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Abstract: Predicting and optimizing ship fuel use is a crucial technology for lowering greenhouse gas
emissions. Unfortunately, existing research is rarely capable of developing fuel consumption forecasts
and optimization models for a particular transport system. This study develops a fuel consumption
prediction model based on machine learning and a fuel consumption optimization model based on
particle swarm optimization for ships. We studied nearly ten years of big data from a large Korean
pure car and truck shipping company (PCTC), which contained 16,189 observations from 2012 to
2021. Results indicate that the XGBoost deep learning model outperforms conventional prediction
models at the stage of fuel consumption prediction, with an R2 of 0.97. Furthermore, in the fuel
consumption optimization stage, the particle swarm optimization method can effectively reduce fuel
consumption. This study helps PCTC companies control shipping costs and save energy. Insights for
shipping businesses to meet environmental demands are provided as well.

Keywords: fuel consumption prediction; fuel consumption optimization; machine learning; maritime;
XGBoost; particle swarm optimization

1. Introduction

The worldwide shipping sector is crucial to international trade since it transports
90% of all goods throughout the world [1,2]. However, the shipping industry faces two
overwhelming problems due to adverse factors such as the global economic recession and
climate warming [3]. First, the continuous increase in shipping fuel prices has increased
operating costs for shipping companies. Second, during their voyages, ships emit large
quantities of greenhouse gases (GHG), harming ecosystems, the weather, and human health
in catastrophic ways [4]. Marine structures also exhibit a high degree of instability due
to a wide range of environmental pressures [5]. According to the International Maritime
Organization’s (IMO) fourth GHG report (2020), the total GHG emissions from shipping
increased from 977 million tons in 2012 to 1076 million tons in 2018 (a 9.6 percent increase).
To increase revenue and enhance competitiveness, shipping companies must maximize the
energy efficacy of their vessels and reduce their environmental impact [6].

However, increasing energy efficiency remains a contentious issue. It is challenging
to reduce fuel consumption on existing ships by modifying the hull structure. Due to
the relatively high cost of technological solutions, shipping companies have attempted
to reduce their fuel consumption via a variety of operational means. Popular measures
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include, for example, using weather routes and optimizing sailing pace to plan the voyage
of the ship. For a fixed route during a voyage, one of the primary responsibilities of
the shipping company is to plan the ship’s daily speed in advance to ensure a timely
arrival while minimizing the consumption of fuel. Optimizing a vessel’s speed necessitates
forecasting its fuel consumption under varying conditions. Ships’ energy efficiency and
their environmental impact may be improved by creating and using a ship fuel consumption
prediction model, which has been the subject of much research in recent years [3].

Calculating a ship’s fuel consumption under varying journey circumstances requires
a set of flexible and complex models that capture the influence of many elements on the
ship throughout the trip. In other words, an analysis of the overall trend observed in
the data and the construction of a model to predict fuel consumption during a ship’s
voyage can assist decision-makers in identifying and correcting anomalies in the ship’s fuel
consumption. In addition, fuel consumption optimization models can guide shipowners in
taking measures to improve energy efficiency by applying them to the route, speed, and
leveling [7]. The ship’s energy efficiency is maximized when crew or operators utilize fuel
optimization tools in conjunction with fuel consumption forecast models [3].

Therefore, extensive analysis, modeling, and optimization of fuel consumption fore-
casting can significantly assist the management and operation of shipping companies
and contribute to their sustainability [8]. Despite the growing corpus of research on the
optimization and forecasting of ship fuel consumption, there are still enormous gaps [9].
First, there were inaccuracies in the vessel voyage data used to build the fuel consumption
prediction model, as these datasets were derived primarily from manually completed vessel
logbook data, such as noon reports. Optimizing fuel use requires an accurate, trustworthy,
and real-time prediction of fuel usage. However, many modeling approaches are founded
on a single model, but they lack precision and resiliency [10], and their effectiveness in
practical engineering applications is unclear. Second, the majority of neural network-based
machine learning models have been proposed for predicting ship fuel consumption, and
their development often necessitates a substantial amount of training data. Their structure
is mainly empirical, the parameters are difficult to tune, and the results of the prediction lack
interpretability [9]. Third, traditional regression models for fuel consumption optimization
require a large number of parameters and different modeling methods, are expensive to
study, have low accuracy, and have less consideration of various parameters such as speed
and port processing time [11]. Finally, the variables that influence ship consumption of fuel
are complex. Although it is generally acknowledged that a ship’s speed is the most signifi-
cant factor influencing its fuel consumption, other factors can also have an effect [12–14].
This includes, but is not limited to, trim conditions, displacement and draft conditions,
weather and sea conditions, as well as hull and propeller irregularities. The creation of
customized machine learning models is an ideal and promising strategy for addressing
these challenges. Models based on machine learning can process multidimensional input
data and extract latent information from complex datasets. In addition, they frequently
have a superior capacity to deal with chaotic data. Compared to conventional statistical
regression models, machine learning models can handle higher-dimensional data (such as
ship displacement conditions, sea and weather conditions, aspect, and sailing speed) and
make more accurate predictions, providing a more solid foundation for the development of
customized ship fuel consumption reduction models.

This study offers numerous contributions. First, we have devised an artificial intelligence-
based energy efficiency decision system using machine learning. The system monitors and
predicts the fuel consumption of a ship by modeling and analyzing the ship’s voyage data
(historical data provided by the shipping company is used in this paper; however, real-time
data can also be collected via hull data collection equipment and uploaded to the cloud).
Anomalies can be identified dynamically to aid in shipping management. Secondly, using
actual shipping data, a two-stage prediction and optimization model for fuel consumption
was developed. XGBoost was determined to be the optimal ship fuel consumption model
in the initial phase. In the second stage, a particle swarm optimization technique is used to
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determine the optimal speed, thereby minimizing the ship’s total fuel consumption. Third,
this research offers management and operational recommendations for increasing the energy
efficiency of transportation companies. Finally, we demonstrate the superiority of the XGBoost
approach for predicting ships’ energy efficiency and the particle swarm method’s power and
applicability for optimizing ships’ fuel consumption.

The investigation’s remaining structure is as follows: Section 2 reviews previous work
on modeling the energy efficiency of ships using machine learning and other techniques,
and Section 3 details the approach that will be used for this project. Section 4 then describes
the proposed model and the training and validation results. Section 5 is the conclusion and
discussion. Finally, recommendations for further study are offered in Section 6.

2. Literature Review
2.1. Linear Regression-Based Black Box Model

A completely data-driven black box model (BBM) requires no prior knowledge of
the ship’s physics [15]. It has the capacity to learn from experience, which improves the
precision with which fuel consumption forecast models for ships can handle chaotic data.
This model has also led to the pervasive implementation of BBM in recent scientific research.
On the basis of linear regression models, the traditional BBM statistical model is a widely
utilized classical method for predicting the fuel consumption of ships. Several types of
linear regression models (simple linear regression, multiple linear regression, segmented
linear regression, etc.) are widely used in these types of investigations [16,17]. In order
to anticipate a ship’s fuel consumption in full or ballast situations, traditional BBMs often
suggest multiple linear regression (MLR) models for ships using numerous input variables,
i.e., operational and environmental historical data [18].

Further, [19] also examined eight sister voyage reports and hull maintenance data
from the Aframax crude oil tanker fleet and conducted an MLR analysis of fuel consump-
tion rates. [20] proposed a regression-based method for estimating container ships’ fuel
consumption rate. Additionally, [21] proposed a statistical analysis approach based on
sensor data gathered on board the ship to automatically determine the ship’s operating
mode (port, maneuvering, or sailing) and also presented fuel consumption standards for
modeling in the transportation mode. For the purpose of evaluating the fuel consumption
of vehicle transport boats, [22] developed the only polynomial regression model in the
PCTC research area (Please see Appendix A for other abbreviations in this paper). They
checked the draft and displacement, the temperature, the wind speed and direction, and
the roughness of the hull and the propeller.

However, despite their intuitiveness and interpretability, statistical models based on
linear regression still have drawbacks. For example, parametric statistical models require
assumptions about the data distribution before constructing the model, which may produce
biases [9]. In addition, linear regression models tend to perform inadequately when complex
and multicollinear data are involved; they are susceptible to noisy data [23,24]. The benefits
of machine-learning-based BBMs have therefore received more attention from scholars.

2.2. Literature Review of Machine Learning-Based Black Box Models

Recent advancements in communication technologies, such as data collection and
storage, have spawned an explosion of research on ship operation data to govern navigation
performance [25]. Machine learning and deep learning are only two of the AI methods that
underpin this study. Scholars increasingly use advanced algorithms to model ship fuel
consumption [3]. Furthermore, ML can robustly learn despite noisy data [26]. Machine
learning models can handle multidimensional input data and extract hidden information
from complicated datasets to make more accurate predictions [27,28]. Research demon-
strates that machine-learning models perform better than statistical models [29]. Similar
to developing BBM based on statistical modeling, researchers subject machine learning
models to data collection and pre-processing, followed by selecting and developing suitable
ML models based on requirements and further pre-processing of the input data, if necessary.
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In addition, the machine learning model requires hyperparameter optimization based on
training and validation sets in order to enhance its generalizability [9].

Many studies have noted advances in the ML field concerning sophisticated learning
algorithms and efficient pre-processing techniques. As a result, some studies developed
machine learning models related to ship fuel consumption [25,30–32]. On the basis of the
principles of data fitting, we can broadly categorize these investigations into four groups:
Models derived from statistical learning (e.g., LASSO and RIDGE) [30]; instance-based
models (e.g., SVR and KNN) [32,33]; models based on trees (e.g., RF and DT) [32]; and
models based on neural networks (e.g., ANN and LSTM) [34]. Using machine learning
models for fuel consumption prediction simplifies the influence of complicated situations
on fuel consumption, which is one of the biggest advantages of doing so [9]. In addi-
tion, sophisticated machine learning methods can more accurately predict a ship’s energy
consumption, particularly for container ships [34].

Notable is the artificial neural network-based model for estimating ship energy con-
sumption, which employs ship operating and operational data [28]. The development
of an artificial neural network (ANN) model necessitates domain expertise and access to
frequently unavailable technical information [35]. Although there has been some research
using ML methods to predict ship fuel consumption, ML is currently still in the develop-
ment and iterative phases. However, analysis using more advanced techniques, such as
deep learning, is still limited for predicting PTCT ship fuel consumption. Researchers such
as [3,36] have also suggested building deep learning-based prediction models when the
quality and quantity of data allow. Therefore, to fill the research gap, we incorporated
relevant deep learning algorithms into the PCTC fuel consumption prediction analysis
in this work. In summary, a complete prediction model based on various ML methods
can help researchers optimize shipping operations and accurately reflect ship emissions to
determine the best ML method, thus improving the model’s accuracy and, ultimately, its
use for route optimization.

2.3. Literature Review of Ship Fuel Consumption Optimization

The most important step in attaining strategic objectives such as fuel savings and
emission reduction is optimizing ship fuel consumption forecasts, not merely predicting
them accurately [3]. Existing ships can save energy and reduce emissions by optimiz-
ing their operations (route, speed, leveling, etc.) without altering their structure [37].
As sailing speed is the most significant influence, small speed changes can significantly
improve a ship’s energy efficiency, productivity, and revenue [38]. As a result, several
studies have concentrated on optimizing speed throughout the voyage to reduce fuel
consumption [17,29,39–42]. In the shipping literature, the speed-power curve is the most
common method for estimating fuel consumption [43]. These studies all employ speed as
the key variable and investigate the environmental impact of ship fuel usage [11].

In addition, shipping companies can save money on fuel by selecting the most efficient
routes for their ships. The field of shipping route selection has also seen a rise in study in recent
years [44]. For example, Ref. [39] applied the shortest route problem to the case of discrete
arrival times. Many computational results showed the superiority of the shortest path strategy
for shipping route selection and fuel cost calculation. Ref. [45] used a discrete-choice model to
examine the impact of emission control areas (ECAs) on the worldwide shipping industry
(DCM). In addition, Ref. [46] focused on the issue of choosing the service frequency for long-
distance leased lines. The researchers tackled the network issue as a mixed-integer nonlinear
program using a branch-and-bound approach that produces an approximate solution close to
the optimum answer after a limited number of iterations. To find the most efficient path for
container ships to take while using the least amount of fuel, Ref. [44] suggested an algorithmic
solution to the asymmetric traveler’s problem (ATSP) based on a deep machine learning
method. Inputs to the model include five variables: average wind speed, sailing time, vessel
capacity, wind speed, and wind direction. The model’s mean absolute percentage error
(MAPE) was 5.89%, suggesting that the prediction results were about 95% accurate. Despite
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this, Ref. [47] conducted an analysis of previous research on ship routing and scheduling
challenges and found that there is a paucity of liner shipping research.

Some experts and academics have also analyzed other uncertainties affecting the move-
ment of ships. In addition to sailing pace, a ship’s displacement, gross tonnage, cargo condition,
and ballast water can dynamically influence its fuel consumption. It has also been demon-
strated that sea conditions, such as currents [48], waves, and swells [49,50], influence ship fuel
consumption. Moreover, meteorological conditions have been identified as a significant factor
influencing the unpredictability of ship movements. For instance, Ref. [51,52] investigated
the impact of meteorological conditions on ship performance and presented a collection of
regression models. Recent studies have shown that models developed by [20,29] that combine
marine and weather data, such as wind direction and wind force, wave direction and height,
and seawater temperature, are highly accurate in predicting ship fuel consumption. Combin-
ing ship navigation-related characteristics with sea state and meteorological conditions has
tremendous predictive and management potential for ship fuel consumption.

When coping with combined sea conditions, directionality must also be considered,
specifically the relative direction of wind and swell [5]. According to numerous IMO and
DNV reports, longitudinal inclination optimization can save four to six percent (or even
fifteen percent) of fuel consumption [6]. Furthermore, modeling the ship’s resistance under
various longitudinal tilting conditions to determine the minimum resistance can minimize
fuel consumption [3]. As a result, part of the study employs WBM for ship-side optimization
through sophisticated CFD methodologies [53]. In addition, Ref. [54] utilized a simpler
empirical model (Holtrop–Mannen) to estimate the prospective benefits of longitudinal tilt
optimization. Further, Ref. [29,35] demonstrate that optimized ship leveling based on a
data-driven strategy can result in fuel savings.

However, Ref. [3] observes that, due to the difficulty of incorporating marine environ-
mental factors, the validity of the optimization results is questionable. Second, the researchers
note that the longitudinal inclination optimization model implies that the longitudinal inclina-
tion of a ship can change in real time. It is challenging for a watercraft to alter its longitudinal
inclination frequently (e.g., every 5 min). Thankfully, scientists are collecting a ton of infor-
mation on ship fuel use, which makes it easier to develop normalized optimization models
using data [3]. Furthermore, optimizing fuel consumption is fundamentally a multi-objective
optimization problem. In practical applications, difficulties involving optimization of several
objectives are common, and the actual issues are often complex due to the past’s lack of
effective solution methods.

Although there is a growing corpus of research on predicting and reducing ship fuel
consumption, there is a significant gap in the current literature. First, current models for
estimating ship fuel consumption primarily target tankers, container ships, ferries, tugboats,
and passenger ships. To our knowledge, however, no models integrating machine learn-
ing techniques have been proposed for predicting fuel consumption and optimizing speed
for pure car or truck vessels [9,12]. Due to the varied properties and structures of ships,
researchers cannot universally apply one fuel consumption prediction model [13]. Therefore,
research must create bespoke prediction models for each vessel type to improve prediction
performance [14]. Second, the ship’s sailing speed is the most essential input variable used to
predict fuel consumption. However, the data used in the majority of studies is derived exclu-
sively from noon reports. The absence of additional influencing factors, such as weather and
sea conditions, prevented the collection of more comprehensive and accurate data. Thirdly, the
majority of machine learning models proposed for predicting ship fuel consumption are based
on artificial neural networks. However, the development of artificial neural network models
typically necessitates a large number of training samples, and their structure is primarily based
on previous experience. In addition, it is challenging to adjust the parameters of artificial
neural networks, and the results of their predictions are not interpretable. In addition, it is chal-
lenging to calculate the influence of individual input variables on output variables. Fourthly,
pioneering research integrating ship fuel prediction models with optimization models to
reduce fuel consumption and CO2 emissions is scarce. Fifthly, existing ship fuel consumption
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prediction models are weak at analyzing the uncertainty of ship motion. Deep reinforcement
learning (DRL) provides research ideas for solving the modeling of ship motion recognition in
complex scenarios.

To cover the void, this paper develops a two-stage model by analyzing 16,189 pieces
of data from significant car and trucking operations in Republic of Korea from 2012 to 2021
and developing a two-stage model based on the independent variables (characteristics) ship
type, distance, fuel price, speed, and port time. In the first phase, we used 15 different
machine learning methods to forecast a ship’s fuel usage and discovered that the XGBoost
deep learning model performed the best. It displayed high accuracy, robustness, and sound
engineering application value. Using the XGBoost model as the base model, in the second
stage, a particle swarm optimization model is used to determine the optimal speed and in-port
cargo handling time for the vessel’s current sailing conditions and, based on the predicted
results and actual conditions, to develop the optimal sailing plan and operating strategy to
reduce fuel consumption and improve energy efficiency. The benefits of the two-stage models
presented in this paper are their capacity to manage high-dimensional data and their ability
to make more accurate predictions than conventional statistical regression models. It is more
efficient and produces more interpretable results than other machine learning models, such as
artificial neural networks, and the degree of influence of features on the target variable can
be generated for feature selection. In addition, it is able to account for a greater number of
irregularities and other factors, thereby improving the accuracy of ship motion and attitude
analysis. It can also be applied to additional ship categories, ship owners, and routes. It is also
essential for real-time ship safety assessments.

3. Research Methodology
3.1. General Framework

This study’s primary objective is to design a two-step strategy based on a data-driven
approach, including recommended methods and specific details for reducing fuel consump-
tion and ship emissions. Figure 1 illustrates the research framework. A significant Korean
pure car and truck (PCTC) transportation company provided the big data used in this study,
which has 16,189 observations covering the time period from 2012 to 2021. The obtained
characteristic data were standardized before being saved in a database. Using the collected
data, we constructed an XGBoost deep learning integrated petroleum consumption prediction
model in the first phase of the two-step strategy. In the second stage, a particle swarm model
for optimizing fuel consumption (PSO) was constructed. We optimized the ship’s speed based
on the established model in order to reduce fuel consumption and emissions. The suggested
method is broken down into three distinct phases, as shown in Figure 1: (1) data collection
and pre-processing; (2) prediction model analysis; and (3) optimization model analysis.

J. Mar. Sci. Eng. 2023, 10, x FOR PEER REVIEW 7 of 31 
 

 

 
Figure 1. Research framework. 

3.2. Modeling Methods 
3.2.1. XGBoost Algorithm Framework 

Extreme gradient boosting (XGBoost) is a sparse-aware technique for sparse data [55] 
that was first introduced in 2016 as a component of a scalable, robust tree augmentation 
machine learning (ML) framework. XGBoost’s basis is gradient-boosting decision trees 
(GBDT), which combine individual learners to generate dependencies through boosting. 
The classification and regression discipline makes extensive use of the XGBoost algorithm 
due to its quick, accurate, and efficient operations and robust generalization capability 
[56]. The main concept is to create a sample score by integrating the scores of each tree to 
produce a final prediction score for the sample, and then to learn new features by doing 
so. For example, the formula for predicting the score using 𝐾 additive functions for n 
identifiers and 𝑚 features is as follows: 

yො ൌ ෍  ௄
௞ୀଵ 𝑓௞ሺ𝑥௜ሻ, 𝑓௞ ∈ 𝐹 (1)

𝐹 ൌ ൛𝑓ሺ𝑥ሻ ൌ 𝑤௤ሺ௫ሻሺ𝑞:𝑅௠ → 𝑇,𝑤 ∈ 𝑅்ሻൟ (2)

where 𝐹 is the space of the regression tree, 𝑓ሺ𝑥ሻ is one of the regression trees, and 𝑤௤ሺ௫ሻ 
denotes each 𝑇 , the independent structural score of the leaf tree. The following is an 
explanation of what is meant by the term “objective function” when referring to XGBoost: 

𝐿 ൌ෍  ௡
௜ୀଵ 𝑙ሺ𝑦ො௜ ,𝑦௜ሻ ൅෍  ௄

௞ୀଵ Ωሺ𝑓௞ሻ (3)

Ωሺ𝑓௞ሻ ൌ 𝛾𝑇 ൅ 12 𝜆 ∥ 𝑤 ∥ଶ (4)

Figure 1. Research framework.



J. Mar. Sci. Eng. 2023, 11, 1231 7 of 28

3.2. Modeling Methods
3.2.1. XGBoost Algorithm Framework

Extreme gradient boosting (XGBoost) is a sparse-aware technique for sparse data [55]
that was first introduced in 2016 as a component of a scalable, robust tree augmentation
machine learning (ML) framework. XGBoost’s basis is gradient-boosting decision trees
(GBDT), which combine individual learners to generate dependencies through boosting.
The classification and regression discipline makes extensive use of the XGBoost algorithm
due to its quick, accurate, and efficient operations and robust generalization capability [56].
The main concept is to create a sample score by integrating the scores of each tree to produce
a final prediction score for the sample, and then to learn new features by doing so. For
example, the formula for predicting the score using K additive functions for n identifiers
and m features is as follows:

ŷ =
K

∑
k=1

fk(xi), fk ∈ F (1)

F =
{

f (x) = wq(x)

(
q : Rm → T, w ∈ RT

)}
(2)

where F is the space of the regression tree, f (x) is one of the regression trees, and wq(x)
denotes each T, the independent structural score of the leaf tree. The following is an
explanation of what is meant by the term “objective function” when referring to XGBoost:

L =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk) (3)

Ω( fk) = γT +
1
2

λ ‖ w ‖2 (4)

where l represents the loss function of the model, Ω is the regularization term, T denotes
the number of leaf nodes, w is the fraction of leaf nodes, and γ and λ represent the control
coefficients to prevent over-fitting.

When we generate the nth tree, we can write the predicted fraction formula as follows:

ŷ(t)i = ŷt−1
i + ft(xi) (5)

where ŷt−1
i is the previous t− 1 round model prediction scores.

We can write the corresponding objective function as follows:

L(t) =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) (6)

We employ Taylor’s second-order expansion to speed up the optimization process:

L(t) =
n

∑
i=1

[
l
(

yi, ŷ(t−1)
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ γT +

1
2

λ
T

∑
i=1

w2
j (7)

Then, the samples are recombined by adding the loss function of the samples, and finally,
using the vertex formula to find the optimal w and the objective function formula L , we use
the following equations:

w∗j = −
Gj

Hj + λ
(8)

L = −1
2

T

∑
i=1

G2
j

Hj + λ
+ γT (9)

Gi = ∑
i∈Ij

gi (10)

Hi = ∑
i∈Ij

hi . (11)
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To find the best partition, XGBoost combines classical greedy and approximation
algorithms, first listing a number of possibilities based on the percentile approach and
then determining the best partition using Equations (8) and (9). Overfitting can be avoided
using XGBoost thanks to its use of regularization, row sampling, and feature sampling,
among other methods. It also has the ability to deal with sparse data. Parallel processing,
one of XGBoost’s extra advantages, leads to a significant efficiency boost. In addition to its
flexibility, the method has built-in cross-validation that permits cross-validation in every
boosting iteration, as well as user-defined optimization targets and assessment criteria.

Scholars have applied it to disease prediction [57,58]; gene expression [59]; terrorist
attack casualties [60]; industrial prediction [61]; and building engineering [62,63]. Yet,
XGBoost is still seldom used for predicting ships’ fuel usage. We chose XGBoost as the
model for forecasting fuel usage in this study by combining the aforementioned advantages
of XGBoost with classification algorithms.

3.2.2. Particle Swarm Optimization Algorithm Framework

Kennedy and Eberhart first proposed particle swarm optimization (PSO) in 1995; avian
predation behavior was the source of its inspiration. Each particle represents one possible
solution to the goal function. The velocities of particles, which depend on both the particle’s
and the population’s historical optimum solutions [60], determine where they are.

Assuming that the particle population contains n, the dimension of the search region
is D dimensional. In addition, xi = (xi1, xi2, · · · , xiD) is the particle i in D, the position of
the particle in the dimensional space. vi = (vi1, vi2, · · · , viD) is the particle i, the velocity
of the particle Pbest is the individual extremum of the particle, i.e., the particle i found in
the process of finding the optimal solution and the particle’s position in D. The particle’s
coordinates in three space-time dimensions may be written as Pi = (Pi1, Pi2, · · · , PiD). gbest
is the optimal solution discovered historically by the entire population during the search
process, whose position is in D. The position of the particle in the dimensional search space
is Pg =

(
Pg1, Pg2, · · · , PgD

)
for the first k + 1.

For the second iteration, the velocity and position of each particle in each dimension
are iteratively updated based on the following formula:

vk+1
id = ωvk

id + c1srand1

(
Pid − xk

id

)
+

c2srand 2

(
Pgd − xk

id

)
xk+1

id = xk
id + vk+1

id

(12)

where vk+1
id is the particle i in the first k + 1 generation, the d dimensional component of

the particle d is the range of values of [1, D]; xk+1
id is the velocity of the particle i in the k + 1

generation, which is the d dimensional component of the particle. Further, Pid is the value of
particle i on the d dimensional component of the individual optimal solution; Pgd is the op-
timal solution for the whole population on the d-dimensional component. In addition, c1, c2
are the learning factors responsible for regulating Pid and Pgd, the maximum step size of the
directional flight; srand 1 r srand 2 is the random number taken from [0, 1] in Equation (1).

vk
id denotes the particle velocity value of the previous generation, c1srand

(
Pid − xk

id

)
.

Individually optimal values are the consequence of the particle’s learning, which
enables the particle to conduct a more effective global search and prevent falling into local
optima; c2srand 2 ×

(
Pgd − xk

id

)
. The population learning component represents the capacity

of elements within a population to share information with one another and the outcomes
of population learning. Under the combined influence of these three factors, the whole
population of particles iterates continuously, enhancing the development of the search area
in a superior direction so that particles can seek the optimal global position.

In the particle swarm algorithm model, the model can consider an individual as a
particle; then, the whole population is a particle swarm. Suppose, for instance, that an
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n-dimensional target search space contains m particles, where we can write the ith particle’s
(i = 1, 2,..., m) position as follows:

Xi =
(

x1
i , x2

i , · · · xn
i

)
, (i = 1, 2 · · ·m)

Thus, the model can consider each particle position as a potential solution. By in-
corporating it into the objective optimization function, we can determine the position’s
or solution’s optimality based on its corresponding fitness. If the particle is at its most
advantageous location, we obtain:

Pi =
(

p1
i , p2

i , · · · pn
i

)
, (i = 1, 2, · · ·m)

The best possible location for every particle in the whole particle population is the
following: Pg =

(
p1

g, p2
g, · · · pn

g

)
, (i = 1, 2, · · ·m).

The particle’s speed then becomes:

Vi =
(

v1
i , v2

i , · · · vn
i

)
, (i = 1, 2 · · ·m)

In addition, the particle swarm algorithm uses the following formula to keep the
positions of the particles updated:

vd
i = ωvd

i + c111

(
pd

i − xd
i

)
+ c2r2

(
pd

g − xd
i

)
xd

i = xd
i + vd

i

(13)

ω is a positive number known as the inertia factor, c1 and c2 are non-negative constants
called the acceleration constants or learning factors, and r1 and r2 are random numbers in
the range [0, 1].

The formula for the speed increase has three parts on the right side of the equal sign:
(1) the particle’s “momentum” or “inertia” describes its propensity to continue moving at its
current speed; (2) the “cognitive” indicates the particle’s natural drive to optimize its past
performance and reflects the particle’s accumulated history; and (3) the “social” component,
which indicates the particle’s inclination to approach the group’s or neighborhood’s historical
optimum, is informed by the group’s historical experience of collaboration and information
exchange among particles. A lower acceleration constant value permits particles to converge
to their optimal solution more slowly, enabling a deeper exploration of the space of possible
solutions between the present state and the best possible one. However, a too-low accel-
eration constant value may cause the particles to repeatedly fluctuate outside the optimal
neighborhood and fail to search the target region effectively, resulting in reduced algorithm
performance. A high acceleration constant value may lead to the particles repeatedly fluctuat-
ing outside the optimal neighborhood and failing to search the target region effectively. In
most cases, c1 = c2 = 2 is used to denote the acceleration constant.

The amount of the initial velocity that is still being used is then represented by the
inertia factor. If the inertia factor is significant, global convergence is stronger and local
convergence is weaker. In contrast, if the inertia factor is smaller, local convergence
is stronger and global convergence is weaker. Experiments demonstrate that the PSO
algorithm converges quicker when using ω ∈ [0.8, 1.2] is used, so we chose ω = 1 in
this study. We restricted the range of position variation and velocity variation of the
d-dimensional particle elements to

[
xd

min, xd
max

]
and

[
vd

min, vd
max

]
, respectively. During the

iterative process, if the position or velocity of a particle element in one dimension exceeds
the set value, it is equal to the boundary value.

At the first step of the particle swarm method, all particles are given random begin-
ning positions and initial velocities. Then, particles move forward in the problem space
based on their velocities, their individual ideal positions, and the global optimal position.
As the computation progresses, the particles aggregate or coalesce around one or more
optimal points by exploring and exploiting favorable positions within the search space.
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The technique is cleverly designed so that it remembers both the global optimal position
and the particle ideal locations that have already been determined. In particular, we can
summarize the PSO algorithm’s operation as follows:

(1) The size, starting location, and beginning velocity of each particle are all part of the
initialization process for a swarm of particles.

(2) Find each particle’s fitness value using the objective function, then set the local and
global optimum values to start with. Regarding the fitness function’s design, we may
generate problem-specific designs. The core idea is that the size of the fitness value
can determine whether the particle’s position is optimal.

(3) Determine the termination condition’s achievement. If the goal is reached, the search
process ends with the returned results. If not, proceed with the procedures that follow.

(4) Change the velocities and positions of the particles in accordance with the formula for
changing velocities and positions.

(5) Determine the fitness of each particle according to the goal.
(6) Refresh the global and local best values for each particle.
(7) Set the termination condition of the iteration based on the specific problem, typically

reaching the specified maximum number of iterations or the current optimal position
of the particle swarm in order to satisfy the search requirements.

3.3. Ship Description

PCTC refers to ships that can transport a variety of ro-ro cargoes, including automo-
biles, buses, equipment, etc. PCTC is an enhanced PCC (pure car carrier) ship. The ship’s
size is based on a Hyundai Accent Equivalent Unit (AEU) measuring 4.115 m by 1.62 m,
or 6.66 square meters. The ship size in this study is between 3500 and 6700 AEU, and the
shipload is between 13,000 and 19,000 DWT. There are between four and five liftable decks
on a ship’s deck. One can raise and lower a liftable deck and alter its height. In addition,
one uses a ramp to load and unload trucks, which we can conceptualize as a passageway
between ships and land. The ramp capacity of the ships featured in this article ranges from
50 to 200 tons. There were various distributions of the ships from 1995 to 2017. Table 1
describes the key features of the case study vessels.

Table 1. Key features of case study vessels.

Ship Feature Value Unit

Vessel Size 3500~6700 [AEU]
Dead Weight 13,000~19,000 [Ton]
Liftable Deck 4~5 [Unit]
Ramp Capa 50~200 [Ton]

Built 1995~2017 [Year]

3.4. Description of the Data Set

The data used in this study is based on actual data from Shipping Company A
(Republic of Korea) and equipment from Hyundai Group, Seoul, Republic of Korea. No
company-specific information is provided in this study due to a confidentiality agree-
ment with the shipping company. Data on various ship variables was sourced from
different voyages.

A significant proportion of worldwide PCC/PCTC shipping comprises automobiles
of South Korean origin [12]. Consequently, we gathered a dataset from a large PCC/PCTC
shipping company in Republic of Korea, comprising ship statistics from 2012 to 2021.
However, the overall flight data permitted only direct operations and time charter ships
with records of shipping corporations operating ships because the actual shipping business
did not implement or could not separate the two.

This study identifies approximately 37 ship routes based on the itineraries of PCTC
vessels, which represent the majority of routes worldwide. However, considering that
there are too many factors, such as the freight rate level, different shipping points, and
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optimization modeling of each route, we picked three routes for optimization modeling
in the second stage of fuel optimization. These three routes are, in order, Asia North West
America (ASNW), Asia Arabian Gulf (ASAG), and Asia Europe (ASEU). We chose these
three because, based on the raw data, the PCTC ships mostly use these routes. In addition,
the usual routes for PCTC ships on these routes include the United States, Europe, and the
Middle East. The choice of variables in machine learning is important because it affects the
performance of the model and the speed of computation, leading to a better understanding
of the process of data generation. Therefore, for fuel cost forecasting, we used independent
variables such as vessel size, distance, speed, port day, and oil price (see Table 2). However,
the scale of the ship does not alter over time. Therefore, it is not utilized as a variable in the
time series.

Table 2. Variables for the research.

Variables Abbreviation Unit

Oil Price Oil Price USD
Distance Dist Miles
Speed Speed knot
Sea Day Sea Day Day
Port Day Port Day Day
Duration = (Sea + Port day) Duration Day
Bunker Cost Bunker USD

The speed of a ship is measured in knots, while loading and unloading distances are
measured in miles. 380CST HSFO is used for voyages, and MGO is used in ports. The
price of ship fuel is related to Brent crude oil prices, but it is not directly used to calculate
the cost of ship fuel. Instead, the cost is determined based on a barrel of Brent crude oil,
which is widely recognized in the global crude oil market. International oil prices are used
to calculate ship fuel prices, taking into account differences in fuel supply and prices at
different ports.

We calculated the fuel cost by multiplying the final cost by the quantity and price
(price per ton) of fuel oil used during the voyage and diesel used during the breakdown.
The ship’s continuous sails, the fuel oil from the previous voyage, any remaining fuel after
the trip, and the unit price of each kind (fuel oil or diesel oil) make it difficult to distinguish
between journeys. Therefore, we used the total fuel cost for analysis in this study. “Bunker
cost” is the target value that we want to predict.

Researchers often use correlation as a preliminary technique for finding relationships
between variables in machine learning, and it may be the key to improving the accuracy
of predictive models. A correlation heat map is a graphical depiction of the correlation
between numeric variables and illustrates the connection that exists between a number
of different variables. The values in each cell represent the nature of the link between the
two entities, with higher values suggesting a stronger bond and lower values indicating
a weaker one. We can use positive or negative correlations between feature values to
discover how independent features affect intuitive predictions. In most cases, a high
positive correlation is shown when the Pearson correlation coefficient is larger than 0.7 [57].
Figure 2 shows the correlations between the dataset’s characteristics.

According to Figure 2, the results show that the correlation between some factors is
very low; for example, the correlation between type and oil price is below 0.2. The reason
for this is that the correlation between the price of oil (Brent) and the size of the ship (type)
is very low in terms of intrinsic properties. However, when we analyze the cost of fuel
used in the actual voyage of the ship, we can observe a correlation with the number of days
sailed, duration, etc.

The low correlation between oil prices and ship type, distance, and speed is due to
the varying fuel efficiency and cargo capacity of different ships, as well as the impact of
weather conditions and navigational challenges on fuel consumption. The relationship
between sea days and speed and port days and oil prices is also relatively low due to the
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influence of other factors such as safety concerns and port charges. Overall, the impact of
oil prices on shipping costs is complex and multifaceted, with many factors beyond just
fuel costs influencing the final cost of transport.
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After detecting eigenvalue correlations and receiving help from an expert, we eliminated
some eigenvalues with relatively high correlations. The remaining data includes ship type,
distance, fuel price, speed, bunker cost, and port date. Table 3 describes the dataset’s features.

Table 3. Features in the dataset.

Variable Unit Feature Characteristic Value of Feature

Vessel type AEU Integer 3500−6700
Speed knot Float 0.59−93.31

Sea Day Day Float 1.65−123.58
Duration Day Float 4.33−409.76
Oil price Day Float 26.60−125.45

Total bunker cost USD Float 1026.12−3,007,958.65

In the paper, we removed the outliers of several variables, including type, distance,
oil price, speed, port days, and bunker cost, which are related to ship fuel consumption.
The process of removing outliers involved using statistical methods such as box plots or
normal distributions to identify outliers and then removing them from the dataset. This
study carefully examined the data before removing outliers to ensure that the points were
indeed unacceptable or incorrect data and not legitimate data points (Figure 3).
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In this paper, we used histograms to analyze the distribution of several variables,
including type, distance, oil price, speed, and port days, which are related to ship fuel
consumption. The histograms provided an overall picture of the data distribution, allowing
us to identify any potential skewness, bimodality, or other patterns that may exist in the data.
By examining the histograms, we were able to gain a better understanding of the data and
make informed decisions regarding data cleaning, modeling, and other analytical techniques.
For example, Figure 4 gives the frequency of occurrence of each value in the dataset.
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3.5. Data Pre-Processing

The problem of data pre-processing is fundamental to data-driven modeling [64]. By
pre-processing and removing data, we can identify and clean up data anomalies [36]. In
this study, data pre-processing included examining data distributions and correlations.
Determine their anomalous indicators. Remove all outlier data discovered by the joint
operation. Ultimately, a clean and usable dataset is obtained.

A method known as feature scaling may be used to standardize the values of the
independent variables that comprise a data collection within a certain range. To put it
another way, feature scaling narrows the scope of variables so that we can make meaningful
comparisons across sets of data. Unscaled data slow down the convergence process, which
occurs during data pre-processing to deal with the magnitude or value of high variables.
The following describes the normalization algorithms:

X′ =
X−min(X)

max(X)−min(X)
(14)



J. Mar. Sci. Eng. 2023, 11, 1231 15 of 28

We split each dataset of the machine learning model into a training set and a test set.
We picked 70% of the data items for the training set, leaving 30% for the test set. The above
model provides a data-driven approach to fuel cost modeling and optimization that can
provide an analytical approach and a reference for low fuel costs in maritime transport.

4. Results
4.1. Modeling

We obtained 16,189 valid data pieces from 2012 to 2021 following data cleaning. We
partitioned the data in a 7:3 ratio between training and test sets. After normalizing the data,
we used multiple regression algorithms to train on fuel costs.

The training set trains the models to make good predictions, and the test set tests the
ability of the trained models. Then, we utilized a variety of algorithms (Table 4) to instruct
the training set data. The average MSE and R2 for each model after 100 training trials are
displayed in Table 4. The results of the trained models on the test sets and the training sets
are as follows (MSE and R2 are evaluation indicators):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷi)

2 (16)

yi—Real values.
ŷi—Predicted values.
yi—Average.

Table 4. Comparison of model performance.

Models Training Set Test Set Training Set R2 Test Set R2

Linear model 3.962 × 103 2.603 × 103 0.738 0.780
Random Forest 4.037 × 104 1.341 × 103 0.973 0.886

DT 0 × 1000 3.127 × 103 1.000 0.735
SVM 2.874 × 103 1.797 × 103 0.810 0.832
KNN 1.952 × 103 1.797 × 103 0.871 0.848

Adaboost 3.622 × 103 2.830 × 103 0.760 0.760
GBRT 1.683 × 103 1.244 × 103 0.889 0.895

Bagging 4.755 × 104 1.454 × 103 0.969 0.877
ExtraTree 0 × 1000 3.621 × 103 1.000 0.693
LASSO 1.511 × 102 1.202 × 102 0.000 0.018

MLP 3.068 × 103 1.873 × 103 0.797 0.841
SGD 8.377 × 103 6.312 × 103 0.446 0.466

XGBR 2.406 × 104 9.633 × 104 0.984 0.968
BP NN 2.861 × 103 3.649 × 103 0.837 0.744

RBF NN 2.738 × 104 3.128 × 103 0.844 0.780

Based on overall performance, XGBoost has the best performance. In addition, we
discovered that the predictions made by the standard XGBoost model for the target vari-
ables were already very good and accurate. No redundant changes are required. Therefore,
we used the XGBR model as the base model in the subsequent optimization of the fuel
costs. Figures 5 and 6 show the performance in XGBR (where the x-axis represents the data
encoding, as the data are arbitrary).
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We also tested the uncertainty and robustness of the model. In the machine learning
modeling process, it is common practice to divide the data into a training set and a test set.
The test set is data that is independent of the training, is not involved in the training at
all, and is used for the evaluation of the final model. During the training process, there is
often an overfitting problem where the model can match the training data well but cannot
predict the data outside the training set very well. Using the test data to adjust the model
parameters at this point would be equivalent to knowing some of the information from
the test data at the time of training, which would affect the accuracy of the final evaluation
results. It is common practice to use a portion of the training data as validation data to
evaluate the training effect of the model.

The validation data are taken from the training data but are not involved in the
training, so that the model can be evaluated relatively objectively on how well it matches
the data outside the training set. A common evaluation of models in validation data is cross-
validation, also known as round-robin validation. It divides the original data into K groups
(K-Fold) and makes a separate validation set for each subset of data, with the remaining
K-1 subsets of data serving as the training set, resulting in K models. These K models are
evaluated separately in the validation set, and the final error MSE (mean squared error) is
summed and averaged to obtain the cross-validation error. Cross-validation ensures that
the model correctly captures the pattern from the data, regardless of the interference from
the data. The robustness of the model is indicated if the fit of all K models of the model is
high, i.e., the model predicts very accurately with different combinations of training and
test sets.

In this paper, a 10-fold split of the dataset was selected, and the R-squared of the training
and test sets in the 10 groupings is shown in Figure 7, and the performance is excellent.
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In this paper, the XGBoost model is used as a regressor to regress the data. There
are two main sources of overall uncertainty in the model: data uncertainty (also known
as chance uncertainty) and knowledge uncertainty (also known as cognitive uncertainty).
Data uncertainty arises from the inherent complexity of the data, such as additive noise
or overlapping classes. In these cases, the model knows that the input has attributes from
more than one class or that the target is noisy. Importantly, it is not possible to reduce
data uncertainty by collecting more training data. Knowledge uncertainty occurs when
the model’s inputs come from regions where the training data are sparse or far from the
training data. In these cases, the model knows very little about the region and may make
mistakes. Unlike data uncertainty, knowledge uncertainty can be reduced by collecting
more training data from a region that is poorly understood.

In order to estimate data uncertainty, it is necessary to use probabilistic regression
models that predict the mean and variance. To this end, the following new loss function
has been designed:

L(θ) =
1
N

N

∑
i=1

1

2σ(xi)
2 ‖ yi − f (xi) ‖2 +

1
2

log σ(xi)
2

where sigma is data uncertainty.
Knowledge uncertainty, on the other hand, can be obtained by measuring the mean

variance between multiple models. Different pruning parameters were used for XGBoost
to design multiple models and then calculate their knowledge uncertainty.

Particularly, as depicted in Figure 8, the model for the training set’s uncertainty is
as follows:
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4.2. Optimization

This paper focused on the optimal fuel cost problem with speed as the independent
variable. That is, to find the optimal speed for a fixed type, distance, port day, and oil price.
Particle swarm optimization methods are global optimization algorithms with advantages;
we chose the PSO algorithm as the optimization algorithm. To further optimize the fuel
cost, optimize the combination of variables, and lower the fuel cost, we selected the XGBR
model as the mathematical basis for the particle swarm method.

4.2.1. Optimization Process

Using the trained XGBR model as the basic mathematical model for optimization, we
took type, distance, port day, and oil price as constant values to find the optimal speed. For
the three routes, ASNW, ASAG, and ASEU, and the two most conventional ship types, we
conducted six scenarios with an oil price of 100 and a port day of 20 to select the optimal
speed configuration, as shown in Table 5.

Table 5. Optimization conditions.

Case Routes Type Distance Oil Price Port Day

1 ASNW 6700 12,000

100 20

2 ASNW 6000 12,000
3 ASAG 6700 15,000
4 ASAG 6000 15,000
5 ASEU 6700 14,500
6 ASEU 6000 14,500
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We performed a particle swarm search for the six cases above to find the optimal speed
to minimize the bunker cost. First, we chose a population of 100 particles, with each particle
position representing speed. This speed variable is limited in range during shipping, as
shown in Table 6.

Table 6. Speed range of process parameters.

Variables Minimum Value Maximum Value

Speed 0 50

The maximum and minimum velocities may be used to calculate the accuracy of the
region between the current and ideal positions. If the absolute value of the maximum
velocity (or minimum velocity) is excessively high, the particles may pass through the
target region because the accumulated inertial velocity is excessively high. This scenario
inhibits effective searching for the global optimal solution. However, if the absolute value
of the maximum velocity (or minimum velocity) is too small, the particles cannot quickly
focus on the current global optimal solution and search its neighborhood effectively. In this
situation, the particles easily fall into local extremes that one cannot increase. The velocity
of each particle in the corresponding dimension in the optimization process is limited to
the range of [−v, v], where v is the 2% multiplication of the maximum minus lowest value
of the variable range in the given dimension.

First, we randomly generated 100 initial positions within the process parameters. To
determine if a particle’s location is ideal, we substituted the XGBR model’s output (fuel
cost) for the fitness value; the lower the fitness value, the better the position. This approach
is the opposite of the traditional criterion of greater fitness being better. These coordinates
are then normalized using the XGBR model used to determine fitness values and sent
into the neural network as input to complete the calculation. The program then repeats
the processes throughout the iterations in accordance with the speed and position update
formulas, constantly updating the optimal positions experienced by each particle and the
global optimal positions until the maximum number of iterations is reached.

Specifically, a larger number of iterations enables the algorithm to investigate the
solution space more thoroughly and, consequently, increases the likelihood of locating the
global optimal solution. Consequently, a reduced maximum number of iterations decreases
the likelihood that the algorithm will discover the global optimal solution; it may cause the
optimization process to stop before the particle has experienced the optimal position. In
this paper, we capped the total number of iterations at 3000, and empirical optimization
results back up this decision.

4.2.2. ASNW Route Optimization

Table 5 (above) shows the optimization of Cases 1 and 2 on the ASNW route. Figure 9
shows the change in fitness function during this optimization process.

Figure 9 also provides the optimal fuel cost curves for the PSO algorithm optimization
process in two cases. Clearly, as the number of iterations increases, the optimal fuel cost
decreases significantly in all three cases. In the early stages of optimization, the optimal fuel
cost decreases quickly; as the number of iterations increases, the optimal fuel cost decreases
more slowly until the late stages of optimization, when it stabilizes and reaches the optimal
solution. This curve also justifies the choice of the maximum number of iterations, as
the minimum value stabilizes with increasing numbers of iterations in the later stages of
the optimization. Table 7 summarizes the results of the optimization. The optimization
process presented in Tables 7–9 was conducted with a rigorous approach. Multiple rounds
of validation of the modeling results and optimization errors in practice were carried out.
The results were obtained after 100 rounds of optimization, ensuring a thorough analysis.
The mean value has been calculated and is presented as “mean +/− standard deviation” to
account for any potential errors in the data. This value accurately reflects the optimized
results and can be considered reliable. Based on these findings, we can conclude that the
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results obtained are trustworthy and can serve as a solid foundation for further research
and analysis.
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Table 7. Case 1; Case 2 optimization results.

Case Best Speed Best Bunker Cost

1 35.37 ± 1.02 609,739.25 ± 9024.13
2 34.30 ± 0.85 513,247.34 ± 5799.60
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Table 8. Case 3; Case 4 optimization results.

Case Best Speed Best Bunker Cost

3 34.80 ± 1.14 844,674.70 ± 6314.23
4 35.14 ± 1.03 789,084.20 ± 6067.58

Table 9. Case 5; Case 6 range of process parameters.

Case Best Speed Best Bunker Cost

5 33.99 ± 0.98 846,517.50 ± 8893.67
6 35.37 ± 1.25 790,927.06 ± 4529.43

Thus, for the ASNW route, about 35 is optimal for the average speed (range 0–50), and
the optimal cost for a vessel of Type 6000 is less than that of Type 6700.

4.2.3. Optimization of the ASAG Route

Table 5 (above) details the optimization of the ASAG route for Cases 3 and 4. In
addition, Figure 10 illustrates the change in fitness function during the optimization process.
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In addition, Figure 10 depicts the variation curves of the optimal fuel cost during
the optimization of the PSO algorithm for the two cases, while Table 8 displays the
optimization outcomes.

It appears that 35 is optimal for the average speed (range 0–50) for the ASAG route,
and the optimal cost for a Type 6000 vessel is less than for a Type 6700.

4.2.4. Optimization of the ASEU Route

As with the other routes, Table 5 summarizes the optimization on the ASEU route in
Cases 5 and 6, while Figure 11 illustrates the optimization process for the change in the
fitness function.
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Figure 11 displays the ideal fuel cost variation curves generated by the PSO method
during optimization for the two scenarios. The outcomes of the optimization are shown
in Table 9.

The best average speed (range 0–50) for the ASEU routes appears to be around 33, and
the optimal cost for a Type 6000 vessel is less than for a Type 6700. Therefore, for the same
vessel type, the cost of the ASNW route is much lower than the ASAG and ASEU routes,
while the optimal cost of the ASAG and ASEU routes is approximately the same.

The above model provides a data-driven approach to fuel cost modeling and opti-
mization that can provide an analytical approach and a reference for low fuel costs in
maritime transport.

5. Conclusions and Discussion

Monitoring, predicting, and optimizing ship fuel consumption are crucial components
of ship energy sustainability management. In this investigation, we created an integra-
tion model for predicting fuel consumption using deep learning. We also provided an
optimization model for this purpose using data from Korea’s largest pure car and truck
shipping company for the last ten years (2012–2021). Specifically, in the first stage, we
pre-processed and thoroughly analyzed ten years of ship operation data from pure car and
truck shipping companies to determine the integrated fuel consumption model for ships at
different speeds, vessel types, port days, distances, oil prices, etc. This process also resulted
in some improvement in the predictive performance of all models.

Second, we examined some of the most well-known machine learning models, in-
cluding random forests, support vector machines, and decision trees. The comparison
results revealed the factors that significantly affect the results of the models and which
machine learning algorithms are robust. The findings prove that XGBoost is the most trust-
worthy model (R2 value of 0.97) for estimating pure car/truck ship energy consumption
and logistics costs in the shipping industry. Subsequently, we proposed a particle swarm
optimization model in the second stage. By calculating the optimal sailing speed for each
segment of the voyage, we can significantly cut down on the ship’s CO2 emissions and
fuel usage throughout the course of the whole trip. In addition, we analyzed the degree of
influence of input characteristics on total fuel consumption.

We further noted that speed variations could significantly affect the results of our
optimization model. Such prediction and optimization models can help pure car and truck
ship operators and shipping companies make more cost-effective decisions (e.g., estimating
order fuel consumption, making reasonable offers, providing better digital solutions, etc.)
and establish and improve their corporate energy metering systems.

The following are the main findings of this study: First, a multi-source dataset of
sailing status, speed variation, and segmentation information can assist marine vessel fuel
consumption fitting analysis. In this study, we compared the ability of different models to
calculate real-time fuel consumption rates from data. We found significant improvement in
the performance of each prediction model after adding other speed data and time in port
days, etc., as input feature variables and using hyperparameter optimization (the R2 for
the XGBoost model is 0.97, which is the maximum value). Second, speed optimization can
effectively increase the energy efficacy of ships and reduce bunker costs by a considerable
amount. Third, the impact of route and days in port on ship petroleum consumption varies
among the tested algorithms, as does the effect on predicted performance. In the end, we
studied and modeled the vessel’s actual fuel usage, then optimized fuel consumption and
overall cost throughout the whole range. We determined that the proposed XGBoost and
PSO models have good accuracy and robustness.

Our fuel consumption studies have important implications for the study of global
climate change mitigation. A significant tool for attaining goals such as cost reduction and
greenhouse gas reduction is the employment of proper predictive algorithms to assess a
ship’s fuel usage before (or during) a voyage [28]. Scholars are addressing the increase in
fuel consumption in the transport sector, including the shipping transport industry [26].
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Furthermore, the fuel consumption of existing liner carriers has a direct impact on the
operating expenses of stakeholders and the rise in greenhouse gas emissions.

Due to the need for sustainable technology in maritime transport, adaptive machine
learning tools can provide the greatest efficiency, sustainability, and reduced operating
costs [65]. In the last decade, researchers have conducted various studies on machine
learning in different industries (telecommunications, computing, aviation, railways, ma-
chinery, etc.). However, few studies exist on maritime fuel consumption [65], and only
a few studies have used non-classical methods to estimate the performance of ships in
maritime navigation [28]. Therefore, improving energy efficiency is still an open topic. This
study, therefore, enriches the machine learning literature in the maritime fuel area.

Our work introduces a novel XGBoost fuel consumption ensemble model and particle
swarm fuel consumption optimization model in an effort to increase the energy efficiency
of transport companies. Although it is virtually impossible to obtain infallible results
due to the occurrence of dynamically variable conditions in real time, the genuine and
extensive data used in this study can more accurately reflect the actual operation of shipping
companies than experimental data. Therefore, we believe this study’s research results are
close to their actual value. This application means that vessels can effectively change
their parameters, such as speed and port dates, to respond to the situation and help car-
and-truck-only shipping companies make more economical and environmentally friendly
decisions. Hence, the model given in this study may be used as the foundation for a pure
car/truck ship energy efficiency management program and then expanded to include
real-time monitoring of ship energy efficiency and the identification of anomalous fuel
usage. This study’s two-stage model is also useful for predicting and optimizing ship fuel
consumption for other ship types, ships of the same type, ships in different basins, and
ships operated by different ship proprietors. This is because these factors do not alter
the ship’s fundamental physical characteristics. Moreover, this research brings PC/TC
shipping businesses closer to their cost-cutting and environmentally friendly goals.

6. Limitations and Future Research

We have made every effort to acquire and analyze experimental data and have pro-
posed a two-step method for determining the optimal ship speed to reduce fuel consumption.
However, we have only evaluated the models provided in this study against region-specific
data. We acknowledge that there are some limitations to this study. Consequently, future
research should evaluate the impact of additional constraints, such as weather, sea con-
ditions, propeller fouling, and marine organisms. We can add more data elements from
various sources, such as ocean and weather data from weather forecasting websites, and
use larger samples to analyze and affirm the robustness and accuracy of the proposed
model. In addition, we acknowledge that every vessel has its own distinct characteristics
and operational conditions, so our model may require modifications and optimizations
to better adapt to various ship situations. In the following paper, we intend to conduct
additional experiments to evaluate and validate the proposed model and report the results
in order to confirm its accuracy and dependability. We will provide additional explanations
and analyses to enhance the credibility and professionalism of the research findings.
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Appendix A

Table A1 shows the full names and abbreviations of the terms used in this paper.

Table A1. Full name and abbreviation.

Full Name Abbreviation

Pure car and truck shipping company PCTC
Black box model BBM
Machine learning ML

Particle swarm optimization PSO
International Maritime Organization IMO

Greenhouse Gas GHG
Multiple linear regression MLR
Artificial neural network ANN

Deep reinforcement learning DRL
Emission control areas ECAs

Mean absolute percentage error MAPE
Computational Fluid Dynamics CFD

Extreme gradient boosting XGBoost
Gradient Boosting Decision Tree GBDT

Pure car carrier PCC
Accent Equivalent Unit AEU

Marine Gas Oil MGO
Least absolute shrinkage and selection operator LASSO

Ridge regression RIDGE
Support vector regression SVR

K Nearest Neighbors KNN
Regressive Function RF

Decision Tree DT
Asia North West America ASNW

Asia Arabian Gulf ASAG
Asia Europe ASEU

380 Centistoke High Sulfur Fuel Oil 380 CST HSFO
Marine Gas Oil MGO

Distance Dist
Long Short−Term Memory LSTM
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