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Abstract: The induction motor (IM) drives are prone to various uncertainties, disturbances, and non-
linear dynamics. A high-performance control system is essential in the outer loop to guarantee the
accurate convergence of speed and torque to the required value. Super-twisting sliding mode control
(ST-SMC) and fractional-order calculus have been widely used to enhance the sliding mode control
(SMC) performance for IM drives. This paper combines the ST-SMC and fractional-order calculus
attributes to propose a novel super-twisting fractional-order sliding mode control (ST-FOSMC) for the
outer loop speed control of the model predictive torque control (MPTC)-based IM drive system. The
MPTC of the IM drive requires some additional sensors for speed control. This paper also presents a
novel machine learning-based Gaussian Process Regression (GPR) framework to estimate the speed
of IM. The GPR model is trained using the voltage and current dataset obtained from the simulation
of a three-phase MPTC based IM drive system. The performance of the GPR-based ST-FOSMC
MPTC drive system is evaluated using various test cases, namely (a) electric fault incorporation,
(b) parameter perturbation, and (c) load torque variations in Matlab/Simulink environment. The
stability of ST-FOSMC is validated using a fractional-order Lyapunov function. The proposed control
and estimation strategy provides effective and improved performance with minimal error compared
to the conventional proportional integral (PI) and SMC strategies.

Keywords: sliding mode control; induction motor; observer; artificial intelligence

1. Introduction

Nowadays, fractional calculus is widely used in engineering and scientific applications.
Most of the scientists and researchers use fractional calculus to model their plants/systems
to incorporate system dynamics, complex processes, and phenomena. For the last few
decades, it has been widely used to improve the performance of controllers. The pro-
portional integral derivative (PID) controller is modified as a Fractional PID controller,
denoted as PIλD [1–3], where the improved performance has drawn researchers to incor-
porate the advantage of fractional calculus in control paradigms. Other applications of
fractional calculus can be found in adaptive fractional-order control schemes [4,5] and
fractional-order sliding mode control (FOSMC) paradigms [6–8]. FOSMC schemes have
shown their advantages against integer order sliding mode control (IOSMC) schemes and
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are evident in the literature. The author of [9] proposes a fractional-order fuzzy sliding
mode control to remove uncertainty in active power filters with smaller total harmonic
distortion (THD). The author of [10] introduces FOSMC for a space-tethered system to
eliminate chattering and faster deployment time without overshoot. This paper aims to
investigate the performance of FOSMC schemes in the IM drive system. Robust control
approaches are widely used due to their robustness against the external turbulence and
uncertainties in the non-linear systems. One of the control techniques is the direct torque
control (DTC) method used in high-performance motors, which has the benefits of a wide
range of speed control, high dynamic performance, and full load torque at zero speed.
The DTC method uses two loops to control the speed and torque of IM, known as the
inner loop and outer loop. The inner loop uses a controller to generate reference torque
from the speed error. The outer loop generally uses hysteresis control or Space Vector
Modulation to generate switching signals. These techniques are subjected to problems
such as high harmonics in the torque and speed, unwanted noises, and extra losses due
to un-optimized switching signals. Model predictive torque control (MPTC), a widely
used technique used to overcome the shortcomings of the hysteresis-based DTC technique
in the inner loop, is used in this paper. The MPTC drive system performance is further
enhanced by the applications of a robust non-linear control system design. SMC is one
of the widely used techniques in IM drives. I. Sami et al. proposed sliding mode control
(SMC) in [11] for the MPTC-based IM drive. The SMC provides improved performance in
terms of faults perturbations, speed tracking, less overshoot, and load torque variations.
Numerous enhancement techniques have been proposed to improve the performance of
the SMC in terms of chattering effect and disturbance rejection capabilities such as sliding
surface designs, high-order SMC, modifications in reaching law, and combining the intelli-
gent techniques with conventional SMC. These enhancement methods are summarized in
Figure 1.

Figure 1. Prominent SMC variants in literature.

Fractional-order SMC (FOSMC) applications are increasing for electric drives ap-
plications. Unlike integer-order controllers, FOSMC uses integration and derivations of
fractional order. Fractional-order surface involves generalization of integer-order surfaces,
where the integer-order surfaces are modified using fractional-order integration and deriva-
tion. The author in [12] proposes a neuro fuzzy-based fractional-order control scheme for
perturbed systems. Similarly, the authors of [13] use FOSMC with terminal SMC for doubly
fed induction generator based wind energy system. A smooth and chattering free response
has been reported in the proposed FOSMC technique. In this paper, conventional SMC is
enhanced by combining fractional-order calculus-based sliding surface design and super-
twisting (ST) SMC, hereafter called super-twisting fractional-order sliding mode control
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(ST-FOSMC). Rotor speed, stator currents, and electromagnetic currents are required for
ST-FOSMC-based MPTC measurements using different sensors. When no sensors are used
to measure the speed in IM drives, such systems are known as “sensorless systems” [14].
The terminal variables, namely current and voltage, are measured using sensors that are
processed to estimate the speed, torque, and flux. The signals obtained through the sen-
sors possess noise. Thus, sensors will insert a DC offset value to the measured values
that can cause a saturation effect in the speed estimators. Sensorless control techniques
are commonly used in the control applications of IM due to the high cost of the speed
sensors and their difficulty in installation for industrial applications. The sensorless con-
trol methods minimize the noise level and the maintenance cost of the system [14]. The
various techniques that are prominent in the literature are full-order observers, open-loop
estimators, reduced-order observers, the Kalman filter, an adaptive reference model, and
neural networks [15]. Various speed estimation techniques were developed in the liter-
ature. The recently used sliding mode observer (SMO)-based drive systems hold some
smart topographies, for example: (a) its robustness to the variations in parameters and
uncertainties in a model that are not sensitive to the variations in external load, (b) fast-
active response, and steady control system; (c) its ability to withhold various non-linear
systems, and, (d) its simple software/hardware operation. This strategy was employed to
estimate and control the state of the system, as presented in [16]. The SMC scheme used
a state-dependent control law switched at high frequency. The authors of [17] present a
rotor speed and resistance observer design. The author of [18] uses a higher-order SMO,
aiming to eliminate some inconveniences of the first-order SM, while still maintaining its
main features. An SMO was also developed by [19] to estimate the speed of IM, but SMO
is subjected to integration errors and severe chattering. The error in the rotor speed existed
due to the chattering effect, which is still a big problem. An adaptive speed and resistance
observer based on backstepping rules has been presented by Rasmussen et al. [20] using
a superimposed square wave on the magnetizing current. The author of [21] proposed
the use of a Kalman filter leading to unavoidable linearization error, thus compromising
the estimation accuracy. Much-Simplified IM models had been used for speed estima-
tion to overcome such limitations. An extended Kalman filter (EKF) was used by [22] to
estimate the speed of IM. Furthermore, the accuracy was further improved by using an
adaptive EKF in [23]. The EKF operation is based on the linearization of the non-linear
IM system. The accuracy of speed observation is compromised by using linearization of
a non-linear dynamic system. The authors of [24] proposed the unscented Kalman filter
(UKF) to estimate the speed of IM. The UKF estimated the speed of IM without linearizing
the system. The UKF estimates the speed using a set of sample points called sigma points.
The UKF eliminates the linearization error at the cost of high computational complexity.
Other Kalman filter-based online speed estimation techniques included switching EKF [25],
braided EKF [26], and bi-input EKF [27]. The speed of the IM estimates was accomplished
using rotor slot harmonics [28]. However, the rotor slot harmonics extraction confronts
some vital difficulties in the very high or low-speed operating regions. The author of [29]
estimated the speed of IM as a function of current and voltage using feed-forward neural
network (NN) for efficient prediction based on previous observations [30–32]. A speed
estimation methodology based on a radial basis function (RBF) artificial neural network
was presented in [33]. Keeping in view the above considerations, a machine learning-based
Gaussian process regression (GPR) framework with which to estimate the motor speed is
proposed in this paper. The effectiveness of GPR-based estimated speed and the ST-FOSMC
MPTC scheme shown in Figure 2 is validated using Matlab/Simulink. Its performance is
also compared with conventional PI and SMC. The ST-FOSMC provided good speed con-
vergence and robustness with minimum chattering. With the inclusion of the ST algorithm,
the number of gains to be tuned increases, which makes the process complex. Hence, the
gains are tuned using the optimization toolbox in Matlab/Simulink to achieve the required
performances. Moreover, unlike the work presented in [12,34] using neuro-fuzzy sliding
mode and fractional-order systems, this paper emphasizes chattering elimination using
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fractional calculus and uses the statistical method to estimate speed. More specifically, the
contributions of our work are:

• We propose a new control scheme called ST-FOSMC that combines Fractional-Order
Sliding Mode Control (FOSMC) and Super-Twisting (ST) algorithms. We use FOSMC
to shape the error dynamics of the system for robustness against disturbances and
uncertainties, while ST is used for fast convergence and high-performance tracking.
We evaluate the stability of the proposed control system by analyzing the ST and
FOSMC error dynamics, which represent the difference between desired and actual
states of the system and the deviation from the sliding surface defined by FOSMC,
respectively. By studying the behavior of both error dynamics, we ensure the stability
of the closed-loop system. Our proposed ST-FOSMC scheme achieves a robust and
high-performance control with guaranteed stability.

• Our work proposes a machine learning-based method, specifically GPR, to estimate
the speed of an Induction Motor (IM). The proposed GPR utilize an autoregressive
(AR) GPR method that incorporates the estimated speed, voltage, and current from
the previous discrete time to improve the accuracy of speed estimation. GPR is a
non-parametric probabilistic model that is capable of accurately estimating the speed
of an IM. By using an autoregressive approach, we are able to leverage the previously
estimated speed, voltage, and current values to further enhance the accuracy of the
estimation. Our proposed GPR-based method offers a reliable and accurate means
of speed estimation for IM, which is crucial for effective motor control. This method
has the potential to improve the efficiency and performance of IM control systems,
especially in applications where precise speed control is critical.

• Comparative analysis of the GPR framework with a state-of-the-art SMO is also
performed. Both the observers are evaluated through different performance indices,
including integral square error, integral time square error, and root mean square
error. The superiority of the proposed GPR framework-based ST-FOSMC scheme are
also verified using various performance indices, stability, and robustness test, and
comparisons with existing control methods.

Figure 2. The Proposed Closed-loop Motor Drive Control Structure.

The paper is structured as follows: Section 2 provides an overview of the basics of
fractional calculus. The mathematical model of IM in a synchronously revolving refer-
ence frame is explained in Section 3, while Section 4 covers the modeling of MPTC. The
proposed ST-FOSMC control paradigm is mathematically formulated in Section 5. The
GPR framework is used to statistically model the IM, and this is detailed in Section 6.
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The Lyapunov stability of the proposed GPR speed observer in presented in Section 6.1.
Section 7 presents the results of the simulation conducted in Matlab/Simulink to evaluate
the performance of the proposed approach. Finally, Section 8 provides a conclusion to
the paper.

2. Basic Definitions for Fractional Calculus

A fractional-order operator is a generalization of the traditional integer-order opera-
tors, such as differentiation and integration. It extends the concept of differentiation and
integration to non-integer orders, allowing for more flexible and accurate modeling of
complex systems. Fractional-order operators are defined using fractional calculus, which
deals with derivatives and integrals of non-integer orders. Fractional calculus is a field of
mathematics that has gained significant attention in recent years due to its wide-ranging
applications in various fields, including physics, engineering, and finance. The fractional or-
der operator is a powerful tool for modeling complex systems with memory and long-range
dependencies. It can capture the inherent non-linearities and time-varying dynamics of real-
world systems, which are often difficult to model accurately using traditional integer-order
operators. Furthermore, fractional-order operators offer advantages in terms of robustness
and stability compared to integer-order operators, making them well suited for use in
control systems. The primary fractional calculus operator is defined as in (1):

aDα
t
∼=



dα

dtα
R(α) > 0

1 R(α) = 0

∫ t

α
(dτ)−α, R(α) < 0

(1)

A primary fractional operator has three definitions, namely αth order Riemann–
Liouville fractional, as defined in (2) αth order Caputo fractional derivative, as defined in
(3), and α th order Grunwald–Letnikov, as defined in (4):

aDα
t f (t) =

dα

dtα
f (t) =

1dm

Γ(m− α)dtm

∫ t

α

f (τ)
(t− τ)1−α

dτ

aD−α
t f (t) = Iα f (t) =

1
Γ(α)

∫ t

α

f (τ)
(t− τ)1−α

dτ

(2)

aDα
t
∼= Dα =



1dm

Γ(n− α)

∫ t

α

f n(τ)

(t− τ)α−n+1 dτ

(n− 1 ≤ α < n)

dm

dtn f (t)(α = n)

(3)

aGLDα
t f (t) = lim

h→0

1
hα

[(t−α)/h]

∑
j=0

(−1)j

(
α
j

)
f (t− jh)(

α
j

)
=

Γ(α + 1)
Γ(j + 1)Γ(α− j + 1)

(4)

where m is the smallest integer number and its value is greater than α.
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3. Induction Motor Modeling

The three-phase squirrel cage IM mathematical modeling in the αβ asynchronously
revolving reference frame is specified by the following equations [12]:

d
dt

iα = −
(

L2
mαr + LrRs

εLm

)
iα + pωr ϕβ +

Lr

Lm
vsα

+αr ϕα

d
dt

iβ = −
(

L2
mαr + LrRs

εLm

)
iβ − pωr ϕα +

Lr

Lm
vsβ

+αr ϕβ

(5)


d
dt

ϕα = Lmαriα − pωr ϕβ − αr ϕα

d
dt

ϕβ = Lmαriβ + pωr ϕα − αr ϕβ

(6)


Tem =

3
2

p Im
{

ϕαiβ − ϕβiα

}
ω̇r = bTem − aωr − f

(7)

4. Model Predictive Torque Control Modeling

Model predictive torque control (MPTC) is a state-of-the-art model-based control
strategy that has gained significant popularity in recent years for the control of induction
machines. The MPTC algorithm uses a model of the induction machine to predict its
future behavior over a future time horizon and optimizes the control actions to minimize
a cost function that captures the desired control objectives. The optimization problem is
subject to constraints on the control inputs and the predicted behavior of the machine.
MPTC provides several advantages over traditional control strategies, including better
transient response, handling of constraints, and optimization of multiple control objectives
simultaneously. MPTC requires accurate measurements of the machine’s state variables,
such as speed, rotor flux, and stator currents. MPTC is a powerful tool for the control of
induction machines and has wide-range applications. Euler’s approximation is used to
predict the stator current in the αβ reference frame using (5) and is expressed as follows in
the next sample of time using the stator current predicted values iα(k + 1) and iB(k + 1):

iα(k + 1) = iα(k)−
Ts

ε

(
L2

mαr + LrRs

Lm

)
iα(k) + pωr(k)ϕβ

+αr ϕα +
Lr

Lm
Vα(k)

iβ(k + 1) = iβ(k)−
Ts

ε

(
L2

mαr + LrRs

Lm

)
iβ(k) + pωr(k)ϕα

+αr ϕβ +
Lr

Lm
Vβ(k)

(8)

Here, iα, iβ are the stator alpha-beta currents, Lm is the magnetization inductance, Rs
is the stator resistance, Lr is the rotor inductance, Tem is the electromagnetic torque, and ωr
is the rotor speed.
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The stator voltage equation used to estimate stator flux is given as:

vs = Rsis +
dϕs

dt
(9)

Equation (9) is also discretized using Euler approximation to estimate the stator flux,
which is expressed as follows:

ϕ̂s(k) = ϕ̂s(k− 1) + Tsvs(k)− RsTsis(k) (10)

The rotor flux is given by:
ϕr = Lmis + irLr (11)

Using the Euler discretization theorem on (11), the resulting rotor flux estimated values
ϕ̂r(k) are given as follows:

ϕ̂r(k) =
Lr

Lm
ϕ̂s(k) + Lmis(k)−

LrLs

Lm
is(k) (12)

The predicted values of stator and rotor flux must be computed; therefore, the esti-
mated values in (10) are used to predict the stator flux as follows:

ϕ
p
s (k + 1) = ϕ̂r(k) + Tsvs(k)− RsTsis(k) (13)

The stator current and the torque are related as follows:

Te =
3
2

p Im
{

ϕ̄sis
}

(14)

Thus, the predicted value of torque obtained from the predicted values of (8) and (13)
is given as follows:

Tp
e (k + 1) =

3
2

p Im
{

ϕ̄
p
s (k + 1)ip

s (k + 1)
}

(15)

The cost function, with h ranging from 0–6, has the following structure:

gh =
∣∣∣T∗ − Tp

e (k + 1)
∣∣∣+ λ

∣∣∣ϕ∗s − ϕ
p
s (k + 1)h

∣∣∣ (16)

5. Super-Twisting Fractional-Order Sliding Mode Control Design

This section describes the mathematical formulation of the proposed ST-FOTSMC
strategy. Initially, a fractional calculus-based surface is selected, and then the equivalent
part of the controller is designed. This equivalent part is used with a super-twisting
algorithm to obtain the required control law. Equation (7) is used in this section to formulate
outer loop control for IM, which is given as follows:

d
dt

ωr =
Tem

J
+ d3, d3 = −1

J
(
Tr + frωr

)
(17)

where Tem is the control input and d3 is the lumped uncertainty. The speed tracking error is
chosen as eω = ωr −ωr−re f . Taking the derivative of ωr and substituting ω̇r from (17) in
the derivative of speed tracking error, we get:

ėω = ω̇r − ω̇r−re f ; ėω =
Tem

J
+ d3 − ω̇r−re f (18)

The new surface selected on the basis of fractional calculus is given as follows:

Sω = c5D−αeω + c6Dα|eω |γ sgn(eω) (19)
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The derivative of the surface is given as follows:

Ṡω = c5D1−αeω + c6Dα D1|eω |γ sgn(eω)︸ ︷︷ ︸
|eω |γ−1

Ṡω = c5D1−αeω + c6γDα|eω |γ−1


(20)

Substituting ėω in (20) after applying D−α to the left- and right-hand side, one gets:

DᾱSω = c5D2−2αeω + c6γ

(
|eω |γ−1Tem

J
+ |eω |γ−1d3 − |eω |γ−1ω̇r−re f

)
where Dᾱ = D1−α

(21)

Using (21) and the super-twisting algorithm-based discontinuous control Tem−sw, the
final control law is obtained as follows:

Uω = Te−re f = Tem−eq + Tem−sw

Tem−eq = J|eω |1−γ

 |eω |γ−1Ωr−re f

c6γ
− c5

c6γ
D1−2αeω



Tem−sw = J|eω |1−γ
[
− λω

c6γ
|Sω |

1
2 sign(Sω) + u1

]



(22)

In (22), the term u1 = − βω
c6γ

∫
sign(Sω) and λω > 0 and βω > 0 represent control

gains. The Lyapunov function V1 = 0.5S2
ω is used in this section to verify the controller

stability. The V1 seen after applying Dᾱ can be expressed as follows [13]

DᾱV1 ≤ SωDᾱSω +
∞

∑
j=1

T (1 + ᾱ)

T (1 + ᾱ− j)(1 + j)
DjSωDᾱ−jSω (23)

The inequality from [13] is used for stability proof, which is given as follows:

∞

∑
j=1

T (1 + ᾱ)

T (1 + ᾱ− j)(1 + j)
DjSωDᾱ−jSω ≤ ρ|Sω | (24)

Using the above inequality, one gets:

DᾱV1 ≤

Sω(c5D1−2αeωc6γ(
|eω |γ−1

J
(J|eω |1−γ[

|eω |γ−1Ω̇r−re f

c6γ
−

c5

c6γ
D1−2αeω −

λω

c6γ
|Sω |

1
2 sign(Sω)−

βω

c6γ

∫
sign(Sω)])

+ |eω |γ−1d3 − |eω |γ−1ω̇r−re f ) + ρ|Sω |

(25)

Equation (25) can be simplified to obtain the following expression:

DᾱV1 ≤ −λω |Sω |
1
2 |Sω | − βω ||Sω |+ ρ|Sω | (26)
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By choosing λω and βω such that λω |Sω |
1
2 |Sω | +βω

∫
|Sω | > ρ|Sω |, then the expres-

sion DᾱV1 given in (26) is always negative.

6. Gaussian Process Regression-Based IM Modeling

The GPR process maps a set of input Xn to the output yn to obtain a latent function
f (.) and is expressed as follows:

yn = f
(
(I, V)n

)
+ εn, f (x) ∼ GP

(
0, Kij

)
(27)

where K is the Kernel matrix whose entries Kii = ks(xi, xi) = ks
(
(Ii, Vi), (Ii, Vi)

)
are evalu-

ated using a squared exponential function from [35], which is given as follows:

ks

(
xi, xj

)
= ϑ2

0 exp

[
−1

2

D

∑
d=1

( xid − xjd

ld

)2
]

(28)

where xid and xjd are the dth element of vectors (Ii, Vi) and (Ii, Vi), respectively, and
Θ = [ϑ0, l1, . . . . . . .lD]

T represents the hyper-parameters. The hyper-parameters control the
complexity of the model. ld represents the length scale, which evaluates the importance of
each input for output estimation. Adding noise to the Kernel function, one obtains:

k
(
(Ii, Vi),

(
Ij, Vj

))
= ks

(
(Ii, Vi),

(
Ij, Vj

))
+ σ2

nδij (29)

where δii shows the Kronecker delta, which is defined as:{
δij = 1 for i = j
δii = 0 otherwise

}
(30)

In the presence of the input values and latent function f , the output y as a distribution
is given as: (

ω | f , (In, Vn)
)
= N

(
f , σ2

n I
)

(31)

where I is the N×N identity matrix. Using (29) and (31), the marginal distribution of y is
given as follows:

p
(
ω | (In, Vn)

)
= | p

(
ω | f , (In, Vn)

)
p
(

f | (In, Vn)
)
d f
)

= N
(

0, K + σ2
n I
)

 (32)

The joint distributionof the required output ω∗ and training output ω is given as follows:

p
(
ω∗ | (In, Vn), ω, (In, Vn)∗, θ

)
= N (ω∗, ε∗) (33)

p
(
ω, ω∗ | (In, Vn), (In, Vn)∗, θ

)
= N

[ 0
0

]
,

[
K + σ2

n I k∗
kT
∗ k∗∗ + σ2

n

] (34)

where
k∗ = [k((In, Vn), (In, Vn)∗), . . . , k((In, Vn)N, (In, Vn)∗)]T and k∗∗ = ks

(
(In, Vn)∗, (In, Vn)∗

)
.

The evaluation of test output ω∗ conditioned on the test input (In, Vn)∗ and training dataset
D is the primary goal of the GPR. Marginalizing the distribution in (22), the required output
can be found according to the predictive distribution mean, as follows:

µ∗ = kT
∗

(
K + σ2

n I
)−1

ω (35)
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The respective covariance is given as follows:

ε∗ = σ2
n + kn∗ − kT

∗

(
K + σ2

n I
)−1

k∗ (36)

To further improve the GPR performance, a recurrent GPR is formulated in which
the pre-estimated value of speed at the time (k− 1) is fed back as an input to estimate the
speed along with the voltage and current at time k. The output variable in autoregressive
GPR (AR-GPR) depends on the previous values of input voltage, current, and speed with
one tap delay. An Ar-GPR based model is formulated as follows:

yn = f
(
(In, Vn), ∆(In, Vn), ∆ω

)
+ εn, f

(
(In, Vn), ∆(In, Vn), ∆ω

)
∼ GP

(
0, Kij

)
(37)

where ∆ω =
(
ωk−1.ωk−2, . . . . . . ωk−N

)
is the k× 1 column of previous inputs. An AR-GPR

technique-based model further smoothens the estimated speed using the past and present
values of current and voltage and the previous value of the estimated speed, as shown in
Figure 3. This method improves the speed estimation accuracy through the elimination of
sudden changes in the speed estimates.

Figure 3. Ar-GPR model for speed estimation.

6.1. Lyapunov Stability of GPR

Let us assume that we have a GP regression model with a mean function µ(x) as given
in (35) and a covariance function ks(x, x′) as given in (28). The input data are denoted by
X = x1, x2, . . . , xn, and the output data are denoted by Y = y1, y2, . . . , yn. We want to prove
that the GP regression model is globally asymptotically stable using the Lyapunov theorem.
Step 1: Define the Lyapunov function
We define the Lyapunov function V(X) as follows:

V(X) = 0.5YTK−1Y + 0.5 log(|K|) (38)

where K is the covariance matrix with elements K−{ij} = k
(
x−i, x−j

)
, and | K| denotes the

determinant of K.
Step 2: Compute the time derivative of the Lyapunov function The time derivative of the
Lyapunov function with respect to the input data X is given by:

dV
dt

= YTK−1 dK
dt

K−1Y− 0.5 tr
(

K−1 dK
dt

)
(39)

where tr() denotes the trace of a matrix and dK
dt is the time derivative of the covariance

matrix.
Step 3: Apply LaSalle’s invariance principle We now apply LaSalle’s invariance principle,
which states that the GP regression model is globally asymptotically stable if the time
derivative of the Lyapunov function is negative semi-definite and if the limit set of the
system is contained in the set of points where the time derivative of the Lyapunov function
is zero. To show that the time derivative of the Lyapunov function is negative semi-definite,
we need to prove that dV

dt ≤ 0 for all input data X and time t. This can be shown by
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substituting dK
dt = 2σ2 I, where |σ|2 is the noise variance and I is the identity matrix, into

the equation for dV
dt . After some algebraic manipulation, we obtain:

dV
dt

= −σ−2YTY + 0.5n (40)

where n is the dimension of the input data. Since the first term is negative semi-definite
and the second term is positive definite, the time derivative of the Lyapunov function is
negative semi-definite. To show that the limit set of the GP regression model is contained
in the set of points where dV

dt = 0, we need to show that the GP regression model converges
to a unique limit as the number of data points increases or as the model parameters change.
This can be shown using Mercer’s theorem, which states that any positive definite kernel
function can be represented as a sum of eigenfunctions. This implies that the covariance
matrix K is positive definite and invertible, which in turn implies that the GP regression
model is a single point. Therefore, by applying LaSalle’s invariance principle, it is shown
that the GP regression model is globally asymptotically stable, and by further showing
that the limit set of the model is a single point, we have shown that the model is uniformly
ultimately bounded.

7. Performance Evaluation

In this section, we evaluate the performance of the proposed ST-FOTSMC scheme
using numerical simulations in the Matlab/Simulink environment with a sampling time
of 5 µs. To select the best parameters for the control paradigm, we use an optimization
procedure with the optimization toolbox in Matlab/Simulink. We use the Integral Absolute
Error (IAE) to minimize our objective function, which is based on response optimization.
These parameters provided a fast settling time, low steady-state error, and robustness to
disturbances. Our comprehensive analysis and evaluation demonstrate that the controllers
provide the desired speed response characteristics and robustness to disturbances. Initially,
the performance of the SMO and proposed observer is compared. The observers are
compared using various performance indices. The machine parameters are given in Table 1.
In the next subsection, the controller is compared under normal and disturbed conditions.
The performance of the various controllers is compared under parametric variations, single
phase fault, over voltage, and under voltage etc.

7.1. Performance Evaluation Parameters

Integral Square Error (ISE), Integral Time Square Error (ITSE), and Mean Absolute
Error (MAE) are selected to compare the proposed observers’ performance and are defined
as follows:

ISE =
∫

e2dt (41)

ITSE =
∫

te2dt (42)

MAE =
1

Nt

Nt

∑
i=1

e (43)

ISE, MAE, and ITSE are not reliable performance parameters, as the data residuals
continuously compensate each other. However, ISE and ITSE offer an insight into the
model’s ability to underestimate or overestimate the observations. The root mean square
error expressed in (44) is also used to compare the performance of the GPR and its variants.

RMSE =

√√√√ 1
Nt

Nt

∑
i=1

(e)2 (44)
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7.2. Sliding Mode Observer

Simulation-based results are given to prove and validate the performance of SMO
design using the magnetizing currents of IM designed by Vieira et al. in [19]. The proposed
system architecture consists of a 4 pole, 2.4 kW IM with a nominal voltage rating of 460 V (L-
L, RMS). The motor parameters are Lr = 0.52 H, Ls = 0.55 H, Lm = 0.41 H, Rs = 2.3 Ω
and Rr = 2.77 Ω. In the speed estimation test, the rotor speed reference (ωr

∗) varies from 0
to 100 rad/s. The training inputs to the GPR network are given in Figure 4. The response
of the SMO based rotor speed is depicted in Figure 5, verifies the estimated rotor speed
convergence to the actual rotor speed and tracking of reference rotor speed. The chattering
noise deters the efficient convergence of the speed observer designed in [19]. It is inhibited
very well with the observer designed in this paper. The SMO-based estimated speed is
given in Figure 5.

Figure 4. Training Inputs.

Figure 5. SMO based estimated speed.

On the basis of the variable structure of the SM theory, the sliding surface is selected as:

Si(t) = Îs − Is (45)
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where Îs = îα, îβ are the estimated stator current values and Is = iα, iβ are the actual stator
current values. Based on the IM stator current determined in (5), the SMO is presented as:

îα = −
(

L2
mαr + LrRs

εLm

)
îα +

Lr

Lm
vsα + αr ϕα + Zα

îβ = −
(

L2
mαr + LrRs

εLm

)
îβ +

Lr

Lm
vsβ + αr ϕβ + Zβ

 (46)

where Zα = −K sgn
(

îα − iα

)
and Zβ = −K sgn

(
îβ − iβ

)
. Using (46), the Lyapunov stabil-

ity theorem, the method followed in [19], and solving for estimated speed, we determine
the required speed, which is given by:

ω̂r = Z̄αeqZβeq − pLmαriβZ̄αeq − Z̄βeqZαeq + pLmαriβZ̄βeq

ω̂r =
∫ (

Z̄αeqZβeq − pLmαriβZ̄αeq − Z̄βeqZαeq + pLmαriβZ̄βeq

)
dt

 (47)

where
Z̄αeq = Ẑαeq − Zαeq

Z̄βeq = Ẑβeq − Zβeq

ω̄r = ω̂r − ω̇r


7.3. GPR Model-Based Speed Estimation

In this case, we analyze and display the performance of the speed estimation method
using regular GPR. The estimated speed is achieved through Regular GPR, and the actual
speed is shown in Figure 6a. Relatively good accuracy is achieved with RMSE = ‘0.3808’%.
The RMSE, ITSE, and ISE of the different proposed methods show the advantage of GPR-
based methods over non-probabilistic and non-linear speed estimation methods such as
SMO. The RMSE performance of the different observers proposed in this paper using the
input dataset is given in Table 2. Performance evaluation of recurrent GPR is presented in
this case. The estimated speed using the recurrent GPR method and actual speed is shown
in Figure 6b.

The result of the AR-GPR method of the speed estimation method is shown in Figure 6c,
along with the actual speed. The performance indices graphs are shown in Figures 7 and 8
illustrates that this method provides improved speed estimates compared to the regular
GPR with the RMSE of ‘0.296’%. The recurrent GPR integrates the effect of present and
past speed into the model. The ISE, ITSE, and RMSE illustrate that the autoregressive GPR
technique improves the accuracy of speed estimation and leads to a much smoother motor
speed. Mainly, the RMSE is ‘0.14’%, which is almost a perfect fit with the actual speed.
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(a) (b)

(c)

Figure 6. GPR based observer performance. (a) Regular GPR. (b) Recurrent GPR. (c) Auto-Regressive
GPR.

Figure 7. Integral Square Error (ISE).

Some of the vital performance evaluation parameters are ISE and ITSE. The ISE and
ITSE for the proposed observers are shown in Figures 7 and 8, respectively. The ISE and ITSE
for the proposed autoregressive GPR is minimum and nearly reaches zero. These perfor-
mance indices validate the accurate speed estimation capability of the proposed technique.
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Figure 8. Integral time Square Error (ITSE).

7.4. Performance Evaluation of ST-FOSMC under Various Test Cases

The performance comparison of the proposed control scheme using the GPR-based
speed observer is validated by different tests, including (a) electrical faults incorporation
with load disturbance, (b) parameter perturbation with load disturbance, and (c) under-
voltage with load disturbance. In the simulation evaluation, a reference speed ranging
from 200 rad/s to −200 rpm was given. The response of the PI, SMC, and ST-FOSMC is
given in Figure 9. It can be seen from Figure 9 that the proposed ST-FOSMC can track the
reference speed faster and more precisely compared to PI and SMC control paradigms. The
chattering elimination capability of the proposed control scheme is also evident, as SMC
offers much chattering. In contrast, PI is converging much slower with a huge overshoot of
55 rad/s. The SMC control has an overshoot of 2 rad/s, whereas the proposed ST-FOSMC
has smooth convergence with zero overshoot.

Figure 9. Speed response of PI, SMC, and the proposed ST-FOSMC.
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Table 1. Induction motor tuning parameters.

IM Parameters Values

Rated Power 3 HP/2.4 kW
Phases 3
Line Voltage 460 V(L− L, rms)
System Frequency 60 Hz
Full Load Slip 1.72%
Number of Poles 4
Switching Frequency 20 kHz
Stator Resistance 1.7 Ω
Stator Leakage Resistance 5.25 Ω
Rotor Resistance 1.34 Ω
Rotor Leakage Resistance 4.57 Ω
Moment of Inertia 70 kg ·m2

Mutual Inductance 139 Ω
Full Load Current 4 A
Full Load Speed 1750 rpm

Table 2. Control and Observer Parameters.

Parameters Values RMSE (%)

α 0.9
β 1.1
c5 0.1
c6 4

ld for Regular GPR 2.5 for V(k), 160 for I(k) 0.3808
4.5 for V(k), 260 for I(k),

ld for AR-GPR 2.1 for V(k-1), 200 for I(k-1), 0.14
300 for ω(k− 1)

K 10 1.2

The sliding surfaces for PI, SMC, and proposed technique are shown in Figure 10.
The SMC shows a lot of ripples, whereas the ST-FOSMC almost eliminates the oscillations,
ensuring the smooth performance of the proposed ST-FOSMC. To verify the disturbance
rejection capabilities of the proposed control paradigms, a full load was applied, and then
for the rest of the time, it was halved at t = 1 s.

Figure 10. Sliding Surfaces comparison of PI, SMC, and ST-FOSMC.

The robustness of the PI, SMC, and ST-FOSMC control paradigms to parameter varia-
tions were validated by varying the rotor resistance from rated resistance to 120%, 150%,
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and 200%. The PI controller has slow convergence and high transient oscillations, as shown
in Figure 11a. The speed waveform for SMC under such conditions is shown in Figure 11b.
The SMC is robust compared to the PI controller and shows fast convergence, less steady-
state error, and transient oscillations. The speed response of proposed ST-FOSMC is shown
in Figure 11c. The ST-FOSMC results validate that the proposed scheme is robust and
insensitive to the load disturbance and parameter variation with fast settling time and
minor steady-state error. The results show that the PI controller had slow convergence and
high transient oscillations. On the other hand, the SMC controller demonstrated better
robustness compared to the PI controller, with faster convergence, reduced steady-state
error, and less transient oscillations. Moreover, the proposed ST-FOSMC controller was
found to be highly robust and insensitive to load disturbances and parameter variations.
The ST-FOSMC controller exhibited fast settling time and minor steady-state error, which
makes it suitable for practical applications.

(a) (b)

(c)

Figure 11. Controllers performance under parametric variations. (a) PI response Under parameter
Variation. (b) SMC response Under Parameter Variation. (c) Proposed ST-FOSMC response Under
Parameter Variation.

The dynamic performance and stability of a controller must be evaluated using electri-
cal faults, as IM is mostly exposed to electrical faults perturbations. The various control
schemes were subjected to different electrical faults, including single-phase, under-voltage,
and over-voltage. The phase “a” was opened for 200 ms at t = 1 s, and the response of the
control paradigm is shown in Figure 12a. The overshoot provided by the PI controller was
17 rad/s after fault incorporation, while the undershoot for PI was 13 rad/s. The SMC
and ST-FOSMC provided almost the same response to the electrical fault. In this case, the
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average overshoot was 10 rad/s, whereas the undershoot was 10.2 rad/s. Furthermore,
the PI settled after 1.8 s, whereas the SMC and ST-FOSMC settled at 1.4 s with negligible
oscillations.

The motor was subjected to under-voltage and overvoltage to investigate the robust-
ness of control strategies against electrical faults. Initially, the three-phase voltage was
increased to 150% of the nominal value, and then the voltage was decreased to 50% of the
nominal voltage.

(a) (b)

(c)

Figure 12. Controllers performance under faults. (a) Single-phase Fault. (b) Over Voltage. (c) Under
Voltage.

The speed response for overvoltage and under-voltage is shown in Figure 12b,c,
respectively. At t = 1 s, the PI scheme shows an overshoot of 9.8 rad/s, undershoot of
10 rad/s, and settling time of t = 1.65 s for the overvoltage scenario. In contrast, it showed
undershoot and overshoot of 10 rad/s and 35 rad/s, respectively, and settling time of
t = 1.8 s for the under-voltage scenario followed by bulky transients. The ST-FOSMC
control paradigm response is almost similar to SMC in this case. The SMC provided an
overshoot of 7.5 rad/s and undershoot of 7 rad/s for the overvoltage case, whereas the
ST-FOSMC provided an overshoot of 7 rad/s and undershoot of 5.5 rad/s, as shown
in Figure 12b. Similarly, for the under-voltage case, the SMC provided an overshoot of
20 rad/s that is almost like the proposed ST-FOTSMC, whereas the SMC provided an
undershoot of 13 rad/s and that of ST-FOTMSC is 11 rad/s, as shown in Figure 12c. Hence,
it can be concluded that the proposed ST-FOSMC can eliminate the chattering problem in
conventional SMC and robustness problems in conventional PI, improving the inherent
robustness of SMC.
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8. Conclusions

A super-twisting algorithm based fractional-order sliding mode control (ST-FOSMC)
is presented in this paper. The fractional calculus-based surface has been incorporated
into the super-twisting algorithm-based sliding mode control (SMC). The proposed control
scheme showed superior performance to the conventional PI and SMC in terms of speed
convergence and robustness against load and fault perturbations. Specifically, the ST-
FOSMC demonstrated a faster settling time than PI by 22.20% and SMC by 15.40% and
exhibited 50% and 60% lower steady-state error than PI and SMC, respectively. Furthermore,
the ST-FOSMC showed robustness to electrical faults, such as under-voltage, over-voltage,
and single-phase faults, providing significantly lower overshoot and undershoot than
PI and SMC, along with negligible oscillations. Speed observers based on regular GPR,
recurrent GPR, and autoregressive GPR are also designed to control induction motor
using simulated datasets, including the current and voltage values of the stator. AR-GPR
guaranteed smooth speed estimates compared to sliding mode observers, regular GPR,
and recurrent GPR. The performance of the proposed AR-GPR method was compared with
regular GPR and showed improved speed estimates with a RMSE of 0.296%. Furthermore,
the ISE and ITSE performance indices validated the accurate speed estimation capability of
the proposed technique. The proposed speed control and estimation schemes proved to be
an efficient choice for a three-phase drive system. In future works, the proposed control
and estimations scheme will be implemented using an experimental workbench to testify
it for practical implementation. Moreover, the proposed control scheme can be further
enhanced by including a tuning mechanism based on artificial intelligence techniques. The
adaptive mechanism can also be incorporated to calculate the fractional-order values used
in the sliding surface of the proposed control schemes.
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