache Spark.

• MapReduce is a software framework released in 2004 by Google for distributed paral-
lel computing and large-capacity processing consisting of a mapper and a reducer. The
mapper uses a key-value pair to make sorting and grouping advantageous. MapRe-
duce undergoes the process of inputting, splitting, mapping, shuffling, reducing, and
outputting. When data are entered during the input process, they are split (splitting
process) and stored in the Hadoop Distributed File System (HDFS), and the map
function results are combined during the shuffling process, which is the intermediate
stage of the mapping and reducing tasks. Finally, in the reducing step, all values are
integrated to output the results.

• Apache Hadoop is an open-source big data processing framework. It was developed
to process and store increasing amounts of data, given the growth of search engines
such as Yahoo and Google, and to provide users with a fast response speed. Starting
with the HDFS and MapReduce framework, it expands and develops in the sense that
it includes the entire Hadoop ecosystem, including data storage, execution engine
programming, and data processing.

• Apache Spark is a unified big data analysis framework with various built-in mod-
ules, such as SQL, streaming, machine learning, and graphing. It can run on Apache
Hadoop, Apache Mesos, and Kubernetes. The SQL component can show tables such
as relational databases (RDBs) and queries in SQL style. The streaming component
can apply real-time data to applications. The machine learning component, MLlib,
includes various machine learning models that users can use easily to edit hyperpa-
rameters. Finally, the graph component, GraphX, is Apache Spark’s API for graph
and graph-parallel computation. It is flexible and works seamlessly with both graphs
and collections. In addition, GraphX comes with a variety of graph algorithms. It
competes with the fastest graph systems in terms of performance while retaining
Spark’s flexibility, fault tolerance, and ease of use.

• Apache Kafka is an event streaming platform widely used to collect, process, and
store streaming events or general data without a separate start or end. In addition,
it is an open-source distributed event streaming platform for high-performance data
pipelines, data integration, and mission-critical applications.

The authors of [39] developed Marmot, an extension of the existing Apache Hadoop,
to facilitate the implementation of geospatial big data applications in the MapReduce
framework. Marmot is an architecture that processes geospatial big data in parallel using
MapReduce. Marmot’s data structure closely matches the relational database management
system (RDBMS), where a record in Marmot corresponds to a record in the database system,
with the smallest unit of data elements comprising one or more column values in a table.
Marmot has two types of RecordSetFunctions: spatial and non-spatial operators. Spatial
operators input, analyze, and output spatial data. Marmot exhibited superior execution
speed compared to other models, including the existing spatial Hadoop.

As reported in [40], text recognition architectures existed in the past but were limited by
factors such as slow speed and low accuracy due to high computational volume. Therefore,
a study was conducted to improve text recognition accuracy with a low computational
volume using MapReduce and Apache Hadoop to recognize the unique code written on
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the container. The proposed method first recognizes the unique code of the container with
a camera and stores it in HDFS. Second, it converts it to a 20 × 20 gray image. Third, the
text is recognized by reducing each node’s computation volume using MapReduce optical
character recognition (OCR). Then, it recognizes each character instead of recognizing the
characters as a sentence or word and merges the last recognized characters. Through this
process, it is possible to analyze big data efficiently.

The authors of another study [41] proposed a comprehensive and flexible architecture
based on a distributed computing platform for real-time traffic control. Apache Kafka
was used for the data pipeline and stream processing, and data were stored in HDFS. In
addition, SUMO was used to simulate the opening and closing control of the highway
shoulder to prove the feasibility of the proposed method.

The authors of [42] proposed an efficient model using resources from autonomous
vehicles. This architecture consists of a distributed data storage mechanism for real-time
analysis and an in-vehicle cloud server tool for batch processing of offline data. In addition,
a workflow model for big data architecture was designed to inspect streaming data in
real time.

Furthermore, the authors of [43] exploited a vehicle network without installing any
additional infrastructure or hardware. An optimally distributed data-hopping mechanism
was proposed that enables delay-tolerant data routing through a network of connected
vehicles. The authors formulated a Markov decision process to solve the next-hop decision
optimization and computational complexity problems, proposing a heuristic algorithm and
demonstrating performance improvement through extensive simulations.

In [44], an intelligent smart transportation system with big graph processing using
the Hadoop ecosystem was proposed using Apache Spark rather than Apache Hadoop to
increase system efficiency in big data processing. Metro graph processing was performed
using Giraph through Apache Hadoop. The proposed architecture exhibited efficiency in
terms of scalability and real-time data processing.

The authors of another study [45] proposed a decision support system (DSS). In
this architecture, public transport is promoted for those who use their cars by proposing
a DSS to help public transport planners make decisions related to sustainable mobility
development.

The authors of [46] proposed an architecture that calculates the quality of a public
transportation system using the MapReduce method after preprocessing the GPS data.
By applying the MapReduce paradigm implemented in the Apache Hadoop framework,
input data not useful for statistical calculation are filtered out, and useful records are sorted
and classified. In addition, based on the ideas presented in related literature, the authors
proposed a method for accurately predicting travel destinations based on smart card data.
This estimate allows one to calculate demand and OD matrices important for transportation
planning that are difficult to obtain using traditional methods.

The authors of another study [47] presented a method to build a smart transportation
system using big data analytics. Billions of connected devices generate terabytes of vehicle
network data. These big data can make smart cities a reality by analyzing many aspects of
transportation. This architecture has four layers. The first layer is the input layer, including
the collection of various types of data, such as from security surveillance cameras, smart
traffic signals, GPS, radio-frequency identification (RFID), and the Internet. The second
layer is the storage layer, where data collected from various sources are stored for analysis.
The third layer is the analysis layer, which takes data from the storage layer and analyzes
them using various data analysis tools in a parallel or grid computing environment. Finally,
in the communication layer, analysis results are provided to users in real time using other
communication media, such as mobile, radio, or television networks or the Internet.

The authors of [48] suggested processing the big data architecture of autonomous and
connected vehicles driving sensor data. The proposed architecture is an improved model
of the existing Cooperation Intelligence Transport System (C-ITS). The architecture is based
on the Hadoop ecosystem.
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Furthermore, the authors of [49] focused on the big data architecture of ITS. This
architecture exploits Apache Hadoop and Apache Spark. It stores traffic management and
traffic analysis data for dynamic toll charging. The authors of [50] discussed an architecture
capable of built-in storage and analysis. The proposed architecture comprises four modules:
a big data collection and preprocessing unit, a big data processing unit, a big data analysis
unit, and a visualization unit. This architecture was designed to collect, store, analyze, and
visually present continuously produced ITS data to the users.

In [51], the authors proposed, developed, and applied a microservice-oriented big
data architecture (MOBDA) to meet the functional and non-functional service performance
requirements of ITS. This architecture was proposed to combine stream processing and
batch processing of big data for smart computation of microservice-oriented transportation
metrics that can serve the various needs of users.

The authors of [52] proposed a framework for acquiring data and predicting the
latency of buses using Bayesian networks after preprocessing. In addition, the authors
of [53] suggested a fog-computing-based ITS data analysis architecture. The proposed
method exploits both fog and cloud computing. Thus, this architecture compensates for its
drawback by providing faster data processing than existing cloud computing frameworks.
A large-scale data analysis architecture was suggested using a wireless sensor network,
big data, data mining, and other methods in [54]. The proposed architecture can ensure
the compatibility of terminals, the usability of functions, real-time data, the universality
of regions, and the accuracy of information, providing personalized traffic information
service for users.

The authors of [55] used MapReduce to preprocess the driving data method. The au-
thors investigated five preprocessing methods: range filtering, meaningless value exclusion,
variable filter comparison, statistical technique application, and driving pattern search.

Big data technologies such as Spark on Hadoop and MongoDB can process real-time
and historical data [56]. This study also highlights the influence of Spark cluster execution.
The efficiency of Spark clusters in standalone mode can be observed by comparing the
test results. A distributed cloud computing framework based on a big data approach was
proposed to scale storage and computing resources to collect and process traffic from large
networks in a reasonable amount of time [57]. In addition, a new framework that focuses
on real-time anomaly detection based on big data technology was proposed in [58]. This
framework consists of BroIDS, Flume, Kafka, Spark Streaming, SparkMLlib, Matplot, and
HBase, which were evaluated to demonstrate their efficacy, especially in terms of accuracy,
memory consumption, and execution time.

Table 1 summarizes the architectures used for big data frameworks. Many subjects
are considered, such as storage of geospatial data, traffic control, optimization of vehicle
pacing, path optimization, and security. Nevertheless, none of the listed architectures deals
with user safety or environmental problems.

Table 1. Summary of the literature review on big data architectures.

S No. Paper (Year) Focus

1. Jo et al. (2018) [39]
• Stream-based system that extends and supports Apache Hadoop;
• Seamless integration between spatial and non-spatial operations;
• Supports the automatic construction of MapReduce tasks.

2. Ayed et al. (2015) [40]

• Recognizes unique code written on the container;
• Increases text recognition accuracy;
• Monitors the moving trajectory of cargo in real time;
• Uses MapReduce and Apache Hadoop.

3. Amini et al. (2017) [41] • Based on a distributed computing platform;
• Real-time traffic control.
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Table 1. Cont.

S No. Paper (Year) Focus

4. Daniel et al. (2017) [42]

• Distributed data storage mechanism;
• Vehicle cloud server tool;
• Analysis algorithm for batch processing of offline data;
• Effectively obtains resources from autonomous vehicles.

5. Si et al. (2016) [43]
• Optimal distributed data-hopping mechanism;
• Enables delay-tolerant data routing;
• Connected vehicle network.

6. Rathore et al. (2018) [44] • Ensembles smart ITS and big graph processing;
• Uses the Hadoop ecosystem.

7. Fiore et al. (2019) [45] • Helps determine travel strategy;
• Helps transit managers determine transit routes.

8. Nesmachnow et al. (2017)
[46]

• Estimates the quality of a public transportation system;
• Uses MapReduce.

9. Shukla et al. (2016) [47]
• Presents a method to build smart transportation systems;
• Analyzes various data;
• Security surveillance cameras, smart traffic signals, GPS, RFID, and the Internet.

10. Aelee et al. (2020) [48] • Improves the existing C-ITS by using the Hadoop ecosystem;
• Designed for autonomous vehicles and connected vehicles.

11. Mounica et al. (2019) [49] • Analyzes data from various data sources above the ITS;
• Collects data and uses dynamic toll-charging systems.

12. Gohar et al. (2018) [50]
• Built-in storage;
• Collects, preprocesses, stores, analyzes, and visualizes data;
• Uses Apache Hadoop.

13. Suriya et al. (2020) [51] • Service-driven modeling for ITSs;
• Adopts microservice- and component-based hybrid technology.

14. Jackson et al. (2021) [52] • Bayesian framework;
• Predicts bus latency.

15. Darwish et al. (2018) [53] • Fog-based big data analytics architecture;
• Efficient big ITS data processing.

16. Liu et al. (2018) [54]
• Data analysis architecture;
• Wireless sensor network, big data, data mining, and other advanced technologies;
• Personalized traffic information service.

17. Cho et al. (2017) [55]
• Proposes a preprocessing method using the MapReduce mechanism;
• Filters ranges, excludes meaningless values, compares filters from variables, applies

statistical techniques, and finds driving patterns.

18. Guerreiro et al. (2016) [56] • Efficient Spark cluster;
• Combines Spark on Hadoop and MongoDB.

19. Laboshin et al. (2017) [57] • Large-scale traffic network data;
• A distributed cloud computing framework.

20. Ariyaluran et al. (2022) [58] • Real-time anomaly detection;
• Combines BroIDS, Flume, Apache Kafka, Apache Spark, Matplot, and HBase.
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In this section, we discuss many big data frameworks, including Apache Spark, and
Kafka. With so many different types of big data frameworks, it is important to know the
strengths and weaknesses of each framework and use them in harmony as you progress
through your research. For example, Apache Spark streaming is slower than Apache Kafka
streaming, which is processed on a per-data-stream basis because real-time data are broken
into microbatches, then processed. However, it has the advantage of good compatibility
with other systems.

3.3. Summary

Section 3.1 introduced studies involving prediction of traffic flow, traffic accidents,
and emissions using artificial neural networks and machine learning algorithms such as
KNN, linear regression, and random forest. RNNs and LSTM are suitable for prediction
of time series data. Fast R-CNN and Faster R-CNN, which improve the computational
bottleneck of existing CNNs, are also commonly used.

Some of the key gaps identified in the reviewed literature include:

• Data standardization issues;
• Privacy of users;
• Sparse data and dense data issues;
• How to use emission prediction results.

In the reviewed papers, Apache Kafka and Apache Spark streaming were primarily
used for real-time data analysis [41,42,54,58]. Apache Spark streaming has slower query
processing times compared to Apache Kafka, but it is more compatible, so it is important
for researchers to decide which model is most appropriate for their research. The incre-
mental problem of big data has always been a concern. Multiple authors [39,40,47,55] have
improved the incremental problem of big data by using a big data framework.

4. Application of Smart Mobility with Big Data
4.1. Security

Data generated by smart mobility sometimes contain personal or sensitive information,
so security is emphasized. There is also a risk of exposure while storing the generated data
on a data server in real time. In this section, we review possible security issues that may
arise between data transmission, referencing papers on the security of big data systems.

For example, the authors of [59] suggested a secure data collection method when
generating data using the Internet of Vehicles (IoV). Collected data are stored in HDFS with
three components: the vehicle node, sink node, and big data center. The node sends the
data to the sink node to reduce storage. Encryption and decryption are performed using
the symbol key_vc, which is generated by a single sign-in algorithm. Next, the sink node
checks the key_vc and allows access to the big data center if appropriate. The authors of
another study [60] proposed an automated, secure continuous cloud service availability
framework for smart connected vehicles, enabling intrusion detection mechanisms against
security attacks and providing services that meet users’ quality-of-service (QoS) and quality-
of-experience (QoE) requirements. The proposed framework detects attacks through
data traffic analysis, reduction, and classification techniques for requests that may occur
during intrusions.

The authors of [61] focused on the privacy of ride sharing. Ride-sharing companies
represent a risk of personal information infringement because they require users to disclose
sensitive details about travel time and routes, as well as their pickup and dropoff locations.
The authors proposed an encryption method using binary vectors. The authors of another
study [62] found that collecting real-time traffic situation data using a connected vehicle
and offloading them wirelessly to an edge computing device (ECD) increases the risk of
personal information leakage, resulting in tracking, identity modulation, and virtual vehicle
hijacking. The authors applied the non-dominated sorting algorithm-2 (NSGA-2) to realize
multipurpose optimization to reduce execution time and energy consumption and prevent
privacy conflicts.
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The authors of [63] proposed security- and privacy-based access control (SPBAC) for
connected vehicles. The proposed model allows security officials to access information,
privileges, and roles rather than only roles for officials traveling in vehicles with the same
fleet. Furthermore, the authors of [64] proposed a mechanism for randomization of data
streams to ensure personal privacy. The proposed mechanism is data-adaptive and adjusts
the noise for data correlations. The authors of another study [65] suggested a threshold-
based image extraction solution for ITS and proposed an algorithm that uses Fast R-CNN
to divide images according to importance levels and protect personal information using
high thresholds for sensitive parts.

The authors of [66] suggested a blockchain framework to address privacy and security
issues associated with big data and smart mobility. The proposed plan is called blockchain
smart mobility data (BSMD) and is built according to the following principles: (a) Regarding
user privacy, multiple DIDs are assigned to a single user, making it difficult to anonymize
information and associate data. (b) Data ownership allows users to own a digital identifier
and cancel the connection. (c) Concerning data transparency and audibility, anyone can
access the ledger, and nodes can track all transactions related to the information. (d) For
granular access control, smart contracts define what information nodes share. The authors
of another study [67] proposed a multilayer blockchain framework for BSMD to address
privacy, security, management, and scalability issues. It was developed as a six-layer model
that defines the flow of mobility information, and open-source code is available in the
transportation community. Finally, the authors of [68] focused on personal information
issues that stand out as unmanned aerial vehicles (UAVs) are developed. The authors
applied a number theory research unit cryptosystem to encrypt blockchain data.

The future of mobility will be connected to the Internet, and security threats such as
hacking and privacy breaches will be a prominent concern. According to global market
research firm MarketsAndMarket, the global automotive cybersecurity market is expected
grow from USD 2 billion in 2021 to USD 5.3 billion in 2026 [69]. As a result, not only
automakers such as Hyundai Motor Company but also IT companies such as LG Electronics
have recognized the importance of automotive cybersecurity and are developing software
and technologies to enhance security.

4.2. Visualization and Monitoring

Visualization of data analysis results is important because it is intuitive and clear
to non-experts. The importance of data visualization is emphasized as the amount of
data increases and becomes more complex. Visually checking data analysis results has
advantages in terms of understanding and time efficiency. According to [70], the speed
of information processing varies greatly from one sense to another and compared to a
computer system.

For example, the authors of [71] developed a visualization and analysis method for
transportation data, exploiting taxi and bus GPS and bicycle-sharing data. The proposed
application is a python package, TransBigData, which was used by data science researchers
and engineers, and through spatiotemporal transportation data analysis, government and
other enterprises can support efficient and reliable management decisions. Furthermore,
the possibility of motivating and improving traffic operation highway safety by exploiting
real-time microwave vehicle detection system (MVDS) data was studied in [12].

The authors of another study [17] presented a Java-based traffic information ob-
servation (TDO) tool to filter and visualize historical traffic big data. The authors of [72]
established a solution to create a platform for pothole detection and road monitoring, imple-
menting road observers using IMU sensors attached to embedded systems and proposing
smart environmental monitoring and analysis, an IoT-based monitoring platform system,
and an application that transmits real-time big data. The authors of [73] proposed a system
that uses information visualization techniques to analyze urban traffic data and the impact
of emissions on urban air quality. The study showed that citizens and public agencies
can use effective visualization to identify trends, detect congested road sections at certain
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times, and visualize the correlation between road traffic and air pollution for system users.
The authors of [74] used an ANN with fuzzy logic to determine the remaining construction
life (LCL) of a permanent magnet (PM) by mapping the source swell and the time at which
the electric vehicle is driven and outputting the external temperature, twisting temperature,
the moment of component lubrication, and the split weakening of the responsible magnetic
field in the context of connected vehicles. The authors also proposed a monitoring system
whereby cloud computing, traffic data, and intelligent transportation systems (ITS) can
improve PHEV energy management.

Finally, the authors of [75] analyzed road traffic and pollution data and applied
algorithms that leverage the MapReduce framework running on Hadoop clusters. Results
were collected, and the path with the least pollution was calculated and visualized.

4.3. Connected Vehicles

Connected vehicles can connect to nearby devices using wireless internet. Connected
vehicles are an important factor in the IoT industry.

As many sensors are attached to connected vehicles, more data are generated, and not
only are location and speed shared, but data collection and analyses are also conducted.
The collected data are exploited for traffic flow detection, faster path recommendation, and
reduced emissions. Figure 2 presents the concept of a connected vehicle. The connected
vehicle is associated with many objects, generating considerable data. In this section,
we review the applications of data generated by connected vehicles in depth, as well as
research conducted to date.

Figure 2. Connected vehicle concept.

The authors of [15] introduced the concept of data management for vehicles by propos-
ing an onboard data management layer so that the vehicle can serve as a data platform
that can store, process, and share data. Moreover, the authors of [76] proposed ThinGs in a
fog (TGIF), a system designed to support interdisciplinary research within a wide range of
IoT applications. The authors of [77] reported on the open-source Pikalert® system, which
combines weather information with real-time data from connected vehicles to provide
important information to improve the safety and efficiency of ground transport systems.
This framework can be applied to a wide variety of user communities and is designed to
quickly collect datasets as they become available. In addition, the authors of [78] proposed
an architecture of connected vehicle platforms that can efficiently structure and analyze
data by collecting raw data generated by various devices. They also proposed an adaptive
memory-based data storage algorithm to be applied to the data reception layer of connected
vehicle platforms.
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Furthermore, the authors of [79] proposed a distributed intelligent transportation
system that applies intelligence to connected vehicles in dynamic decision making to pass
through specific areas such as rotations and intersections. This transportation system
assumes that each connected vehicle is an ant and focuses on dynamic decision making,
exploiting the ACO (Ant Colony Optimization) algorithm. Moreover, the authors of [80]
proposed an adaptive signal control optimization method aimed at minimizing the time to
board vehicles by taking advantage of the fact that connected vehicles can easily use each
other’s vehicle location, speed, and other traffic information.

The authors of [81] developed a CAN (controller area network) bus and a 4G–LTE-
based module that transmits vehicle powertrain information by utilizing the connectivity
and network of connected cars. The proposed system can check vehicle failure with a
mobile application by exploiting the manufacturer’s diagnostic code. A new modular FL
(federated learning) method was studied in [82] to enhance road user/object classification
based on LiDAR data for the integration of connected car decision making.

A methodology for quantification of changes in vehicle motion and for the study of
instantaneous driving behavior for collision accident types at intersections was presented
in [83], using longitudinal and lateral variability. More than 125 million basic safety message
data transmitted between more than 2800 connected vehicles were analyzed and integrated
with historical crash and road inventory data at 167 intersections. Furthermore, the authors
of [84] proposed an easy-to-implement origin and destination (OD)-based segmentation
technique to improve trunk signal adjustment by utilizing automatically collected vehicle
trajectory data from connected vehicles.

4.4. Autonomous Vehicles

In this section, we review studies on how autonomous vehicles select routes, consider-
ing limitations such as safety and minimum time. An autonomous vehicle can operate on
its own without driver or passenger manipulation. The emergence of self-driving cars is
expected to reduce traffic accidents and retaliatory driving due to driver carelessness. How-
ever, there are concerns that this usage could reduce jobs for people in the transportation
industry and increase cyber attacks.

In October 2016, the National Highway Traffic Safety Administration (NHTSA) of-
ficially adopted the autonomous driving stage released by the SAE, which is currently
divided into six stages, as listed in Table 2.

Table 2. Six levels of autonomous driving technology as defined by the SAE.

Stage Feature Contents

Level 0 No automation The driver controls all operations and encourages all dynamic driving.

Level 1 Driver assistance
The vehicle is controlled by the steering assistance system or the

acceleration/deceleration assistance system, but the person performs all functions for
dynamic driving.

Level 2 Partial automation
The vehicle is run by a steering support system or acceleration/deceleration support

system, but the driving environment is monitored by the person, and the driver is
responsible for safe driving.

Level 3 Conditional automation
The system controls all aspects of operation, but if the system requests driver

intervention, the driver must properly control the vehicle, and the driver is responsible
for safe control.

Level 4 High automation Key driving controls, driving environment monitoring, and emergency responses are all
conducted by the system but not always entirely controlled by the system.

Level 5 Full automation The system is responsible for driving in all road conditions and environments.

For example, one study [85] predicted that self-driving cars would evolve into services,
not products, through artificial intelligence and big data analysis. An online autonomous
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vehicle management system using network calculus (NC) was proposed to provide the
best service to users.

Another study [86] proposed an Apache Kafka and Spark-based autonomous vehicle
development solution that can collect various data in real time. Therefore, it is expected
that future cars will be able to select the optimal route quickly and autonomously. The
authors of [87] proposed a model that solves internal algorithm performance and data
storage and processing problems when collecting, analyzing, and storing data generated
by autonomous vehicles. The model consists of Flume, Apache Kafka, and Zookeeper for
collection and transmission of data to the storage system.

The authors of [88] suggested an optimization method to improve the traffic efficiency
of autonomous vehicles in conflict areas. In addition, the authors of [89] emphasized the
importance of autonomous vehicles in determining mandatory lane changes (MLC) in
urban road networks because incorrect MLC decisions on main roads threaten efficiency
and stability. Therefore, the aim of the study was to solve two key strategic decision
variables through simulation experiments.

The authors of [90] proposed a sensor fusion mechanism that combines resources
acquired from autonomous vehicles such as 3D camera sensor data and LiDAR sensor
information to provide an optimized solution for route selection. Moreover, the authors
of [91] discussed an automatic parking system exploiting sensors of autonomous vehicles
such as radar, cameras, and ultrasonic sensors. In addition, the authors of [92] proposed an
IoT gateway and deep learning-based self-driving car ISS (integrated self-diagnosis system),
that collects information from sensors of autonomous vehicles and analyzes self-diagnosis
and their effects. The proposed system uses deep learning to deliver information after self-
diagnosis and manage the time when parts of autonomous vehicles can be safely replaced.

Furthermore, in [93], a system was proposed to improve the control design of au-
tonomous vehicles through big data analysis of signals measured in autonomous vehicles.
The efficiency of the proposed control system was demonstrated through complex simula-
tion examples using the CarSim simulation environment.

In addition, the authors of [42] proposed an architecture that stores distributed data,
processes streaming data for real-time analysis, and processes batch offline data to ef-
fectively utilize data collected by autonomous vehicles. The authors also described the
data classification algorithm of distributed storage devices and mathematical modeling to
analyze the data classification function of autonomous vehicles.

The authors of [94] proposed an autonomous vehicle dynamics analysis focusing on
side stability. The analysis was based on the collection of big data from vehicle signals.
The key to the proposed analysis method is the C4.5 machine learning algorithm. The
purpose of inspection is to analyze the relationship between the various signals (e.g., yaw
rate, side slip angle, longitudinal speed, and adhesion coefficient) and the lateral dynamics
of the vehicle. In addition, the authors of [95] proposed an OLAP-based (online analytical
processing) analysis tool that utilizes big data to improve the reliability and efficiency of
decision making for autonomous vehicles.

The authors of [96] proposed an autonomous driving framework using deep rein-
forcement learning. This framework integrates the attention model to improve the time
complexity by using glimpses and action networks to direct the CNN kernel to the input
area associated with the driving process. Moreover, the authors of [97] proposed an appli-
cation of the deep reinforcement learning technique to determine optimal driving policies
by maximizing long-term rewards in interactive environments to solve complex control
problems. The proposed architecture uses LSTM to model an interactive environment
delivered to a DQN (Deep Q-Network), including historical driving information.

In [98], a new probability recognition algorithm is presented as a real-time solution
for data connection, object tracking, and object classification for autonomous ground
vehicles under all weather conditions. The proposed method implements a state-of-the-art
vision detection algorithm that includes directional information for autonomous vehicle
applications. Moreover, in [99], unmanned autonomous vehicles were proposed with a
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focus on enhancing traffic sign recognition performance to assist in autonomous driving.
Because not only color but also time constraints are important when recognizing traffic
signs on a video basis, the authors proposed an algorithm to recognize traffic signs by
fusing space and time functions with CNN bases. The authors of [100] proposed four
rules for autonomous vehicles to prioritize ethical data exploitation and decision making
between pedestrians and passengers.

5. Open Challenges

In this section, we discuss the limitations of the literature review and suggest directions
for future research.

Technical limitations: The limitations of studies using machine learning are that they
may produce incorrect results in untrained situations, that is, they may be vulnerable to
unexpected situations during the operation of the vehicle. Additionally, most machine
learning models are black boxes, which makes them difficult to interpret. In order to
improve the accuracy of the model, it is sometimes necessary to modify the model, but
most machine learning algorithms are generated as a result of learning, and it is difficult
for humans to understand the process whereby results are derived, which limits the
improvement of the model. Therefore, it is valuable to develop a model that allows people
to easily understand why the AI model made a certain decision and how it works, such as
XAI (explainable AI).

In addition, in the case of big data, the amount of data accumulates at a rapid pace
in hyperconnected systems. As a result, query response times are sometimes delayed by
unnecessary exploration when making decisions. Therefore, it is very important to study
how to effectively determine and explore only the necessary data.

Legal limitations: As the concept of smart mobility has not been around for a long
time, the system has not yet been firmly established. The active cooperation and par-
ticipation of governments, companies, users, and related communities are required for
commercialization. Therefore, it seems necessary to establish technical standards and
legislation that specify punishments and responsibility for accidents or illegal acts caused
by errors in the artificial intelligence embedded in smart mobility devices. For example,
if an accident occurs due to a central line violation in a self-driving car, it is necessary to
establish standards for determining whether the responsible party is the manufacturer, the
driver, or another party and how to divide the fault.

Ethical limitations: There are ethical dilemmas in both smart mobility and artificial
intelligence research. The dilemma of “Which one should artificial intelligence choose
between probabilistic choice and ethical choice?” is an age-old issue. For example, in a
situation in which an elderly person and a young man are standing on either side of the
road and there is no way to avoid or stop them, opinions on what choice a self-driving
car with artificial intelligence should make vary greatly among people. The young man
is more likely to survive, even if an accident occurs. However, in our society, protecting
the more productive young man is also an option. Lastly, there is a way for the driver to
be injured with neither the young man nor the elderly person being injured by colliding
with a wall or guardrail. There is no correct answer to these questions. However, artificial
intelligence developers feel burdened when prioritizing certain choices over ethical choices
and survival rates.

6. Conclusions

Various means of transportation are connected to the Internet, and new attempts are
increasing accordingly. In particular, the combination of smart mobility and advances in
IoT, AI, and big data analysis technologies will change much of our mobility. In this paper,
we extensively analyzed and reviewed various recent studies exploiting data generated
by smart mobility. However, due to technological development, there are positive aspects
such as the convenience of movement, safety improvement, fast path recommendation,
and accurate arrival time prediction, as well as negative aspects, such as job loss for
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transportation businesses and ambiguous selection of responsible drivers and autonomous
vehicle manufacturers. Therefore, it seems necessary to appropriately use technology that
develops at an exponential rate that is expected to continue in the future and to change the
cultural paradigm.

Many automakers are now building connected vehicles. In the near future, all modes
of transportation will be connected to the Internet, sharing their location, destination, speed,
and other information for various purposes, such as traffic collection and optimization.
However, there is also a risk of personal information leakage that can occur when ex-
changing information. In addition, when autonomous driving becomes commonplace, a
solution is needed to prevent car hacking, unauthorized operation, and smart key cloning.
Furthermore, since connected vehicles share their location, optimization of traffic flow can
eliminate the need for traffic lights. In addition to traffic flow algorithms, more accurate
image processing technologies and fast communication systems are needed.

Big data and artificial intelligence are expected to make a significant contribution to
the field of smart mobility. Processing large amounts of data and information collected by
smart mobility devices will make the movement of users convenient and safe and optimize
traffic management.

Author Contributions: Conceptualization, D.L. and J.J.J.; methodology, D.L., D.C. and J.J.J.; software,
D.L. and J.J.J.; validation, D.C. and J.J.J.; formal analysis, D.L. and J.J.J.; investigation, D.L.; resources,
D.L. and J.J.J.; data curation, D.C. and J.J.J.; writing—original draft preparation, D.L.; writing—review
and editing, D.C. and J.J.J.; visualization, D.L. and D.C.; supervision, J.J.J.; project administration, J.J.J.;
funding acquisition, J.J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Chung-Ang University Research Grants in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Precedence Research. Smart Mobility Market Size to Worth around USD 250.3 Bn by 2030. Available online:

https://www.globenewswire.com/news-release/2022/08/12/2497710/0/en/Smart-Mobility-Market-Size-to-Worth-Around-
USD-250-3-Bn-by-2030.html (accessed on 12 January 2023 ).

2. Zhang, M.; Chen, C.; Wo, T.; Xie, T.; Bhuiyan, M.Z.A.; Lin, X. SafeDrive: Online driving anomaly detection from large-scale
vehicle data. IEEE Trans. Ind. Inform. 2017, 13, 2087–2096. [CrossRef]

3. Park, S.h.; Kim, S.m.; Ha, Y.g. Highway traffic accident prediction using VDS big data analysis. J. Supercomput. 2016, 72, 2815–2831.
[CrossRef]

4. Al Najada, H.; Mahgoub, I. Anticipation and alert system of congestion and accidents in VANET using Big Data analysis for
Intelligent Transportation Systems. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
Athens, Greece, 6–9 December 2016; pp. 1–8.

5. Ozbayoglu, M.; Kucukayan, G.; Dogdu, E. A real-time autonomous highway accident detection model based on big data
processing and computational intelligence. In Proceedings of the 2016 IEEE international conference on big data (Big Data),
Washington, DC, USA, 5–8 December 2016; pp. 1807–1813.

6. Mohanta, B.K.; Jena, D.; Mohapatra, N.; Ramasubbareddy, S.; Rawal, B.S. Machine learning based accident prediction in secure
iot enable transportation system. J. Intell. Fuzzy Syst. 2022, 42, 713–725. [CrossRef]

7. Chauhan, R.; Shi, Y.; Bartlett, A.; Sadek, A.W. Short-Term Traffic Delay Prediction at the Niagara Frontier Border Crossings:
Comparing Deep Learning and Statistical Modeling Approaches. J. Big Data Anal. Transp. 2020, 2, 93–114. [CrossRef]

8. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell.
Transp. Syst. 2014, 16, 865–873. [CrossRef]

9. Cheng, Z.; Chow, M.Y.; Jung, D.; Jeon, J. A big data based deep learning approach for vehicle speed prediction. In Proceedings of
the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 389–394.

10. Cárdenas-Benítez, N.; Aquino-Santos, R.; Magaña-Espinoza, P.; Aguilar-Velazco, J.; Edwards-Block, A.; Medina Cass, A. Traffic
congestion detection system through connected vehicles and big data. Sensors 2016, 16, 599. [CrossRef] [PubMed]

11. Tseng, F.H.; Hsueh, J.H.; Tseng, C.W.; Yang, Y.T.; Chao, H.C.; Chou, L.D. Congestion prediction with big data for real-time
highway traffic. IEEE Access 2018, 6, 57311–57323. [CrossRef]

https://www.globenewswire.com/news-release/2022/08/12/2497710/0/en/Smart-Mobility-Market-Size-to-Worth-Around-USD-250-3-Bn-by-2030.html
https://www.globenewswire.com/news-release/2022/08/12/2497710/0/en/Smart-Mobility-Market-Size-to-Worth-Around-USD-250-3-Bn-by-2030.html
http://doi.org/10.1109/TII.2017.2674661
http://dx.doi.org/10.1007/s11227-016-1624-z
http://dx.doi.org/10.3233/JIFS-189743
http://dx.doi.org/10.1007/s42421-020-00019-8
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.3390/s16050599
http://www.ncbi.nlm.nih.gov/pubmed/27136548
http://dx.doi.org/10.1109/ACCESS.2018.2873569


Appl. Sci. 2023, 13, 7244 17 of 20

12. Shi, Q.; Abdel-Aty, M. Big data applications in real-time traffic operation and safety monitoring and improvement on urban
expressways. Transp. Res. Part C Emerg. Technol. 2015, 58, 380–394. [CrossRef]

13. Al Najada, H.; Mahgoub, I. Autonomous vehicles safe-optimal trajectory selection based on big data analysis and predefined
user preferences. In Proceedings of the 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 20–22 October 2016; pp. 1–6.

14. Hoseinzadeh, N.; Arvin, R.; Khattak, A.J.; Han, L.D. Integrating safety and mobility for pathfinding using big data generated by
connected vehicles. J. Intell. Transp. Syst. 2020, 24, 404–420. [CrossRef]

15. Benaissa, K.; Bitam, S.; Mellouk, A. On-Board Data Management Layer: Connected Vehicle as Data Platform. Electronics 2021,
10, 1810. [CrossRef]

16. Zhu, Q. Research on road traffic situation awareness system based on image big data. IEEE Intell. Syst. 2019, 35, 18–26. [CrossRef]
17. Alam, I.; Ahmed, M.F.; Alam, M.; Ulisses, J.; Farid, D.M.; Shatabda, S.; Rossetti, R.J. Pattern mining from historical traffic big data.

In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5.
18. Li, L.; Su, X.; Wang, Y.; Lin, Y.; Li, Z.; Li, Y. Robust causal dependence mining in big data network and its application to traffic

flow predictions. Transp. Res. Part C Emerg. Technol. 2015, 58, 292–307. [CrossRef]
19. Kim, H.; Jung, D. Estimation of Optimal Speed Limits for Urban Roads Using Traffic Information Big Data. Appl. Sci. 2021,

11, 5710. [CrossRef]
20. Nallaperuma, D.; Nawaratne, R.; Bandaragoda, T.; Adikari, A.; Nguyen, S.; Kempitiya, T.; De Silva, D.; Alahakoon, D.; Pothuhera,

D. Online incremental machine learning platform for big data-driven smart traffic management. IEEE Trans. Intell. Transp. Syst.
2019, 20, 4679–4690. [CrossRef]

21. Meena, G.; Sharma, D.; Mahrishi, M. Traffic prediction for intelligent transportation system using machine learning. In
Proceedings of the 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning
and Internet of Things (ICETCE), Jaipur, India, 7–8 February 2020; pp. 145–148.

22. Guido, G.; Rogano, D.; Vitale, A.; Astarita, V.; Festa, D. Big data for public transportation: A DSS framework. In Proceedings of
the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples,
Italy, 26–28 June 2017; pp. 872–877.

23. Du, X.; Zhang, H.; Van Nguyen, H.; Han, Z. Stacked LSTM deep learning model for traffic prediction in vehicle-to-vehicle
communication. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada,
24–27 September 2017; pp. 1–5.

24. Yi, H.; Jung, H.; Bae, S. Deep neural networks for traffic flow prediction. In Proceedings of the 2017 IEEE International Conference
on Big Data and Smart Computing (BigComp), Jeju, Republic of Korea, 13–16 February 2017; pp. 328–331.

25. Qiu, J.; Du, L.; Zhang, D.; Su, S.; Tian, Z. Nei-TTE: Intelligent traffic time estimation based on fine-grained time derivation of road
segments for smart city. IEEE Trans. Ind. Inform. 2019, 16, 2659–2666. [CrossRef]

26. Rathore, M.M.; Ahmad, A.; Paul, A.; Thikshaja, U.K. Exploiting real-time big data to empower smart transportation using big
graphs. In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 135–139.

27. Arinaldi, A.; Pradana, J.A.; Gurusinga, A.A. Detection and classification of vehicles for traffic video analytics. Procedia Comput.
Sci. 2018, 144, 259–268. [CrossRef]

28. Pereira, J.; Ricardo, L.; Luís, M.; Senna, C.; Sargento, S. Assessing the reliability of fog computing for smart mobility applications
in VANETs. Future Gener. Comput. Syst. 2019, 94, 317–332. [CrossRef]

29. Rathore, M.M.; Ahmad, A.; Paul, A.; Jeon, G. Efficient graph-oriented smart transportation using internet of things generated big
data. In Proceedings of the 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS),
Bangkok, Thailand, 23–27 November 2015; pp. 512–519.

30. Chen, D. Research on traffic flow prediction in the big data environment based on the improved RBF neural network. IEEE Trans.
Ind. Inform. 2017, 13, 2000–2008. [CrossRef]

31. Jeon, S.; Hong, B. Monte Carlo simulation-based traffic speed forecasting using historical big data. Future Gener. Comput. Syst.
2016, 65, 182–195. [CrossRef]

32. Khazaei, H.; Zareian, S.; Veleda, R.; Litoiu, M. Sipresk: A big data analytic platform for smart transportation. In Proceedings
of the Smart City 360: First EAI International Summit, Smart City 360, Bratislava, Slovakia, 13–16 October 2015; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 419–430.

33. Lu, X.; Ota, K.; Dong, M.; Yu, C.; Jin, H. Predicting transportation carbon emission with urban big data. IEEE Trans. Sustain.
Comput. 2017, 2, 333–344. [CrossRef]

34. Kan, Z.; Tang, L.; Kwan, M.P.; Zhang, X. Estimating vehicle fuel consumption and emissions using GPS big data. Int. J. Environ.
Res. Public Health 2018, 15, 566. [CrossRef] [PubMed]

35. Louhghalam, A.; Akbarian, M.; Ulm, F.J. Carbon management of infrastructure performance: Integrated big data analytics and
pavement-vehicle-interactions. J. Clean. Prod. 2017, 142, 956–964. [CrossRef]

36. Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.;
Hamburg, S.P. High-resolution air pollution mapping with Google street view cars: Exploiting big data. Environ. Sci. Technol.
2017, 51, 6999–7008. [CrossRef]

37. Dimokas, N.; Margaritis, D.; Gaetani, M.; Koprubasi, K.; Bekiaris, E. A Big Data application for low emission heavy duty vehicles.
Transp. Telecommun. 2020, 21, 265–274. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2015.02.022
http://dx.doi.org/10.1080/15472450.2019.1699077
http://dx.doi.org/10.3390/electronics10151810
http://dx.doi.org/10.1109/MIS.2019.2942836
http://dx.doi.org/10.1016/j.trc.2015.03.003
http://dx.doi.org/10.3390/app11125710
http://dx.doi.org/10.1109/TITS.2019.2924883
http://dx.doi.org/10.1109/TII.2019.2943906
http://dx.doi.org/10.1016/j.procs.2018.10.527
http://dx.doi.org/10.1016/j.future.2018.11.043
http://dx.doi.org/10.1109/TII.2017.2682855
http://dx.doi.org/10.1016/j.future.2015.11.022
http://dx.doi.org/10.1109/TSUSC.2017.2728805
http://dx.doi.org/10.3390/ijerph15040566
http://www.ncbi.nlm.nih.gov/pubmed/29561813
http://dx.doi.org/10.1016/j.jclepro.2016.06.198
http://dx.doi.org/10.1021/acs.est.7b00891
http://dx.doi.org/10.2478/ttj-2020-0021


Appl. Sci. 2023, 13, 7244 18 of 20

38. Zhao, C.; Wang, K.; Dong, X.; Dong, K. Is smart transportation associated with reduced carbon emissions? The case of China.
Energy Econ. 2022, 105, 105715. [CrossRef]

39. Jo, J.; Lee, K.W. High-performance geospatial big data processing system based on MapReduce. ISPRS Int. J. Geo-Inf. 2018, 7, 399.
[CrossRef]

40. Ayed, A.B.; Halima, M.B.; Alimi, A.M. Big data analytics for logistics and transportation. In Proceedings of the 2015 4th
international conference on advanced logistics and transport (ICALT), Valenciennes, France, 20–22 May 2015; pp. 311–316.

41. Amini, S.; Gerostathopoulos, I.; Prehofer, C. Big data analytics architecture for real-time traffic control. In Proceedings of the 2017
5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy,
26–28 June 2017; pp. 710–715.

42. Daniel, A.; Subburathinam, K.; Paul, A.; Rajkumar, N.; Rho, S. Big autonomous vehicular data classifications: Towards procuring
intelligence in ITS. Veh. Commun. 2017, 9, 306–312. [CrossRef]

43. Si, P.; He, Y.; Yao, H.; Yang, R.; Zhang, Y. DaVe: Offloading delay-tolerant data traffic to connected vehicle networks. IEEE Trans.
Veh. Technol. 2016, 65, 3941–3953. [CrossRef]

44. Rathore, M.M.; Paul, A.; Hong, W.H.; Seo, H.; Awan, I.; Saeed, S. Exploiting IoT and big data analytics: Defining smart digital city
using real-time urban data. Sustain. Cities Soc. 2018, 40, 600–610. [CrossRef]

45. Fiore, S.; Elia, D.; Pires, C.E.; Mestre, D.G.; Cappiello, C.; Vitali, M.; Andrade, N.; Braz, T.; Lezzi, D.; Moraes, R.; et al. An
integrated big and fast data analytics platform for smart urban transportation management. IEEE Access 2019, 7, 117652–117677.
[CrossRef]

46. Nesmachnow, S.; Baña, S.; Massobrio, R. A distributed platform for big data analysis in smart cities: Combining intelligent
transportation systems and socioeconomic data for Montevideo, Uruguay. EAI Endorsed Trans. Smart Cities 2017 , 2. [CrossRef]

47. Shukla, S.; Balachandran, K.; Sumitha, V. A framework for smart transportation using Big Data. In Proceedings of the 2016
International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 18–19 November 2016; pp. 1–3.

48. Yoo, A.; Shin, S.; Lee, J.; Moon, C. Implementation of a sensor big data processing system for autonomous vehicles in the C-ITS
environment. Appl. Sci. 2020, 10, 7858. [CrossRef]

49. Mounica, B.; Lavanya, K. Bigdata Architecture for Intelligence Transport System. Int. J. Innov. Technol. Explor. Eng. 2019,
9, 1281–1286.

50. Gohar, M.; Muzammal, M.; Rahman, A.U. SMART TSS: Defining transportation system behavior using big data analytics in
smart cities. Sustain. Cities Soc. 2018, 41, 114–119. [CrossRef]

51. Asaithambi, S.P.R.; Venkatraman, R.; Venkatraman, S. MOBDA: Microservice-oriented big data architecture for smart city
transport systems. Big Data Cogn. Comput. 2020, 4, 17. [CrossRef]

52. Jackson, M.D.; Leung, C.K.; Mbacke, M.D.B.; Cuzzocrea, A. A Bayesian framework for supporting predictive analytics over
big transportation data. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 332–337.

53. Darwish, T.S.; Bakar, K.A. Fog based intelligent transportation big data analytics in the internet of vehicles environment:
Motivations, architecture, challenges, and critical issues. IEEE Access 2018, 6, 15679–15701. [CrossRef]

54. Liu, D. Big data analytics architecture for internet-of-vehicles based on the spark. In Proceedings of the 2018 International
Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Xiamen, China, 25–26 January 2018; pp. 13–16.

55. Cho, W.; Choi, E. Big data pre-processing methods with vehicle driving data using MapReduce techniques. J. Supercomput. 2017,
73, 3179–3195. [CrossRef]

56. Guerreiro, G.; Figueiras, P.; Silva, R.; Costa, R.; Jardim-Goncalves, R. An architecture for big data processing on intelligent
transportation systems. An application scenario on highway traffic flows. In Proceedings of the 2016 IEEE 8th International
Conference on Intelligent Systems (IS), Sofia, Bulgaria, 4–6 September 2016; pp. 65–72.

57. Laboshin, L.; Lukashin, A.; Zaborovsky, V. The big data approach to collecting and analyzing traffic data in large scale networks.
Procedia Comput. Sci. 2017, 103, 536–542. [CrossRef]

58. Ariyaluran Habeeb, R.A.; Nasaruddin, F.; Gani, A.; Amanullah, M.A.; Abaker Targio Hashem, I.; Ahmed, E.; Imran, M. Clustering-
based real-time anomaly detection—A breakthrough in big data technologies. Trans. Emerg. Telecommun. Technol. 2022, 33, e3647.
[CrossRef]

59. Guo, L.; Dong, M.; Ota, K.; Li, Q.; Ye, T.; Wu, J.; Li, J. A secure mechanism for big data collection in large scale internet of vehicle.
IEEE Internet Things J. 2017, 4, 601–610. [CrossRef]

60. Aloqaily, M.; Otoum, S.; Al Ridhawi, I.; Jararweh, Y. An intrusion detection system for connected vehicles in smart cities. Ad Hoc
Netw. 2019, 90, 101842. [CrossRef]

61. Sherif, A.B.; Rabieh, K.; Mahmoud, M.M.; Liang, X. Privacy-preserving ride sharing scheme for autonomous vehicles in big data
era. IEEE Internet Things J. 2016, 4, 611–618. [CrossRef]

62. Xu, X.; Xue, Y.; Qi, L.; Yuan, Y.; Zhang, X.; Umer, T.; Wan, S. An edge computing-enabled computation offloading method with
privacy preservation for internet of connected vehicles. Future Gener. Comput. Syst. 2019, 96, 89–100. [CrossRef]

63. Habib, M.A.; Ahmad, M.; Jabbar, S.; Khalid, S.; Chaudhry, J.; Saleem, K.; Rodrigues, J.J.; Khalil, M.S. Security and privacy based
access control model for internet of connected vehicles. Future Gener. Comput. Syst. 2019, 97, 687–696. [CrossRef]

64. Ghane, S.; Jolfaei, A.; Kulik, L.; Ramamohanarao, K.; Puthal, D. Preserving privacy in the internet of connected vehicles. IEEE
Trans. Intell. Transp. Syst. 2020, 22, 5018–5027. [CrossRef]

http://dx.doi.org/10.1016/j.eneco.2021.105715
http://dx.doi.org/10.3390/ijgi7100399
http://dx.doi.org/10.1016/j.vehcom.2017.03.002
http://dx.doi.org/10.1109/TVT.2016.2550105
http://dx.doi.org/10.1016/j.scs.2017.12.022
http://dx.doi.org/10.1109/ACCESS.2019.2936941
http://dx.doi.org/10.4108/eai.19-12-2017.153478
http://dx.doi.org/10.3390/app10217858
http://dx.doi.org/10.1016/j.scs.2018.05.008
http://dx.doi.org/10.3390/bdcc4030017
http://dx.doi.org/10.1109/ACCESS.2018.2815989
http://dx.doi.org/10.1007/s11227-017-2014-x
http://dx.doi.org/10.1016/j.procs.2017.01.048
http://dx.doi.org/10.1002/ett.3647
http://dx.doi.org/10.1109/JIOT.2017.2686451
http://dx.doi.org/10.1016/j.adhoc.2019.02.001
http://dx.doi.org/10.1109/JIOT.2016.2569090
http://dx.doi.org/10.1016/j.future.2019.01.012
http://dx.doi.org/10.1016/j.future.2019.02.029
http://dx.doi.org/10.1109/TITS.2020.2964410


Appl. Sci. 2023, 13, 7244 19 of 20

65. Liu, Y.; Yang, C.; Sun, Q. Thresholds based image extraction schemes in big data environment in intelligent traffic management.
IEEE Trans. Intell. Transp. Syst. 2020, 22, 3952–3960. [CrossRef]

66. Lopez, D.; Farooq, B. A blockchain framework for smart mobility. In Proceedings of the 2018 IEEE International Smart Cities
Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–7.

67. Lopez, D.; Farooq, B. A multi-layered blockchain framework for smart mobility data-markets. Transp. Res. Part C Emerg. Technol.
2020, 111, 588–615. [CrossRef]

68. Lv, Z.; Qiao, L.; Hossain, M.S.; Choi, B.J. Analysis of using blockchain to protect the privacy of drone big data. IEEE Netw. 2021,
35, 44–49. [CrossRef]

69. Global Research & Data. Automotive Cybersecurity Market by Form (In-Vehicle, External Cloud Services), Offering (Hardware
& Software), Security, Application Type, Vehicle Type, Propulsion, Vehicle Autonomy, Approach, EV Application, and Region–
Global Forecast to 2026. Available online: https://www.globalresearch.co.kr/report/automotive-cybersecurity-market-form-
invehicle (accessed on 14 May 2023 ).

70. McCandless, D. David McCandless: The Beauty of Data Visualization; TED: New York, NY, USA , 2010.
71. Yu, Q.; Yuan, J. TransBigData: A Python package for transportation spatio-temporal big data processing, analysis and visualization.

J. Open Source Softw. 2022, 7, 4021. [CrossRef]
72. Ulil, A.M.R.; Sukaridhoto, S.; Tjahjono, A.; Basuki, D.K. The vehicle as a mobile sensor network base iot and big data for pothole

detection caused by flood disaster. IOP Conf. Ser. Earth Environ. Sci. 2019, 239, 012034. [CrossRef]
73. Bachechi, C.; Po, L.; Rollo, F. Big data analytics and visualization in traffic monitoring. Big Data Res. 2022, 27, 100292. [CrossRef]
74. Sreenivasu, S.; Sathesh Kumar, T.; Bin Hussain, O.; Yeruva, A.R.; Kabat, S.R.; Chaturvedi, A. Cloud Based Electric Vehicle’s

Temperature Monitoring System Using IOT. Cybern. Syst. 2023 , 1–16. [CrossRef]
75. Zenkert, J.; Dornhofer, M.; Weber, C.; Ngoukam, C.; Fathi, M. Big data analytics in smart mobility: Modeling and analysis of the

Aarhus smart city dataset. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, Russia,
15–18 May 2018; pp. 363–368.

76. Rayamajhi, A.; Rahman, M.; Kaur, M.; Liu, J.; Chowdhury, M.; Hu, H.; McClendon, J.; Wang, K.C.; Gosain, A.; Martin, J. Things in
a fog: System illustration with connected vehicles. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC
Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–6.

77. Siems-Anderson, A.R.; Walker, C.L.; Wiener, G.; Mahoney III, W.P.; Haupt, S.E. An adaptive big data weather system for surface
transportation. Transp. Res. Interdiscip. Perspect. 2019, 3, 100071. [CrossRef]

78. Kim, C.; Choi, H.s.; Ko, J. Adaptive Memory-based Data Storage Algorithm for Connected Vehicle Platform. In Proceedings of
the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea,
16–18 October 2019; pp. 1172–1174.

79. Bui, K.H.N.; Jung, J.J. ACO-based dynamic decision making for connected vehicles in IoT system. IEEE Trans. Ind. Inform. 2019,
15, 5648–5655. [CrossRef]

80. Yao, Z.; Jiang, Y.; Zhao, B.; Luo, X.; Peng, B. A dynamic optimization method for adaptive signal control in a connected vehicle
environment. J. Intell. Transp. Syst. 2020, 24, 184–200.

81. Kwon, D.; Park, S.; Ryu, J.T. A study on big data thinking of the internet of things-based smart-connected car in conjunction with
controller area network bus and 4G-long term evolution. Symmetry 2017, 9, 152. [CrossRef]

82. Barbieri, L.; Savazzi, S.; Brambilla, M.; Nicoli, M. Decentralized federated learning for extended sensing in 6G connected vehicles.
Veh. Commun. 2022, 33, 100396. [CrossRef]

83. Arvin, R.; Kamrani, M.; Khattak, A.J. How instantaneous driving behavior contributes to crashes at intersections: Extracting
useful information from connected vehicle message data. Accid. Anal. Prev. 2019, 127, 118–133. [CrossRef]

84. Xu, J.; Tian, Z. OD-Based Partition Technique to Improve Arterial Signal Coordination Using Connected Vehicle Data. Transp.
Res. Rec. 2023, 2677, 252–265. [CrossRef]

85. Cui, Q.; Wang, Y.; Chen, K.C.; Ni, W.; Lin, I.C.; Tao, X.; Zhang, P. Big data analytics and network calculus enabling intelligent
management of autonomous vehicles in a smart city. IEEE Internet Things J. 2018, 6, 2021–2034. [CrossRef]

86. Reddig, K.; Dikunow, B.; Krzykowska, K. Proposal of big data route selection methods for autonomous vehicles. Internet Technol.
Lett. 2018, 1, e36. [CrossRef]

87. Kumar, S.; Goel, E. Changing the world of autonomous vehicles using cloud and big data. In Proceedings of the 2018
Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India,
20–21 April 2018; pp. 368–376.

88. Yao, Z.; Jiang, H.; Cheng, Y.; Jiang, Y.; Ran, B. Integrated schedule and trajectory optimization for connected automated vehicles
in a conflict zone. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1841–1851. [CrossRef]

89. Cao, P.; Xu, Z.; Fan, Q.; Liu, X. Analysing driving efficiency of mandatory lane change decision for autonomous vehicles. IET
Intell. Transp. Syst. 2019, 13, 506–514. [CrossRef]

90. Daniel, A.; Subburathinam, K.; Anand Muthu, B.; Rajkumar, N.; Kadry, S.; Kumar Mahendran, R.; Pandian, S. Procuring
cooperative intelligence in autonomous vehicles for object detection through data fusion approach. IET Intell. Transp. Syst. 2020,
14, 1410–1417. [CrossRef]

91. Heimberger, M.; Horgan, J.; Hughes, C.; McDonald, J.; Yogamani, S. Computer vision in automated parking systems: Design,
implementation and challenges. Image Vis. Comput. 2017, 68, 88–101. [CrossRef]

http://dx.doi.org/10.1109/TITS.2020.2994386
http://dx.doi.org/10.1016/j.trc.2020.01.002
http://dx.doi.org/10.1109/MNET.011.2000154
https://www.globalresearch.co.kr/report/automotive-cybersecurity-market-form-invehicle
https://www.globalresearch.co.kr/report/automotive-cybersecurity-market-form-invehicle
http://dx.doi.org/10.21105/joss.04021
http://dx.doi.org/10.1088/1755-1315/239/1/012034
http://dx.doi.org/10.1016/j.bdr.2021.100292
http://dx.doi.org/10.1080/01969722.2023.2176649
http://dx.doi.org/10.1016/j.trip.2019.100071
http://dx.doi.org/10.1109/TII.2019.2906886
http://dx.doi.org/10.3390/sym9080152
http://dx.doi.org/10.1016/j.vehcom.2021.100396
http://dx.doi.org/10.1016/j.aap.2019.01.014
http://dx.doi.org/10.1177/03611981221098692
http://dx.doi.org/10.1109/JIOT.2018.2872442
http://dx.doi.org/10.1002/itl2.36
http://dx.doi.org/10.1109/TITS.2020.3027731
http://dx.doi.org/10.1049/iet-its.2018.5253
http://dx.doi.org/10.1049/iet-its.2019.0784
http://dx.doi.org/10.1016/j.imavis.2017.07.002


Appl. Sci. 2023, 13, 7244 20 of 20

92. Jeong, Y.; Son, S.; Jeong, E.; Lee, B. An integrated self-diagnosis system for an autonomous vehicle based on an IoT gateway and
deep learning. Appl. Sci. 2018, 8, 1164. [CrossRef]

93. Fényes, D.; Németh, B.; Gáspár, P. A predictive control for autonomous vehicles using big data analysis. IFAC-Pap. 2019,
52, 191–196. [CrossRef]

94. Fényes, D.; Németh, B.; Gáspár, P. Analysis of autonomous vehicle dynamics based on the big data approach. In Proceedings of
the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 219–224.

95. Makarova, I.; Buyvol, P.; Gabsalikhova, L.; Pashkevich, A.; Tsybunov, E.; Boyko, A. Improving the reliability of autonomous
vehicles in a branded service system using big data. In Proceedings of the 2020 21st International Conference on Research and
Education in Mechatronics (REM), Cracow, Poland, 9–11 December 2020; pp. 1–6.

96. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep reinforcement learning framework for autonomous driving. arXiv 2017,
arXiv:1704.02532.

97. Wang, P.; Chan, C.Y. Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge.
In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–6.

98. Radecki, P.; Campbell, M.; Matzen, K. All weather perception: Joint data association, tracking, and classification for autonomous
ground vehicles. arXiv 2016, arXiv:1605.02196 .

99. Zang, D.; Wei, Z.; Bao, M.; Cheng, J.; Zhang, D.; Tang, K.; Li, X. Deep learning–based traffic sign recognition for unmanned
autonomous vehicles. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2018, 232, 497–505. [CrossRef]

100. Shaw, D.; Favrat, B.; Elger, B. Automated vehicles, big data and public health. Med. Health Care Philos. 2020, 23, 35–42. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app8071164
http://dx.doi.org/10.1016/j.ifacol.2019.09.031
http://dx.doi.org/10.1177/0959651818758865
http://dx.doi.org/10.1007/s11019-019-09903-9
http://www.ncbi.nlm.nih.gov/pubmed/31065857

	Introduction
	Bibliographic Analysis
	Methods and Technologies for Smart Mobility
	Machine Learning
	Predicting Traffic Accidents
	Traffic Flow Prediction
	Predict and Minimize Transportation Emissions

	Big Data Framework
	Summary

	Application of Smart Mobility with Big Data
	Security
	Visualization and Monitoring
	Connected Vehicles
	Autonomous Vehicles

	Open Challenges
	Conclusions
	References

