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ABSTRACT This article presents a delayed susceptibility, exposure, infectivity, recovery, and vaccination
(SEIRV) model with nonlinear incidence and ratio-dependent functional responses. Model limitations and
local stability analyses were examined with strict consideration of delay awareness. In addition, the presence
of Hopf bifurcations with delay as a bifurcation parameter was investigated along with feature distributions
with appropriate constraints. Numerical simulations are presented to verify the proposed theoretical results.
In particular, if the latency exceeds the threshold, worm propagation in the systemmay become out of control.
We demonstrated that the propagation characteristics of worms can easily be predicted and eliminated if the
delay values are below a suitable threshold. Finally, we conclude that worm propagation is controllable by
shifting the presence of Hopf bifurcations.

INDEX TERMS Epidemic model, local stability, wireless internet of things (IoT), worm propagation.

I. INTRODUCTION
Wireless Internet of things (IoT) networks play an essential
role in many application areas, such as patient health moni-
toring, military applications, disaster management, intrusion
detection, and automotive applications [1], [2]. However,
IoT devices are considered weakly defended and targeted
by worms due to their limited origin in physical resources.
Many attackers make IoT devices hot targets due to their lim-
ited defense capabilities. In particular, worms can replicate
and propagate without manual intervention, deceiving other
nodes into taking their sources from the network. Wireless
communication technologies may allow malicious code to
propagate directly from device to device [3], [4]. Fundamen-
tal parallels exist between the induction of software-spawn
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worms in wireless IoT networks and the spread of epidemics
in human populations. In wireless IoT networks, crude epi-
demiological models were used by intellectuals to study the
spread of the worm. Similarly, the Chameleon, Cabir, and
Mabir worms make economics and transportation important.
Significant and sufficient measures must be taken within the
network to manage worm generation.

A. RELATED WORK
An epidemic model was used to study the behavior of the
malicious object and control the spread of the worm within
the network. An epidemic model was proposed in several
studies [5], [6], [7] that deal with time delay and investi-
gate the dynamic features of worm prevalence. To effec-
tively manage worm intrusions, it is vital to understand the
dynamics of worm propagation in wireless IoT networks.
In existing studies, disease models have proven valuable in
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explaining aspects of worm spread. Researchers in recent
years [8], [9] have studied worms in wireless IoT networks
because of the correlation between the spread of worms
through wireless devices and the spread of traditional worms
over the internet. Vogue models are used extensively to
characterize worm reproduction. In this context, Mishra and
Keshi proposed a susceptibility-exposure-infection-recovery-
vulnerability using the vaccination compartment (SEIRS-V)
model [10]. In [11], Mishra et al. proposed the susceptible-
infected-quarantine-recovered-susceptible (SIQRS) model,
recognizing the implications of quarantine scenarios. Based
on the results of [10], Mishra and Tyagi [12] proposed the
susceptible-exposed-infectious-quarantine-recovered with
vaccination (SEIQR-V) model in wireless IoT networks
to determine the potential threat of worm propagation.
Feng et al. [13] proposed an improved susceptible-infected-
recovered-susceptible (SIRS) prevalence model for classify-
ing the effects of communication radius and assigned density
and focused on the model stability to reduce the spread of
worms. Subsequently, analyzing the strength of the model,
Ojha et al. [14] extended the model by Feng et al. [13] to
build a modified SIQRS worm propagation model with the
introduction of compartment separation.

Other mathematical models also describe the mobility
of malicious code in the case of wireless IoT networks
[15], [16]. The SIRS worm propagation model in wireless
IoT networks proposed by Feng et al. [13] was extended by
Ojha et al. in [14]. Ojha et al. included the exposed class
to propose the SEIRS worm propagation model. In [17],
Upadhyay and Kumari proposed an energy-efficient elec-
tronic epidemic model by analyzing the linear stability with
delay, where a Hopf bifurcation analysis was performed.
Their results proved that packet delivery delays are the reason
for chaotic dynamics and reveal a means of controlling the
propagation of threatening signals. Signes-Pont et al. [18]
modified the SEIRS malware propagation for mobile com-
munication devices. They focused on well-defined inter-node
communication patterns specifying local traces indicating
infected connections. In addition, López et al. [19] presented
the use of prevalent techniques to analyze the propagation of
jamming attacks that can affect various communication layers
of all nodes in various wireless IoT networks. On the other
hand, Huang et al. [20] focused on the bifurcation problem
of a fractional-order bidirectional associative memory neural
network (FOBAMNN) with four different delays. This model
calculated quantitatively the significant values of the Hopf
bifurcation for various delays. It is recognized that the stabil-
ity of the developed FOBAMNN with multiple delays can be
obtained considerably if lower control delays are chosen, and
Hopf bifurcation occurs when the control delay exceeds a crit-
ical value. For further study, [21] reports innovative results on
the stability and bifurcation of a delayed quaternion-valued
fractional neural network (FOQVNN). The analyses show
that the amplitude of the branch oscillations increases with
increasing time delay. It can be seen that the bifurca-
tion phenomenon occurs earlier as the order increases. In

[22], [23], Xu et al. discussed the stability and existence of the
Hopf bifurcations for fractional-order BAM neural networks
with and without leakage delays. A stability condition and a
sufficient criterion for the existence of Hopf bifurcations of
fractional-order BAM neural networks with delays (leakage
delays) are established. In addition, [24] investigated Hopf
bifurcation problems for fractional order quaternary numer-
ical neural networks with leaky delays. The authors derived
delay-influenced bifurcation conditions for eight real-valued
networks using stability criteria and bifurcation theory for
fractional-order differential dynamic systems.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
Distinguished from aforementioned studies, we use open
simulations and experiments to examine the accuracy of
the susceptibility, exposure, infectivity, recovery, and vac-
cination (SEIRV) model for calculating the spread of
destructive attacks in this paper. The worm propagation
model was considered with a nonlinear incidence. Moreover,
the proposed model focuses on periods of inactivity and
interaction-induced time delays as ratio-dependent functional
responses. Then, we investigate the viral balance to examine
the local stability, applying the properties of the Hopf bifur-
cation. The numerical simulations support the theoretical
conclusions.

This work is organized as follows. Section II provides the
delayed mathematical model with a suitable explanation and
discusses the boundedness (II-A) and equilibrium analysis
(II-B). Next, Section III addresses the local stability analysis
in the presence and absence of delay. Then, Section IV intro-
duces the computer simulations to facilitate the hypothetical
outcomes. Finally, Section V summarizes the paper with
concluding remarks.

II. MATHEMATICAL MODEL
Most mentioned wireless communication network models
assume a bilinear infection rate. In particular, wireless worm
propagation can be dramatically affected by the topology
of the underlying network system. From this perspective,
we integrate the ratio-dependent functional response into the
wireless IoT networks. Time delays play an essential role
in worm propagation from wireless IoT networks because
time delays can cause a loss of stability and induce Hopf
bifurcations and periodic solutions. Hopf bifurcation results
indicate that worm propagation changes from equilibrium to
limited cycles in wireless IoT networks. This phenomenon
is unexpected because cyclic behavior is unpleasant from an
epidemiological viewpoint. With this idea in mind, we devel-
oped the following delay model for worm propagation in
wireless IoT networks. The symbol definitions are summa-
rized in Table 1.

S ′(t) = A− δ0S −
αS2I

S2 + cI2
+ ηV − µS (1)

E ′(t) =
αS2I

S2 + cI2
− δ0E − δ1E(t − τ ) (2)
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TABLE 1. Description of parameters.

FIGURE 1. Schematic diagram of the SEIV worm propagation model in a
wireless IoT network system.

I ′(t) = δ1E(t − τ ) − (δ0 + δ5 + δ3)I −
βI
I + a

(3)

R′(t) = δ2I − δ0R+
βI
I + a

(4)

V ′(t) = µS − (δ0 + η)V . (5)

Eliminating class R does not affect the elements of S, V,
E, and I classes; therefore, we examine the accompanying
modified framework as follows:

S ′(t) = A− δ0S −
αS2I

S2 + cI2
+ ηV − µS (6)

E ′(t) =
αS2I

S2 + cI2
− δ0E − δ1E(t − τ ) (7)

I ′(t) = δ1E(t − τ ) − (δ0 + δ5 + δ3)I −
βI
I + a

(8)

V ′(t) = µS − (δ0 + η)V . (9)

The SEIVworm propagationmodel in a wireless IoT network
system is depicted in Fig. 1.

A. BOUNDEDNESS ANALYSIS
We let

N = S + E + I + V . (10)

Then, differentiating ((10)) on both sides, we obtain

dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dV
dt

= A− δ0 (S + E + I + V ) − (δ2 + δ3) I −
βI
I + a

= A− δ0N −

(
δ2 + δ3 +

β

I + a

)
I .

Therefore,

dN
dt

+ δ0N ≤ A.

Hence,

N (t) ≤ N0e−δ0t +
A
δ0

(
1 − e−δ0t

)
.

Thus, we assume that the initial value is

N0 = S0 + E0 + I0 + V0 =
A
δ0

.

To have nodes with a constant size, we have

S(t) + E(t) + I (t) + V (t) = N =
A
δ0

.

The nodes (S (t) + E (t) + I (t) + V (t)) remain in the net-
work and are related and represented in the set

� =

{
(S,E, I ,V ) ∈ R+

4/0 ≤ S + E + I + V ≤
A
δ0

}
,

where

(S (0) ,E (0) , I (0) ,V (0)) ∈ R+
4,

which is a positively invariant region. Using V (t) =
A
δ0

−

S (t) − E (t) − I (t), we can eliminate v(t), which provides a
scaled-down three-dimensional model:

dS
dt

= A− δ0S −
αS2I

S2 + cI2
− µS

+ η

[
A
δ0

− S (t) − E (t) − I (t)
]

dE
dt

=
αS2I

S2 + cI2
− δ0E − δ1E

dI
dt

= δ1E − (δ0 + δ5 + δ3)I −
βI
I + a

.

We let N1 = S + E + I , and from the above-reduced model,
we have
dN1

dt
=
dS
dt

+
dE
dt

+
dI
dt

dN1

dt
=

A
δ0

(δ0 + η) − (δ0 + η)N1

dN1

dt
+ (δ0 + η)N1 =

A
δ0

(δ0 + η) −

(
δ2 + δ3 +

β

I + a

)
.

From the above equation, in the absence of a virus (i.e., I =

0, N1 →
A
δ0

(δ0 + η)), due to the spread of the virus in the
computer network N1, it follows that

N1 ∈

(
0,

A
δ0
(δ0 + η)

)
.

As � is a positively invariant region for the original model,
the following is also a positively invariant region for the above
model:

� =

{
(S,E, I ) : S ≥ 0,E ≥ 0, I ≥ 0, S + E

+ I ≤
A
δ0

(δ0 + η)

}
. (11)
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FIGURE 2. 00, . . . , 06 formulas.

Theorem 1: All the nonnegative solutions of the model
system ((1)–(5)) that initiate in

� =

{
(S,E, I ) : S ≥ 0,E ≥ 0, I ≥ 0, S + E

+ I ≤
A
δ0

(δ0 + η)

}
are uniformly bound.

B. EQUILIBRIUM ANALYSIS
In this section, we discuss the presence of the infection-free
harmony and the endemic balance of the model framework
((6)–(9)). The endemic equilibrium points of ((6)–(9)) are
(12)–(14), as shown at the bottom of the page, where I∗ is
the positive root of the following equation:

00I6 + 01I5 + 02I4 + 03I3 + 04I2 + 05I + 06 = 0,
(15)

where 00, . . . , 06 are provided in Fig. 2.

III. DELAY-AWARE LOCAL STABILITY ANALYSIS
The Jacobian matrix of the system ((6)–(9)) at the endemic
equilibrium point D∗, J (D∗) is∣∣∣∣∣∣∣∣

λ − a11 0 a13 a14
a21 λ − a22 − b22 − e−λτ a23 0
0 b32 − e−λτ λ − a33 0
a41 0 0 λ − a44

∣∣∣∣∣∣∣∣ ,
where

a11 = −

[
δ0 + µ −

2αI∗3S∗(
S∗

2
+ cI∗2

)2
]

,

a13 =
−αS∗

2 (
S∗

2
− cI∗2

)(
S∗

2
+ cI∗2

)2 ,

a14 = η,

a21 =
2αcI∗3S∗(
S∗

2
+ cI∗2

)2 ,

b22 = −δ1,

S∗
= I∗

√
c (δ0 + δ1) [(δ0 + δ2 + δ3) (I∗ + a) + β]

[αδ1 − (δ0 + δ1) (δ0 + δ2 + δ3)] (I∗ + a) − β (δ0 + δ1)
(12)

E∗
=

(δ0 + δ1 + δ3) I∗

δ1
+

βI∗

δ1 (I∗ + a)
(13)

V ∗
=

µS∗

δ0 + η
, (14)
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a13 =
αS∗

2 (
S∗

2
− cI∗2

)(
S∗

2
+ cI∗2

)2 ,

b32 = −δ1,

a33 = − (δ0 + δ2 + δ3) −
β

(I + α)2
,

a41 = µ,

a44 = − (δ0 + η) .

Thus, the characteristic equation of the system ((6)–(9)) atD∗

is

λ4 + A1λ3 + A2λ2 + A3λ + A4

+ e−λτ
[
B1λ3 + B2λ2 + B3λ + B4

]
= 0, (16)

where

A1 = − (a11 + a22 + a33 + a44) ,

A2 =a11 (a33 + a44) + a22 (a11 + a33)

+ a44 (a33 + a22) − a14a41,

A3 =−

(
a11a33a44 + a11a33a22 + a11a22a44+a22a33a44

−a22a41a14 − a33a41a14

)
,

A4 =a11a22a33a44 + a11a33a44b22 − a14a22a33a41,

B1 = − b22,

B2 =b22 (a11 + a33) + a44b22 − a23b32,

B3 =

(
a13b32a21 + a11b32a23 + a44a23b22 + a41a14b22

−a11a33b22 − a11b22a44 − a33b22a44

)
,

B4 =

(
a23a41a14b32 − b32a33a41a14 − a21a13a44b32

−a11a44a23b32

)
.

A. IN THE CASE OF THE ABSENCE OF DELAY
Inputting τ = 0 into (16), we have

λ4 + (A1 + B1) λ3 + (A2 + B2) λ2

+ (A3 + B3) λ + (A4 + B4) = 0. (17)

From the expression of A1 and B1, we have

A1 + B1 = a11 + a22 + a33 + a44 + b22 > 0.

Thus, given the Routh–Hurwitz criteria

det1 = A1 + B1 > 0, (18)

det2 =

(
A1 + B1 1
A3 + B3 A2 + B2

)
> 0, (19)

det3 =

A1 + B1 1 0
A3 + B3 A2 + B2 A1 + B1

0 A4 + B4 A3 + B3

 > 0, (20)

det4 =


A1 + B1 1 0 0
A3 + B3 A2 + B2 A1 + B1 1

0 A4 + B4 A3 + B3 A2 + B2
0 0 0 A4 + B4

 > 0. (21)

Thus, if conditions (18)–(21) hold, D∗ is locally asymptoti-
cally stable in the absence of delay.

B. IN THE CASE OF THE PRESENCE OF DELAY
By inputting λ = iω, ω > 0, in (16), we obtain[
(iω)4 + A1(iω)3 + A2(iω)2 + A3 (iω) + A4

]
+ e−iωτ

[
B1(iω)3 + B2(iω)2 + B3 (iω) + B4

]
= 0. (22)

By equating the real and imaginary parts, we attain

cosωτ
(
B4 − B2ω2

)
+ sinωτ

(
B3ω − B1ω3

)
= A2ω2

− ω4
− A4, (23)

cosωτ
(
B3ω − B1ω3

)
− sinωτ

(
B4 − B2ω2

)
= A1ω3

− A3ω. (24)

Squaring and adding (23) and (24) results in

ω8
+ P1ω6

+ P2ω4
+ P3ω2

+ P4 = 0, (25)

where

P1 = A12 − B12 − 2A2,

P2 = A22 − 2A3A1 − B22 + 2B1B3,

P3 = A32 − 2A4A2 − B32 + 2B4B2,

P4 = A42 − B42.

Now, by assuming ω2
= u, (25) becomes

u4 + P1u3 + P2u2 + P3u+ P4 = 0. (26)

We define the function as follows:

f (u) = u4 + P1u3 + P2u2 + P3u+ P4 = 0. (27)

In addition, lim
u→∞

f (u) = ∞. Thus, if P4 < 0, (27) has at
least one positive root.

Solving from (23) and (24), we find

cosωt =
s1ω6

+ s2ω4
+ s3ω2

+ s4
s5ω6 + s6ω4 + s7ω2 + s8

, (28)

where

s1 = B2 − A1B1,

s2 = A3A1 + A1B3 − A2B2 − B4,

s3 = A4B2 + A2B4 − A3B3,

s4 = −A4B4,

s5 = B1,

s6 = B22 − 2B1B3,

s7 = B23 − 2B4B2,

s8 = B24.

Thus, corresponding to λ = iω0, where n = 0, 1, 2, . . ., there
exists

τ0n =
1
ω0

cos−1
[
s1ω6

+ s2ω4
+ s3ω2

+ s4
s5ω6 + s6ω4 + s7ω2 + s8

]
+

2nπ
ω0

.

(29)
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FIGURE 3. Time series analysis of susceptible, exposed, infected, and
vaccinated IoT devices in the absence of delay.

Differentiating (16) with respect to τ provides(
dλ

dτ

)−1

= −
4λ3 + 3A1λ2 + 2A2λ + A3

λ(λ4 + A1λ3 + A2λ2 + A3λ + A4)

+
3B1λ2 + 2B2λ + B3

λ
(
B1λ3 + B2λ2 + B3λ + B4

) −
τ

λ

= −
4λ4 + 3A1λ3 + 2A2λ2 + A3λ

λ2(λ4 + A1λ3 + A2λ2 + A3λ + A4)

+
3B1λ3 + 2B2λ2 + B3λ

λ2
(
B1λ3 + B2λ2 + B3λ + B4

) −
τ

λ
.(

dλ

dτ

)−1

= −

(
3λ4 + 2A1λ3 + A2λ2 − A4

λ2(λ4 + A1λ3 + A2λ2 + A3λ + A4)

)
+

2B1λ3 + B2λ2 − B4
λ2

(
B1λ3 + B2λ2 + B3λ + B4

) −
τ

λ
.

Next,(
dλ

dτ

)−1

=

[
(3ω0

4
− A2ω0

2
− A4) − i2A1ω0

3

ω02(ω04 − A2ω02 + A4) + i(A3ω0 − A1ω03)

]
+

[
(B2ω0

2
+ B4) + i2B1ω0

3

ω02(B4 − B2ω02) + i(B3ω0 − B1ω03)

]
−

iτ
ω0

.

Re
(
dλ

dτ

)−1

=
(3ω0

4
− A2ω0

2
− A4)(ω0

4
− A2ω0

2
+ A4)

ω02(ω04−A2ω02+A4)
2
+ (A3ω0−A1ω03)

2

+
2A1ω0

3(A3ω0 − A1ω0
3)

ω02(ω04 − A2ω02 + A4)
2
+ (A3ω0 − A1ω03)

2

+

[
(B42 − B22ω0

4) + 2B1ω0
3(B3ω0 − B1ω0

3)

ω02(B4 − B2ω02)
2
+ (B3ω0 − B1ω03)

2

]
.

Re
(
dλ

dτ

)−1

> 0.

Therefore, the transverse ability conditions hold; hence, Hopf
bifurcation occurs at τ = τ0.
Theorem 2: If D∗ exists with the conditions (18)–(21) and

u = ω2 is a positive root of (27), then τ = τ0 exists such that
• D∗ is locally asymptotically stable for 0 ≤ τ < τ0,
• D∗ is unstable for τ > τ0, and

FIGURE 4. Time series analysis of susceptible, exposed, infected, and
vaccinated IoT devices with τ = 7.96.

FIGURE 5. Time series analysis of susceptible, exposed, infected, and
vaccinated IoT devices with τ = 8.243.

FIGURE 6. Time series analysis of susceptible, exposed, infected, and
vaccinated IoT devices with τ = 8.5.

• The system undergoes Hopf bifurcation around D∗ at
τ = τ0, where τ0n, where n = 0, 1, 2, . . ., is equal to

1
ω0

cos−1
[
s1ω6

+ s2ω4
+ s3ω2

− s4
s5ω6 + s6ω4 + s7ω2 + s8

]
+

2nπ
ω0

.

IV. NUMERICAL SIMULATIONS
In this section, we present numerical simulations using
MATLAB software to validate the analytical results of this
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FIGURE 7. Phase portrait diagrams of devices with τ = 7.96.

FIGURE 8. Phase portrait diagrams of devices with τ = 8.243.

FIGURE 9. Phase portrait diagrams of devices with τ = 8.5.

paper. To ensure consistency, we used the values of several
attributes in [25] and considered a concomitant anomalous
instance of the framework with conditions for the existence of
Hopf bifurcations. In particular, the simulation parameters are
set up as follows: A = 2, α = 0.27, β = 0.03, η = 0.2, µ =

0.003, c = 0.01, δ0 = 0.02, δ1 = 0.2, δ2 = 0.045, and
δ3 = 0.03.

Without delays, the intrinsic equilibrium points (1.506,
9.118, 19.16, and 0.023) are locally asymptotically stable,
and the corresponding time series are illustrated in Fig. 3.
Accordingly, when τ = 7.96 < τ ∗, the intrinsic equilibrium
points D∗(1.506, 9.118, 19.16, and 0.023) are locally asymp-
totically stable in the presence of delays, and the dynamic
behavior of the time series is depicted in Fig. 4. The result

suggests that the quantity of infected hosts remains relatively
low and is predictable. There is still room for new approaches
to worm eradication. Fig. 7 shows a projection of the phase
portrait of the system as in S-E-I, S-E-V, and E-I-V spaces.
In these cases, the spread of computer worms in wireless IoT
networks can be easily controlled. The numerical simulation
illustrates this property in Fig. 4. Every kind of host is con-
sidered stable.

When passes through the critical value, D∗(1.506, 9.118,
19.16, 0.023) will lose its stability and a Hopf bifurcation
occurs. Here, a family of periodic solutions bifurcates from
equilibrium, which is depicted by the 8.243 minutes long
numerical simulation in Fig. 5, with other parameters remain-
ing the same. However, if the time delay is increased until it
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reaches the threshold of τ ∗, D∗ will no longer be stable, and
a bifurcation will take place. When τ = 8.5 > τ ∗, Fig. 6
depicts the susceptible, infected, and immunized hosts in the
system. This plot graph makes it abundantly evident that the
number of infected hosts will explode after a brief period of
peace and recur repeatedly but not within the same period,
making it difficult to anticipate the number of infected hosts
and to build further worm-elimination measures.

Further increasing the delay value τ = 8.243 = τ ∗ causes
the framework to experience Hopf bifurcations at unique
equilibrium points D∗(1.506, 9.118, 19.16, and 0.023) and
bifurcation periods diverging from D∗(1.5006, 9.118, 19.16,
and 0.023) are depicted in Fig. 8. The corresponding time
series for this case is also provided in Fig. 5, where τ =

8.5 > 8.243 and ω0 = 0.6543. From Theorem 2, we know
the endemic equilibrium point D∗(1.5006, 9.118, 19.16, and
0.023) loses its stability, making it difficult to take measures
to control the propagation of worms. The corresponding time
series and phase portraits for S-E-I, S-E-V, and E-I-V are
illustrated in Figs. 6 and 9.

To observe the impact of time delay, τ is set to a different
value while the other parameters stay constancy. Infected
hosts are depicted in Fig. 6 at the same coordinate with time
delays of τ = 0.796, 8.243, and8.5. The four curves initially
overlap, indicating that time delay has no impact during the
early stages of worm propagation. The curve starts oscillating
as the time delay gets longer. The infecting process becomes
unstable when the time delay crosses the threshold τ ∗. In the
meantime, it has been shown that the number of infected hosts
is growing in amplitude and duration.

V. CONCLUDING REMARKS
The use of Internet technology continues to obfuscate the
boundaries between the real world and the virtual one, and
it is becoming more and more crucial in advancing the inte-
gration and penetration of the entire economic and social
development. However, as Internet technology is used more
widely, threats and difficulties also rise. Particularly, because
of their limited battery life and memory space, wireless IoT
networks face a serious challenge to network security. The
application of wireless IoT networks is tremendously increas-
ing in various domains. Since many domains are unattended
in nature, this is more vulnerable towards malicious happen-
ings that lead to various risks and challenges. Hence, there
is needed to analyze the nature of the propagation of the
malicious codes inside the network. To address this issue,
we have investigated a SEIRVmodel with delay to understand
the propagation worms in the network with nonlinear incident
rate and ratio-dependent functional response. The results of
the proposed model show that it is superior compared to
the other models with respect to Hopf-bifurcation and local
stability.We found that the nature of worm propagation can be
easily controlled when the delay is within the threshold limit
and it has been proved that this can be achieved by deferring
the existence of Hopf-bifurcation. The future work of the
Hopf bifurcation and its stability in wireless IoT fractional

model has the potential to describe more complex dynamics
than the integer model and can include easily the memory
effects presented in many real-world problems.
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