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a b s t r a c t 

For automatic EEG diagnosis, this paper presents a new EEG data set with well-organized clinical annotations 
called Chung-Ang University Hospital EEG (CAUEEG), which has event history, patient’s age, and corresponding 
diagnosis labels. We also designed two reliable evaluation tasks for the low-cost, non-invasive diagnosis to detect 
brain disorders: i) CAUEEG-Dementia with normal, mci , and dementia diagnostic labels and ii) CAUEEG-Abnormal 
with normal and abnormal . Based on the CAUEEG dataset, this paper proposes a new fully end-to-end deep learn- 
ing model, called the C AU E EG E nd-to-end D eep neural Net work (CEEDNet). CEEDNet pursues to bring all the 
functional elements for the EEG analysis in a seamless learnable fashion while restraining non-essential human 
intervention. Extensive experiments showed that our CEEDNet significantly improves the accuracy compared 
with existing methods, such as machine learning methods and Ieracitano-CNN (Ieracitano et al., 2019), due to 
taking full advantage of end-to-end learning. The high ROC-AUC scores of 0.9 on CAUEEG-Dementia and 0.86 on 
CAUEEG-Abnormal recorded by our CEEDNet models demonstrate that our method can lead potential patients 
to early diagnosis through automatic screening. 
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. Introduction 

Alzheimer’s disease (AD) is the most common cause of demen-
ia ( Cassani et al., 2018 ). Since there are no medications to cure or de-
ay the symptom of dementia ( Weller and Budson, 2018 ), it is urgent to
btain low-cost, reliable, and easy-accessible methods to detect demen-
ia as early as possible ( Farina et al., 2020 ). Mild cognitive impairment
MCI) is an intermediate stage between healthy aging and dementia, and
s transformed to dementia at an increasing rate ( Michaud et al., 2017 ).
he annual rate of conversion from MCI to AD is 3–15 % compared to 1–
 % of the general population ( Michaud et al., 2017 ). Especially, amnes-
ic MCI (aMCI) is the most probable to convert to AD ( Csukly et al.,
016 ). 

For early detection of AD and MCI, the first research focused on struc-
ural magnetic resonance imaging (sMRI) ( Park and Moon, 2016 ). De-
pite its acceptable accuracy of detection, the use of sMRI was limited
y high cost and poor access in low-income countries ( Musaeus et al.,
018 ). In this context, electroencephalography (EEG) is a good
lternative for low-cost, noninvasive, and user-friendly detection
ools ( Cassani et al., 2018 ). As a biomarker for neurodegenerative dis-
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ases, EEG has recently received much attention ( Al-Qazzaz et al., 2014;
assani et al., 2018; Malek et al., 2017; Musaeus et al., 2018 ). How-
ver, clinical EEG diagnosis has several issues: i) diagnostic accuracy
ighly depends on trained EEG experts, ii) clinical EEG recording re-
uires several years of pathological training, and iii) decoding EEGs is
 time-consuming and exhausting process ( Gemein et al., 2020 ). 

Conventional EEG-based automatic systems for early diagnosis of
CI and dementia have made considerable efforts in feature engineer-

ng ( Fiscon et al., 2018; McBride et al., 2014; Sharma et al., 2019 ).
cBride et al. (2014) computed the relative spectral power, entropy,

nd complexity features from 48 resting EEG recordings (15 normal
ontrols, 16 early MCI, and 17 early stage AD) during the cognitive
nd movement tasks. Using the support vector machine (SVM), they
btained an accuracy of 85.4% on three-way classification. Fiscon et al.
2018) analyzed the Fourier and wavelet features of EEG samples ac-
uired from 23 healthy controls (HCs), 37 MCI, and 49 AD subjects,
nd then trained the decision tree classifiers. Their two-way classifiers
chieved accuracies of 83.3% for HC vs . AD, 91.7% for HC vs . MCI,
9.1% for MCI vs . AD, and 73.4% for HC vs. MCI and AD, respectively.
harma et al. (2019) extracted eight handcrafted features, including
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Fig. 1. Overview of the proposed approach and dataset for developing the EEG-based automated diagnostic system . 
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ower spectral density, skewness, kurtosis, and entropy, from 44 EEG
ignals around the eye-open, eye-close, finger tapping test (FTT), and
ontinuous performance test (CPT) events, and then trained the SVM
lassifiers. They achieved the binary classification accuracies of 89.8%
or HC vs . MCI on FTT event, 87.9% for HC vs . dementia on CPT, and
8.0% for MCI vs . dementia on CPT. 

As deep learning has recently experienced explosive success in vari-
us fields, including computer vision, natural language processing, and
enetics ( Brown et al., 2020; He et al., 2016; Senior et al., 2020 ), some
ecent works tried to use deep learning algorithms for the EEG-based
arly detection of dementia ( Bi and Wang, 2019; Ieracitano et al., 2019;
020 ). Ieracitano et al. (2019) computed power spectral density maps
f size 19 × 159 from 19-channel, 1280-length EEG sequences collected
rom 63 AD, 63 MCI, and 63 HC EEGs. They then applied a convolu-
ional neural network (CNN) to the power spectral density maps, and
heir best model showed a three-way classification accuracy of 83.3%.
eracitano et al. (2020) extracted wavelet features and bispectrum rep-
esentation from the same EEG dataset as Ieracitano et al. (2019) . Their
ulti-layer perceptron (MLP) model showed a three-way classification

ccuracy of 89.2%. Bi and Wang trained a deep convolutional Boltz-
ann machine on 12000 spectral images extracted from 4 AD, 4 MCI,

nd 4 HC EEG samples via the multi-task learning strategy, resulting
n a three-way classification accuracy of 95.0%. During preprocessing,
hey prepared 3-channel 32 × 32 spectral images from 64-channel EEG
equences as input to the network. To obtain more training data, these
eep learning approaches segmented a single EEG recording into mul-
iple epochs, and distributed them across the training and test sets (so-
alled “epoch-based classification ” manner) ( Bi and Wang, 2019; Ieraci-
ano et al., 2019; 2020 ), which reduces the reliability of the experiments.
urthermore, as conventional methods, they still drastically reduced the
mount of raw EEG signals using the handcrafted rules during prepro-
essing. 

In summary, both machine learning and deep learning methods have
ommon limitations: i) The amount of data used in their studies is very
mall (12–189 EEG recordings). ii) Although some models showed sat-
sfactory classification performance, a fair comparison is difficult due
o the lack of a common EEG data set and evaluation protocol; And iii)
any handcrafted and manual processes, such as artifact rejection and

eature extraction, hinder more chances to learn from data. 
In this context, this paper aims to aid the active research on au-

omatic EEG diagnosis for the early diagnosis of MCI and demen-
ia. At first, this paper presents a new large EEG data set with well-
rganized clinical annotations called Chung-Ang University Hospital
EG (CAUEEG) 2 and two tasks related to neurological disorders. Sec-
ndly, based on the CAUEEG dataset, an effective, fully end-to-end base-
ine deep learning approach is proposed, as illustrated in Fig. 1 . Exten-
ive experiments demonstrate that our method helps to develop auto-
2 https://github.com/ipis- mjkim/caueeg- dataset 
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2 
atic screening for clinical diagnosis, leading the potential patient to
arly diagnosis. 

The EEG-based automatic pathology classification is another re-
earch area related to EEG signal and machine/deep learning, which has
ourished due to the Temple University Hospital Abnormal EEG Corpus
TUAB) dataset ( Lopez de Diego, 2017 ). The latest TUAB v2.0.0 contains
717 EEG recordings for training and 276 for testing. The goal of TUAB
s to accelerate the reading process of EEG signals for neurologists, and
ts class labels were assigned according to whether the recorded EEG ac-
ivity was normal. In contrast, the label decision for early diagnosis of
CI and dementia is made according to clinical criteria for the subject.
herefore, our dataset is more purpose-specified by providing a direct

ink to neurodegenerative diseases. This means that deep learning mod-
ls can benefit from the end-to-end gradient backpropagation between
he raw signal and specific neurological disorders. The pathology detec-
ion results can be used for more general-purpose, but whether the EEG
ctivity is normal does not directly mean brain disease. 

Further information on EEG analysis can be found
n Roy et al. (2019) , which proposed an in-depth review of deep
earning-based EEG analysis. They reviewed 154 papers that apply
eep learning to EEG, published between 2010 and 2018, for various
pplications. All the reviewed papers used CNNs or RNNs with a total
f 3–10 layers. Perez-Valero et al. (2021) also published a review paper
hat provided a narrative review of state-of-the-art studies that com-
ined signal processing and machine learning for the early detection of
D including an extensive comparison of machine learning and early
eep learning methods until 2020. 

The remainder of this paper is organized as follows: Section 2 in-
roduces a new EEG dataset and evaluation tasks, and a new fully end-
o-end deep learning approach is proposed in Section 3 for EEG-based
iagnostic classification. An in-depth analysis on the proposed models
s conducted in Section 4 , and Section 5 concludes this paper. 

. Dataset and evaluation tasks 

In this section, we describe the details of the CAUEEG dataset and
wo evaluation tasks including the structure, characteristics, and anno-
ations of the collected data. 

.1. Signal acquisition and data preparation 

The CAUEEG dataset contains 1379 EEG recording signals acquired
rom 1155 patients at Chung-Ang University Hospital from 24th August
012 to 12th March 2020. Each recording in this dataset consists of 21
hannels, of which the first 19 channels are EEG. The other two channels
re electrocardiogram (EKG or ECG) and photic stimulation. The EEG
ecording was conducted according to the International 10-20 system
electrode locations: Fp1, F3, C3, P3, O1, Fp2, F4, C4, P4, O2, F7, T3,
5, F8, T4, T6, FZ, CZ, and PZ) with linked earlobe referencing. The EEG
ignals of subjects were measured while they were lying comfortably in

https://github.com/ipis-mjkim/caueeg-dataset
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Table 1 

Convention of abbreviations for clinical diagnoses provided in the 

CAUEEG dataset. For all EEGs, labels were assigned by aggregating the di- 
agnosis of each subject determined under neuropsychological examination 
and criteria ( Ahn et al., 2010; Dubois et al., 2007; First and Pincus, 2002; 
Jahng et al., 2015 ). The boldface denotes the representative diagnosis of each 
group of diagnoses. 

Abbreviation Clinical diagnosis 

dementia dementia 
ad Alzheimer’s disease dementia 
load late-onset Alzheimer’s disease dementia 
eoad early-onset Alzheimer’s disease dementia 
vd vascular dementia 
sivd subcortical ischemic vascular dementia 
ad-vd-mixed mix of Alzheimer’s disease and vascular dementia 
mci mild cognitive impairment 
mci-ad mild cognitive impairment with amyloid PET positive 
mci-amnestic amnestic mild cognitive impairment 
mci-amnestic-ef amnestic mild cognitive impairment with encoding failure 
mci-amnestic-rf amnestic mild cognitive impairment with retrieval failure 
mci-non-amnestic nonamnestic mild cognitive impairment 
mci-multi-domain multi-domain mild cognitive impairment 
mci-vascular vascular mild cognitive impairment 
normal normal 
cb-normal community-based normal 
smi subjective memory impairment or cognitive decline 
hc-normal health care center normal 
ftd frontotemporal dementia 
bvftd behavioral variant frontotemporal dementia 
semantic-aphasia semantic aphasia 
non-fluent-aphasia non-fluent aphasia 
parkinson-synd Parkinson’s syndrome 
parkinson-disease Parkinson’s disease 
parkinson-dementia Parkinson’s disease dementia 
nph normal pressure hydrocephalus 
tga transient global amnesia 
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a  
ed but awake, and a qualified technician in the hospital supervised the
ecording process. After passing through an analog filter with 0.5–70 Hz
and pass frequency, the signals were recorded with the sampling fre-
uency of 200 Hz using a digital electroencephalograph system (Comet
S40 amplifier EEG GRASS; Telefactor, USA). The signals were then
onverted to the common average referencing and saved in European
ata format (EDF) on disks. 

For each EEG recording, the CAUEEG dataset provides i) the event
istory that occurred while recording, ii) the patient’s age at the time,
nd iii) the corresponding diagnosis label decided by neurologists based
n neuropsychological examination and criteria. Table 1 shows the list
f diagnostic labels provided in the CAUEEG dataset. 

In the CAUEEG dataset, the labeling decision for dementia conformed
o the probable dementia criteria by the National Institute of Neurolog-
cal and Communicative Disorders and Stroke and Alzheimer’s Disease
nd Related Disorders Association ( Dubois et al., 2007 ) and the Diag-
ostic and Statistical Manual of Mental Disorders (DSM)-IV ( First and
incus, 2002 ). The subjects were considered with mci by the following
riteria: i) intact function in activities of daily living, ii) the presence of
emory complaints, iii) objective cognitive impairment ( ≥ 1 . 0 SD below

ducation- and age-adjusted norms) in more than one cognitive domain
ncluding memory on a comprehensive neuropsychological battery ( Ahn
t al., 2010; Jahng et al., 2015 ), iv) a clinical dementia rating of 0.5,
nd v) non-demented case according to the Diagnostic and DSM-IV cri-
eria. The inclusion criteria for the normal subjects were as follows: i)
ntact activities of daily living and ii) no abnormality (within 1.0 SD of
ducation- and age-adjusted norms) on a comprehensive neuropsycho-
ogical battery ( Ahn et al., 2010; Jahng et al., 2015 ). 

We anonymized all the data in the CAUEEG to protect patients’ pri-
acy. For instance, a name of each EDF contains a random five-digit
umber. We removed the information on all unnecessary fields in the
le header of all EDF files ( e.g ., technician, patient name, gender, etc .).
3 
he record starting date was also altered as a meaningless date (1st Jan-
ary 2100) to prevent tracing the privacy. This study was approved by
he Institutional Review Board (IRB) of Chung-Ang University Hospital
registration no. 2009-005-19331). 

.2. Dataset statistics 

The mean and standard deviation of the recorded signal lengths in
he CAUEEG dataset are 13.34 and 2.83 min, respectively. The his-
ogram computed for the signal length of EEG recording in CAUEEG is
rovided in Fig. A.3 . A histogram calculated for the patients’ age when
hey conducted the EEG tests is shown in Fig. A.4 , and their mean and
tandard deviation are 70.77 and 9.90. The gender ratio of subjects in
he CAUEEG dataset is about 60 males per 100 females. 

The CAUEEG dataset assigns at least one diagnostic label for each
DF recording among 28 types. Fig. 2 visualizes the occurrence and
ypes of the diagnostic labels in the dataset. Note that the total count
f occurrences for all diagnoses exceeds the number of EEGs since each
ecording can have multiple diagnoses in our dataset. 

Each EDF file also has a paired event history file saved in JSON for-
at. The event types and an exemplar history are shown in Table 2 .
sing this information, one can do an in-depth study by analyzing and
omparing the signals around the specific events ( e.g ., eye-opening, eye-
losing, or photic stimulation). 

.3. Evaluation tasks 

Based on the CAUEEG dataset, this paper presents two useful evalu-
tion tasks: i) CAUEEG-Dementia and ii) CAUEEG-Abnormal. 

.3.1. CAUEEG-Dementia 

For low-cost, non-invasive screening test of cognitive function to de-
ect dementia, we designed an evaluation task to categorize the patients’
EG into normal, MCI, and dementia, i.e ., three-way classification. Due
o the label diversity of the CAUEEG dataset, this task only uses a part
f it, unlike CAUEEG-Abnormal utilizing it as a whole. 

We started constructing this evaluation task by taking the EEG
ecordings with 459 normal , 417 mci , and 311 dementia diagnostic la-
els (marked in red, orange, and green boxes, respectively, in Fig. 2 )
n the CAUEEG dataset. The gathered 1187 data were randomly shuf-
ed and then divided as training, validation, and test sets by class
bout 8:1:1 ratios. Table 3 a shows the numbers of data consisting of
his CAUEEG-Dementia task by the split and class. Some EEG record-
ngs acquired from the same person on different dates flowed into dif-
erent sets through this process. The number of subjects coexisting in
he training and test sets was 28. These subjects caused the 39 and 28
EG recordings with patient overlap in the training and test sets, re-
pectively, which amount to 39∕950 ≈ 4 . 11% of the training data and
8∕118 ≈ 23 . 73% of the test data. Their min/average/median/max time
ifferences were 10/370/178/1425 days. Among them, the diagnosis of
∕28 ≈ 21 . 43% of subjects shifted with time ( e.g ., normal to mci or mci to
ementia ). There were three overlaps between validation and test sets,
ith one changed diagnosis. 

Compared to the previous EEG-based dementia datasets ( Bi and
ang, 2019; Ieracitano et al., 2019; 2020; Sharma et al., 2019 ),

AUEEG-Dementia has several advantages: i) the size of dataset is much
arger than 12–189; ii) an individual EEG recording belongs to only one
f the training, validation, and test splits, i.e ., there is no overlap; and
i) the data and annotation are so well-organized that it is smooth to
onnect to deep learning frameworks, including PyTorch ( Paszke et al.,
019 ). The descriptions of the data amount and the annotation style of
his task are expressed in Table 3 a and Fig. A.2 a, respectively. 

.3.2. CAUEEG-Abnormal 

The second evaluation task of CAUEEG is to determine whether
n owner of the given EEG recording has neurodegenerative diseases,
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Fig. 2. Bar chart showing the number of EEGs with each symptom. The numbers above each bar denote the occurrence. The color boxes represent the groups of 
diagnoses. The CAUEEG dataset has no intergroup co-occurrence except for parkinson-dementia , which is simultaneously included in the dementia and parkinson-synd 

groups. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Event history information of the CAUEEG dataset. The timing is based on sequence 
number ( e.g ., an event that occurred five seconds after starting is represented as 5 ×
200 = 1000 ). 

List of the most frequent twenty events Example of a recorded event history 

Event keyword Occurrence Event keyword Timing 

Eyes Closed 16820 Start Recording 0 
Eyes Open 16766 New Montage - Montage 002 0 
Photic Off 10413 Eyes Open 36396 
Paused 1859 Eyes Closed 72518 
Move 1766 Eyes Open 73862 
Start Recording 1379 Eyes Closed 75248 
New Montage - Montage 002 1092 swallowing 76728 
Photic On - 3.0 Hz 1067 Eyes Open 77978 
Photic On - 6.0 Hz 1059 Eyes Closed 79406 
Photic On - 9.0 Hz 1057 Photic On - 3.0 Hz 79996 
Photic On - 12.0 Hz 1054 Eyes Open 80288 
Photic On - 15.0 Hz 1048 Eyes Closed 81296 
Photic On - 21.0 Hz 1045 Photic Off 82054 
Photic On - 18.0 Hz 1042 Photic On - 6.0 Hz 84070 
Photic On - 24.0 Hz 1029 Eyes Open 84488 
Photic On - 27.0 Hz 1017 Eyes Closed 85538 
Photic On - 30.0 Hz 975 Photic Off 86086 
Recording Resumed 485 Photic On - 9.0 Hz 88144 
artifact 366 ⋮ ⋮ 
swallowing 232 Paused 145000 

Table 3 

Number of train, validation, and test data by 

class in each evaluation task. The ratio of the 
amount of data between classes remains similar 
across all splits. 

Data Training Validation Test Total 

Normal 367 46 46 459 
MCI 334 42 41 417 
Dementia 249 31 31 311 
Total 950 119 118 1187 

(a) CAUEEG-Dementia evaluation task 

Normal 367 46 46 459 
Abnormal 740 90 90 920 
Total 1107 136 136 1379 

(b) CAUEEG-Abnormal evaluation task 
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hich embraces all symptoms other than the normal group (see Fig. 2 ),
s well as dementia and mci . In this task, we denote the union of all diag-
ostic labels but the normal group as abnormal . Although this CAUEEG-
4 
bnormal may seem similar to TUAB ( Lopez de Diego, 2017 ), the dif-
erence lies in the ultimate goal to seek. In other words, TUAB focuses
n the abnormality of EEG activity and seeks to accelerate the reading
rocess for neurologists. Its destination is to assist in writing medical re-
orts by automating the determination of the normality of EEG activity.
n the other hand, we made the normal and abnormal labels by consid-
ring the patients’ comprehensive clinical diagnoses together with EEG
ctivities. CAUEEG-Abnormal is, therefore, more purpose-oriented and
ims at a more challenging goal: directing potential patients with brain
isorders from local clinics to specialized hospitals for a thorough ex-
mination. 

The CAUEEG-Abnormal task divides the EEG recordings into groups:
he ones with normal labels and the others, producing 459 normal and
20 abnormal data (marked in green and the other colored boxes in
ig. 2 ), respectively. The training split for this task was generated by
tarting from the training set in CAUEEG-Dementia and adding ran-
om data until it reached 80% of the total. In other words, we orga-
ized the training split of this evaluation task to be a superset of the
AUEEG-Dementia training set. The validation and test sets were com-
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3 https://github.com/ipis- mjkim/caueeg- ceednet 
4 The suffix of a network name represents the depth of the network by naming 

convention. However, we do not strictly follow this convention in this paper. We 
sometimes appended 1–4 additional fully-connected layers at the end without 
changing the suffix to denote the pairing with the original network. 
osed by randomly shuffling and splitting the rest of the EEG recordings
y class 1:1 ratios. We also treated the individual EEG recordings inde-
endently regardless of whether the same person recorded them. This
esulted in the 27 coexisting subjects between the training and test sets.
he data with the patient overlap are 39∕1107 ≈ 3 . 52% of the training
et and 27∕136 ≈ 19 . 85% of the test set. Of these 27 patient overlaps,
∕27 ≈ 22 . 22% have different diagnoses between the two sets ( e.g ., nor-

al to mci or mci to ftd ). The min/average/median/max time differences
ere 7/340/80/1080 days. There were three overlaps between valida-

ion and test sets, with one changed diagnosis. The numbers of EEG
ecordings belonging to classes and splits are shown in Table 3 b. The
nformation for training, validation, and test data list and their target
abels of CAUEEG-Abnormal is described in a JSON file enclosed with
he CAUEEG dataset, as shown in Fig. A.2 b. 

.4. Evaluation methodology 

Both the CAUEEG-Abnormal and CAUEEG-Dementia tasks adopt ac-
uracy (%) as the primary performance metric. The class-wise sensitiv-
ty (%) and class-wise specificity (%) are calculated to analyze the per-
ormance by symptom and to reduce the bias owing to data imbalance
etween classes. These class-wise metrics are calculated by converting
he classification results as multiple one-vs-rest outputs. The receiver op-
rating characteristic (ROC) curve illustrates the diagnostic performance
f the classifier at different classification thresholds. The ROC and its
rea under the curve (ROC-AUC) for each class would help interpret the
lassifier’s behaviors. If a classifier generates the stochastic outputs, we
trongly recommend averaging the classification results after multiple
stimations to guarantee reproducibility. 

The performance evaluation protocol of the CAUEEG tasks prohibits
sing the test data for training purposes. One should use all EEG sig-
als for only one purpose if they are acquired from the same EDF file,
imilar to patient-based classification . Since there are some patient over-
aps between training and test sets in our tasks, our evaluation protocol
oes not strictly follow patient-based classification . However, it is note-
orthy that i) all overlapping EEGs were acquired on different days,

i) the patient overlaps account for 20–24% of the test data, and ii)
bout 21–22% of the overlaps experienced changes in diagnosis. Since
lzheimer’s is a progressive neurodegenerative disorder associated with
hanges in brain function and structure over time ( Caviness et al., 2015;
elic et al., 2000 ), we believe that the changes in diagnoses over a long
eriod would make our evaluation task more practical. For researchers
ho wish to circumvent this patient overlap, for any reason, we also of-

er the no-overlap versions of the task annotations, which are constructed
y excluding all test and validation data with patient overlap with the
raining set. The no-overlap versions share the same training sets de-
cribed in Sections 2.3.1 and 2.3.2 . Section 4.4 compares our evaluation
ethodology with epoch-based classification , and Section 4.5 discusses

he evaluation results on the no-overlap test sets. 

. Deep neural networks for diagnostic classification 

Recent trends in the deep learning community are to grant the net-
orks as much capacity, flexibility, and data as possible. However, most

xisting EEG-based dementia classification methods heavily depended
n the manually designed preprocessing stages that confined the spe-
ific channels, bandwidth, connectivity, filter kernels, or clean usable
ntervals ( Alhussein et al., 2019; Bajpai et al., 2021; Bi and Wang, 2019;
eracitano et al., 2019; 2020; Sharma et al., 2019; Y ı ld ı r ı m et al., 2020 ).
ince these preprocessing steps were typically done outside of deep
earning frameworks, they impeded the information flow and efficiency
n the overall process. 

Based on the CAUEEG dataset, this paper presents a new fully end-
o-end deep learning approach for screening EEG signals, called the
5 
 AU E EG e nd-to-end d eep neural net work (CEEDNet) 3 . The core idea
f CEEDNet is to combine all the functional elements used to analyze
EG signals in a seamless learnable fashion. CEEDNet pursues to utilize
he domain characteristics of EEG signals while minimizing unnecessary
uman intervention. 

.1. Model architecture 

This subsection provides a detailed description of the model archi-
ecture of the CEEDNet approach. 

Backbone networks As the backbone of CEEDNet, we considered
GG ( Simonyan and Zisserman, 2014 ), ResNet ( He et al., 2016 ),
esNeXt ( Xie et al., 2017 ), and ViT ( Dosovitskiy et al., 2020 ) milestone
rchitectures that have proven excellent effectiveness in various fields.
e used them with slight modifications since they were not tailored to

he EEG data. Fig. 3 illustrates the proposed CEEDNet architecture and
ts atomic building blocks according to backbones. 

Dimension of basic operation An EEG signal can be handled with one-
imensional (1D) and two-dimensional (2D) approaches. Many previ-
us methods have performed spectral analysis after converting the EEG
ignals into 2D images through time-frequency representation ( Bajpai
t al., 2021; Bi and Wang, 2019; Gemein et al., 2020; Ieracitano et al.,
019; 2020; Sharma et al., 2019 ). Since an EEG signal is multi-channel
ime-series data, it is also smooth to deal with them via 1D models.

e presented both 1D and 2D approaches. In Section 4 , although each
odel showed comparable performances, we got the best accuracy using

n ensemble of 1D and 2D models. 

• 1D models : This paper uses four 1D CNN models, including 1D-
VGG-19, 1D-ResNet-18, 1D-ResNet-50, and 1D-ResNeXt-50-32x4d 3 .
The atomic operation of these models is the 1D convolution layer,
also known as temporal convolution and causal convolution. In this
case, each 2D convolution layer of the backbones with 𝑘 × 𝑘 kernel
size is replaced with the 1D convolution with the kernel size of 𝑘 2 .
The stride of each convolution stage is set evenly so that the output
sequence length of the last convolution stage becomes between 4
and 8. 

• 2D models : We tested four 2D CNNs and a Vision Transformer (ViT),
including 2D-VGG-19, 2D-ResNet-18, 2D-ResNet-50, 2D-ResNeXt-
50-32x4d, and ViT-B-16 4 , respectively. For these 2D models, an in-
put image is prepared by the short-time Fourier transform (STFT),
whose details are described in Section 3.2 . Similar to 1D case, the
stride of each convolution stage is set evenly so that the output fea-
ture map size of the last convolution stage becomes between 4 × 4
and 8 × 8 . 

Age signal Age is one of the most important risk factors for various
ymptoms, including dementia ( Livingston et al., 2020 ). Thus, this paper
roposes to interpret age as an input signal of the network. CEEDNet
mplements two ways to utilize the age signal: 

• age-conv : The input EEG signal and a single channel filled with the
age value are concatenated together in the input layer. 

• age-fc : An age value is concatenated into the feature vector before
the fully-connected layers (network head). 

Projection layers Instead of directly predicting the classification score
fter the last convolution stage (attention stage for ViT case), we found
hat some additional feature projection layers improve the accuracy.
herefore, CEEDNet inserted the 1–4 fully-connected layers between the

ast convolution (or attention) stage and the classification layer. Each
rojection layer added halves the dimension of the feature vector. 

https://github.com/ipis-mjkim/caueeg-ceednet
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Fig. 3. CEEDNet architecture and its basic building blocks according to the backbones. For the 1D model cases, the 1D convolution with the kernel size of 𝑘 2 

substitutes for each 𝑘 × 𝑘 convolution layer. Other details not described in this paper follow the original literature ( Dosovitskiy et al., 2020; He et al., 2016; Simonyan 
and Zisserman, 2014; Xie et al., 2017 ). 
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Activation function The backbone networks mentioned above mostly
dopt the rectified linear unit (ReLU; Nair and Hinton (2010) ) as
he default choice of nonlinearity between layers, but CEEDNet also
akes into account the GELU ( Hendrycks and Gimpel, 2016 ) and
ish ( Misra, 2019 ) activation functions; both are similar to ReLU but

ring a smoother decision boundary. 

.2. Preprocessing and data augmentation 

Although CAUEEG evaluation tasks provide more data than previ-
us EEG-based dementia datasets, it is still far less than those covered
n other fields. For instance, ImageNet ( Russakovsky et al., 2015 ) pro-
ides about 1 million image data, and LAION-400M ( Schuhmann et al.,
021 ) about 400 million image-text pairs. For this reason, the data aug-
entation strategy is essential in training CEEDNet. At the same time,

t is necessary to reduce unnecessary processes, which make the gradi-
nt flow noisy. Since some artifacts, such as motion and eye-blinking,
ay include helpful information for CEEDNet and the gradient flow can-
ot optimize the human-designed process, we did not employ the tech-
iques such as explicit artifact correction or rejection. However, it does
ot mean our CEEDNet models are vulnerable to those artifacts. Our
EEDNet model learns how to correct or utilize the signals with artifacts
hrough the training with a labeled dataset. For example, convolutional
or attention) layers in CEEDNet automatically reduce the effect of ar-
ifacts such as eye-blinking, and pooling layers select the crucial infor-
ation such as artifact-free signals. Given that the neural networks are

he universal function approximators ( Sonoda and Murata, 2017 ), more
omplicated preprocessing, including independent component analysis,
ill also be trained on the networks in a data-driven manner if neces-

ary. 
In this paper, some augmentation techniques geared toward com-

uter vision, including the horizontal flip, translation, and stretching,
re not applied since they do not fit the nature of the EEG signal. The
reprocessing and data augmentation steps employed in CEEDNet are
escribed below in the order of application. 
6 
Signal crop augmentation Since the recording duration of EEG signals
n CAUEEG differs from each other, CEEDNet truncates the input EEG
ignals to a fixed-length 𝑇 to ease the difficulty of network design. Two
ossible options for this purpose are random cropping and event-driven
ropping ( e.g ., eye-opening and eye-closing). We chose random cropping
s the preferred option in this paper since it showed better performance
n an initial experiment, possibly due to the amount of augmentation. 

Involving the random crop augmentation, the training objective for
ur model function 𝑓 𝑤 with the network parameters 𝑤 can be written
s: 

 

𝑡𝑟𝑎𝑖𝑛 
𝑐𝑟𝑜𝑝 ( 𝑓 𝑤 ) = ∫

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝓁 
(
𝑓 𝑤 ( 𝑥 𝑖 𝑡 ∶ 𝑡 + 𝑇 ) , 𝑦 

𝑖 
)
𝑑𝑝 ( 𝑡 ) 

for 𝑡 ∼ Uniform ( 𝑇 0 , 𝐿 𝑖 − 𝑇 ) , (1) 

here 𝑥 𝑖 
𝑡 ∶ 𝑡 + 𝑇 denotes the 𝑇 -sized crop of 𝑖 th EEG signal in the training

et, 𝑦 𝑖 the label for 𝑥 𝑖 
𝑡 ∶ 𝑡 + 𝑇 , 𝓁 the loss function, 𝑁 the amount of training

ata, 𝑇 0 the startup transition time, and 𝐿 𝑖 the signal length of 𝑥 𝑖 , re-
pectively. Here, we omitted the age signal for brevity. Contemplating
he sensor transition time at startup, we excluded the first 10 s from
ropping ( 𝑇 0 = 2000 ). Note that 𝑡 ∼ Uniform ( 𝑇 0 , 𝐿 𝑖 − 𝑇 ) brings random-
ess to Eq. (1) , which would be helpful to the generalization (through
ata augmentation). Since Eq. (1) has the compute-expensive integral,
e instead train our network using its approximated version: 

̃
 

train 
crop 

(
𝑓 𝑤 

)
= 

1 
BN 

𝐵 ∑ 𝑁 ∑
𝑖 =1 

𝓁 
(
𝑓 𝑤 

(
𝑥 𝑖 𝑡 ∶ 𝑡 + 𝑇 

)
, 𝑦 𝑖 

)

≃ 1 
𝑁 

𝑁 ∑
𝑖 =1 

𝓁 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 
𝑀 

𝑀 ∑
𝑓 𝑤 

(
𝑥 𝑖 𝑡 ∶ 𝑡 + 𝑇 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
test-time augmentation 

, 𝑦 𝑖 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

(2) 

here 𝐵 denotes the number of epochs of training. Eq. (2) also shows
hat this random crop augmentation naturally accepts the test-time aug-
entation ( TTA ) with the 𝑀 ≥ 1 number of crops during the evaluation
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ime. When the TTA technique is applied, we used 𝑀 = 8 , otherwise
 = 1 in this paper. 
Although this random cropping reduces the manual process and al-

ows more data diversity, it also introduces stochasticity to the eval-
ation results. However, even for past cases where random cropping
as not applied ( Bi and Wang, 2019; Ieracitano et al., 2019; 2020 ),

he test accuracy varies if the test epochs are constructed with slightly
ifferent timings. In fact, given that brain activity always continues, the
tochastic nature is already introduced when recording the part of it ( i.e .,
ampling), which is only invisible since it occurred outside the systems.
herefore, it can be seen that this random crop augmentation simulates
he recording or segmenting process of the EEG signal. In Section 4 , we
epeatedly evaluate the test dataset 100 times and report the mean and
tandard deviation of the results. The reported standard deviation would
mply stability for cropping timing, and guarantee practical interpreta-
ion and reproducibility in the real world. 

Data normalization The cropped EEG signals are normalized by the
ean and standard deviation calculated from the training set (z-score),

s the common practice in ImageNet ( Russakovsky et al., 2015 ). CEED-
et utilizes the averaged statistics calculated over multiple batches to

elax the stochastic property caused by random signal cropping. 
Random noise augmentation In order to simulate the sensor and cir-

uit noise during training, CEEDNet augments the data by adding two
inds of random noise to the signal, both drawn from the Gaussian dis-
ributions with zero mean. The first is the multiplicative white Gaussian
oise (MWGN) with standard deviation as 𝜎𝑚𝑤𝑔𝑛 , which is proportional
o the signal gain. Secondly, the additive white Gaussian noise (AWGN)
ith the standard deviation as 𝜎𝑎𝑤𝑔𝑛 is applied. For the age signal, we
nly added the AWGN with the standard deviation as 𝜎𝑎𝑤𝑔 𝑛 _ 𝑎𝑔 𝑒 . These
andom noise augmentations are considered only during the training
hase. 

Short-time Fourier transform For 2D models, CEEDNet prepares the in-
ut spectral image using the STFT. Starting from an input EEG sequence
f length 𝑇 , we chose the hyperparameters of STFT to make the result-
ng image as square as possible in space as follows: 𝑤𝑖𝑛 _ 𝑙𝑒𝑛 = 𝑓 𝑓 𝑡 _ 𝑙𝑒𝑛 =
 

2 
√
2 𝑇 + 0 . 5 

⌋ 
and ℎ𝑜𝑝 _ 𝑙𝑒𝑛 = ⌊𝑤𝑖𝑛 _ 𝑙𝑒𝑛 ∕4 + 0 . 5 ⌋. This produces an image

f the spatial size of 𝐻 = ⌊𝑤𝑖𝑛 _ 𝑙𝑒𝑛 ∕2 ⌋ + 1 and 𝑊 = ⌊𝑇 ∕ ℎ𝑜𝑝 _ 𝑙𝑒𝑛 ⌋ + 1 . For
nstance, this step generates an image of 64 × 63 spatial resolution from a
000-length EEG sequence. This STFT preprocessing step is not applied
o the 1D models. 

.3. Training 

In this subsection we describe the training strategy of CEEDNet. 
Regularization We retained the DropOut ( Srivastava et al., 2014 ),

atchNorm ( Ioffe and Szegedy, 2015 ), and LayerNorm ( Ba et al., 2016 )
ayers in their existing places from the original backbones. In order to
orm a smoother decision boundary and improve the generalization ca-
ability, we introduced the MixUp ( Zhang et al., 2017 ) during train-
ng, which uses the virtual examples drawn from the vicinity distri-
ution of the training data. The data augmentation steps described in
ection 3.2 can also be considered part of the regularization. 

Other details For all backbones, we trained our CEEDNet using the
damW optimizer ( Loshchilov and Hutter, 2017 ) with 𝛽1 = 0 . 9 and

2 = 0 . 999 . We trained the networks for 100 million samples (about 1053
pochs for CAUEEG-Dementia and 903 epochs for CAUEEG-Abnormal)
nless otherwise stated. In this paper, we swept over some hyperparam-
ters, such as 𝑝 𝑑𝑟𝑜𝑝 , 𝛼𝑚𝑖𝑥𝑢𝑝 , 𝜎𝑚𝑤𝑔𝑛 , 𝜎𝑎𝑤𝑔𝑛 , 𝜎𝑎𝑤𝑔 𝑛 _ 𝑎𝑔 𝑒 , 𝑇 , weight decay, peak
earning rate, and learning rate schedule, via random grid search whose
ange was heuristically adjusted after several trials. The learning rate
chedules considered are illustrated in Fig. B.1 . 

. Results and discussion 

This section reports the experimental results of our CEEDNet on the
est sets of two CAUEEG evaluation tasks using the protocol described
7 
n Section 2.4 . We then evaluate CEEDNet and other methods under
he training and testing environment of epoch-based classification . The
blation experiments on the design choices of the proposed CEEDNet
pproach are also performed. Using the event information provided by
he CAUEEG dataset, the impact of artifacts on performance is also in-
estigated. Lastly, in order to understand better what the model learns,
e conduct occlusion sensitivity experiments. 

.1. Experiments settings 

All the models and preprocessing steps of CEEDNet were imple-
ented with the PyTorch library ( Paszke et al., 2019 ). We performed

oth training and testing using a desktop with AMD Ryzen-9 5900X CPU
nd a single NVIDIA GeForce RTX 3090 GPU. Taking into account the
tochastic nature introduced by random cropping, this paper presents
he performance of CEEDNet after averaging 100 runs. 

For comparison, we trained and tested three shallow machine learn-
ng methods: K-nearest neighbors (KNN) ( Fix and Hodges, 1989 ), Ran-
om forests ( Ho, 1995 ), and linear SVM ( Cortes and Vapnik, 1995 ).
or KNN and Random forests, we pre-cropped each signal to multiple
000-length epochs to train and test while not mixing the epochs be-
ween training and test sets. In this paper, we report the performance
f linear SVM empowered by our random crop augmentation described
n Section 3.2 since it performed better than other SVM-variants, in-
luding kernel SVMs in our experiments. The KNN and Random forests
ethods were implemented using scikit-learn ( Pedregosa et al., 2011 ),

nd the linear SVM using PyTorch ( Paszke et al., 2019 ). We also imple-
ented the Ieracitano-CNN ( Ieracitano et al., 2019 ) among the previous
EG-based diagnostic classification methods since they reported perfor-
ance in both epoch-based and patient-based manners, while others only

onducted the epoch-based classification ( Bi and Wang, 2019; Ieracitano
t al., 2020; Sharma et al., 2019 ). The Ieracitano-CNN is also relatively
ess reliant on cumbersome manual processes that depend on the de-
ice’s characteristics. 

.2. Evaluation on CAUEEG-Dementia 

Table 4 summarizes the results of CEEDNet and other methods on the
AUEEG-Dementia task. Our CEEDNet models for all backbones have
etter accuracy than Ieracitano-CNN and shallow learning methods. Due
o the random cropping augmentation applied during the training phase,
ur CEEDNet models get performance boosts using the TTA technique
ith multiple crops ( Section 3.2 ). The last row is the largest CEEDNet
odel with 257 million parameters, composed of an ensemble of nine
ifferent CEEDNet models. The CEEDNet ensemble model shows the best
ccuracy of 74.66% with 22.74 EEGs per second, which is a near real-
ime process. The hyperparameter settings and more detailed experi-
ental results on this task are given in Appendix ( Tables B.1 a and B.2 ,

espectively). The throughput is measured as the number of EEGs pro-
essed per second. We used CPU to measure processing speed for KNN
nd Random forests models, whereas we used GPU for the other meth-
ds. 

The confusion matrix, class-wise metrics, and ROC curves generated
y the CEEDNet ensemble model are presented in Fig. 4 . The confusion
atrix of CEEDNet tells us that our model seldom misclassifies between

ormal and dementia and that most errors stem from concerning mci .
t is noteworthy that our model effectively suppresses the two riskiest
ases, which are in the (1 , 3) and (3 , 1) entries in the confusion matrix.
ur models also in common have high specificity for dementia and high

ensitivity for normal . For example, our ensemble model shows a high
ensitivity of 96.98% to normal , which means that only 3.02% of healthy
rain subjects have to afford the extra examination cost. Similarly, a
pecificity of 93.59% for dementia indicates that undemented subjects
re less likely to be misdiagnosed as dementia . If interpreting the classi-
cation results as normal-vs-others outputs, our ensemble model nearly
chieves 90% accuracy and 0.95 ROC-AUC score. Such a high ROC-AUC
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Table 4 

Experimental results on the CAUEEG-Dementia test set. TTA indicates the test-time augmentation tech- 
nique with multiple random cropping. The best three scores are marked in bold. A More detailed version is 
given in Table B.2 . 

Method #Params Model size (MiB) TTA Throughput (EEG/s) Test accuracy 

K-Nearest Neighbors (K = 5) — 11848.7 52.42 36.80% 

Random Forests (#trees = 2000) — 2932.8 808.76 46.62% 

Linear SVM 0.1M 0.5 10393.40 52.33% 

Ieracitano-CNN 3.5M 13.2 8172.36 54.27% 

CEEDNet 1D-VGG-19 20.2M 77.2 6593.80 64.00% 

CEEDNet 1D-VGG-19 20.2M 77.2 ✓ 931.64 67.11% 

CEEDNet 1D-ResNet-18 11.4M 43.6 ✓ 1249.90 68.75% 

CEEDNet 1D-ResNet-50 26.2M 100.2 ✓ 1013.18 67.00% 

CEEDNet 1D-ResNeXt-50 25.7M 98.2 ✓ 702.64 68.54% 

CEEDNet 2D-VGG-19 20.2M 77.1 ✓ 296.84 70.18% 

CEEDNet 2D-ResNet-18 11.4M 43.7 ✓ 399.40 65.88% 

CEEDNet 2D-ResNet-50 25.7M 98.5 ✓ 182.20 67.21% 

CEEDNet 2D-ResNeXt-50 25.9M 99.1 ✓ 161.25 67.91% 

CEEDNet ViT-B-16 90.1M 343.6 ✓ 47.31 66.18% 

CEEDNet Ensemble 256.7M 981.1 ✓ 22.74 74.66% 

Fig. 4. Performance evaluation of the CEEDNet ensemble model on the CAUEEG-Dementia test set. The confusion matrix is normalized in the row direction, 
and the brackets provide the mean ± std of 100 times evaluations. The class-wise sensitivity is the same as the recall. Area represents the ROC-AUC score. The micro- 

average becomes different from the macro-average due to class imbalance ( Grandini et al., 2020 ). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

8 
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Table 5 

Experimental results on the CAUEEG-Abnormal test set. TTA indicates the test-time augmentations tech- 
nique of multiple random cropping. The best three scores are marked in bold. A more detailed version is 
given in Table B.3 . 

Method #Params Model size (MiB) TTA Throughput (EEG/s) Test accuracy 

K-Nearest Neighbors (K = 7) — 14015.3 41.19 51.42% 

Random Forests (#trees = 2000) — 1930.5 830.80 72.63% 

Linear SVM 0.1M 0.3 10363.76 68.00% 

Ieracitano-CNN 3.5M 13.2 8293.08 65.98% 

CEEDNet 1D-VGG-19 20.2M 77.2 7660.22 72.45% 

CEEDNet 1D-VGG-19 20.2M 77.2 ✓ 998.54 74.28% 

CEEDNet 1D-ResNet-18 11.4M 43.5 ✓ 844.65 74.85% 

CEEDNet 1D-ResNet-50 26.3M 100.7 ✓ 837.66 76.37% 

CEEDNet 1D-ResNeXt-50 25.7M 98.2 ✓ 800.49 77.32% 

CEEDNet 2D-VGG-19 20.2M 77.2 ✓ 447.81 75.39% 

CEEDNet 2D-ResNet-18 11.5M 43.8 ✓ 410.44 75.19% 

CEEDNet 2D-ResNet-50 25.7M 98.5 ✓ 187.30 74.96% 

CEEDNet 2D-ResNeXt-50 25.9M 99.1 ✓ 201.01 75.85% 

CEEDNet ViT-B-16 86.9M 331.6 ✓ 63.99 72.70% 

CEEDNet Ensemble 253.8M 969.9 ✓ 26.40 79.16% 

Table 6 

Experimental results under the epoch-based classification manner . The epoch-based classification was simulated 
using the CAUEEG-Dementia data. This experiment applies the same hyperparameters to all CEEDNet models without 
tuning. None of the TTA or ensemble techniques are adopted. 

Experimental results CEEDNet train settings 

Method Train accruacy Test accuracy Hyperparmeter Setting 

k-Nearest Neighbors (k = 5) 51.42% 38.26% Crop length 2000 
Random Forests (#trees = 2000) 100.00% 46.28% Age signal usage type age-conv 

Linear SVM 58.57% 44.08% Photic channel usage O 

Ieracitano-CNN 100.00% 72.92% EKG channel usage O 

CEEDNet 1D-VGG-19 100.00% 99.47% MWGN 5.00E-02 
CEEDNet 1D-ResNet-18 100.00% 99.38% AWGN 5.00E-02 
CEEDNet 1D-ResNet-50 99.97% 99.36% AWGN (age) 5.00E-02 
CEEDNet 1D-ResNeXt-50 100.00% 99.75% MixUp 0.1 
CEEDNet 2D-VGG-19 99.78% 99.37% DropOut 0.3 
CEEDNet 2D-ResNet-18 99.99% 99.82% Weight decay 5.00E-02 
CEEDNet 2D-ResNet-50 100.00% 99.83% #FC layers 3 
CEEDNet 2D-ResNeXt-50 100.00% 99.90% Activation GELU 
CEEDNet ViT-B-16 98.12% 97.17% Learning rate schedule linear_decay_with_warmup 

s  

c  

f  

t  

i
 

c  

e

4

 

n  

m  

m  

t  

m  

m  

t  

g  

w  

o  

i  

e  

p  

a  

a

4

 

t  

c  

o  

a  

c  

m  

s
 

l  

i  

p  

N  

9  

I  

D  

m  

C  

M  

t

core for normal class means that our methods can effectively lead undis-
overed patients to intensive examinations. On the other hand, except
or the KNN, which has the lowest accuracy, all models struggle to dis-
inguish mci compared to other classes (low class-wise accuracies for mci

n Fig. 4 and Table B.2 ). 
Note that this evaluation protocol does not adopt the epoch-based

lassification as explained in Section 2.4 . The results produced under
poch-based classification will be described in Section 4.4 . 

.3. Evaluation on CAUEEG-Abnormal 

The task of the CAUEEG-Abnormal is a binary classification between
ormal and abnormal . Compared to CAUEEG-Dementia, this task’s abnor-

al class includes diverse aspects beyond mci and dementia . The experi-
ental results of this evaluation task are summarized in Table 5 . Thanks

o end-to-end learning, our CEEDNet models surpass in accuracy other
odels including Ieracitano-CNN. As in the previous case, the CEEDNet
odels benefit from the TTA and ensemble techniques. Provided only

he EEG signal and age of a person, our best diagnostic model distin-
uishes between normal and abnormal with an accuracy of nearly 80%
ith 26.40 EEG/s and 253 million parameters. The overall performance
f the CEEDNet ensemble model is illustrated in Fig. 5 . The high sensitiv-
ty (90.39%) and low specificity (57.19%) to abnormal of the CEEDNet
nsemble model show that the classifier prefers to minimize potential
atients with undetected brain disorders even though the number of ex-
9 
minations rises. The hyperparameter settings for this evaluation task
re listed in Table B.1 b. 

.4. Epoch-based classification 

As mentioned in Section 1 , the previous EEG-based diagnostic sys-
ems for the dementia detection are evaluated under epoch-based classifi-

ation . In order to compare our CEEDNet approach with previous meth-
ds, this subsection mimics the similar training and testing environment
s epoch-based classification . From all the data in CAUEEG-Dementia, we
hop each EEG sequence into multiple pieces of duration 30 s and then
ix and scatter them as 8:1:1 ratios. This process produces 24417 EEG

ignals for training, 3052 for validation, and 3052 for testing. 
Table 6 evaluates the CEEDNet and other methods under the simu-

ated environment of epoch-based classification . Although the target task
s identical to CAUEEG-Dementia, all CEEDNet models show extreme
erformance gaps between Tables 4 and 6 . For instance, the CEED-
et 1D-VGG-19 model, without additional efforts, is evaluated as over
9% test accuracy under epoch-based classification . On the other hand,
eracitano-CNN scored about 54% test accuracy in Table 4 (CAUEEG-
ementia) and 73% in Table 6 ( epoch-based classification ), which is al-
ost consistent with the results reported in Ieracitano et al. (2019) .
onsider that our CAUEEG-Dementia is much larger in the data scale.
oreover, some techniques such as hyperparameter tuning, TTA , and

he ensemble will bring improved results for CEEDNet. 
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Fig. 5. Performance evaluation of the CEEDNet ensemble model on the CAUEEG-Abnormal test set. The confusion matrix is normalized in the row direction, 
and the brackets provide the mean ± std of 100 times evaluations. Since the CAUEEG-Abnormal is a binary classification task, the accuracies for two classes are the 
same. Sensitivity for normal is the same as the specificity for abnormal and vice versa. Area represents the ROC-AUC score. The class imbalance causes the difference 
between the class-wise and class-agnostic ROC curves, and micro- and macro-averages ( Grandini et al., 2020 ). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article) 

 

u  

b  

e  

s  

e  

t  

t  

t  

t  

e  

p  

l  

w  

d  

C
 

t  

i  

a  

A  

l  

y  

t  

Table 7 

Comparison of test accuracy with and without patient-overlapping 

data. (1) Full corresponds to the results in Tables 4 and 5 . (2) No-overlap 

refers to the evaluation on the no-overlap test set (see Section 2.4 ). Here, 
the linear SVM model and the CEEDNet ensemble model with TTA used in 
Sections 4.2 and 4.3 are re-evaluated without modification or retraining. 

Test Accuracy 

Dataset Model (1) full (2) no-overlap (2) − (1) 

CAUEEG-Dementia Linear SVM 52 . 33% 53 . 50% +1 . 17% 
CEEDNet 74 . 66% 76 . 66% +2 . 00% 
CAUEEG-Abnormal Linear SVM 68 . 00% 66 . 02% −1 . 98% 
CEEDNet 79 . 16% 75 . 77% −3 . 39% 

s  

t

4

 

o  

c  

T  
We conjecture that this large performance gap between our eval-
ation protocol and epoch-based classification is caused because epoch-

ased classification assumes an easy but impractical scenario. Under
poch-based classification , the test sample was always acquired from the
ame EEG recording in the training set with only slight timing differ-
nces, which means that other conditions are kept the same (not just
he person but also the date, technician, device status, etc.). Therefore,
he test data considered in the epoch-based classification differs substan-
ially from the real-world test data, where data with all the same date,
echnician, diagnosis, and subject as the training data are unlikely to
xist. Note that our evaluation protocol does not strictly follow the
atient-based classification in that the number of test data with over-
apping subjects with the training set ranges from 20–24%. However,
e kept at least one condition changed among person, date, and even
iagnosis between the training and test sets in CAUEEG-Dementia and
AUEEG-Abnormal. 

Consequently, we argue that the proposed CAUEEG adopts a more
rustworthy evaluation protocol than the epoch-based classification used
n previous methods for EEG-based early detection of AD and MCI ( Bi
nd Wang, 2019; Ieracitano et al., 2019; 2020; Sharma et al., 2019 ).
bove all, this experiment reveals the effectiveness of deep-end-to-end

earning compared with designing sophisticated signal processing anal-
sis. The previous methods armed with manually designed feature ex-
raction recorded about 83–95% test accuracies on much smaller data
 t  

10 
ets (12–189 EEG recordings) under epoch-based classification , whether
heir models are deep or shallow. 

.5. Patient overlap exclusion 

As noted in Section 2.4 , the CAUEEG dataset also provides the no-

verlap version of the task annotations. This version of the dataset ex-
ludes any test data that overlaps with the patients in the training set.
able 7 compares the evaluation results between the full and no-overlap

est sets. Excluding the overlapping patient data resulted in accuracy
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Table 8 

Comparison of test accuracy between 1D and 2D approaches . The detailed results for 
individual models can be seen in Tables B.2 and B.3 . 

Evaluation CAUEEG-Dementia CAUEEG-Abnormal 

Average accuracy of 1D models 64.32% 73.13% 

Average accuracy of 2D models 64.64% 72.45% 

Accuracy of an ensemble of 1D models 70.90% 78.15% 

Accuracy of an ensemble of 2D models 69.32% 77.38% 

Accuracy of an ensemble of both 1D and 2D models 73.29% 79.12% 

Table 9 

CEEDNet ablation experiments . The CEEDNet 1D-ResNet-18 variants were evaluated 
on the validation set of CAUEEG-Dementia. 

Elements CEEDNet 
Full Ablations 

Gaussian noise 
√

MixUp 
√ √

DropOut 
√ √ √

Additional FC layers 
√ √ √ √

Age signal usage 
√ √ √ √ √

Validation accuracy 60.63% 59.64% 58.71% 57.42% 56.74% 52.46% 

#Params 11.4M 11.4M 11.4M 11.4M 11.2M 11.2M 
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Table 10 

Experimental results to inspect the effect of signal regions with 

artifacts to the classification models. The linear SVM and the 
CEEDNet 1D-ResNet-18 models trained using the original random 

signal crop variable 𝑡 and the event-rejection signal crop variable 
𝑡 ′ were compared. Except for the signal crop variable, the other 
configurations were the same as Section 4.2 in this experiment. 

Model Crop variable Validation accuracy Rel. diff. 

Linear SVM Original 𝑡 50.37% —
Event-rejection 𝑡 ′ 50.85% +0 . 95% 

CEEDNet Original 𝑡 60.48% —
Event-rejection 𝑡 ′ 58.59% −3 . 13% 
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t  
ains for CAUEEG-Dementia and losses for CAUEEG-Abnormal for both
he CEEDNet ensemble and the linear SVM models. If we cautiously
peculate on the reason, it is possible that the excluded data happened
o be more difficult for CAUEEG-Dementia and easier for CAUEEG-
bnormal. 

Despite this observed trend, it is important to note that the experi-
ent demonstrates that patient overlap did not unfairly bias or inflate

he results presented in Sections 4.2 and 4.3 . Detailed experimental re-
ults for the no-overlap test sets can be found in Tables B.4 and B.5 . 

.6. Basic operation dimension and ensemble 

In Figs. 4 and 5 , we tried both 1D and 2D approaches to deal with
EG signals. Table 8 compares the performance of 1D models, 2D mod-
ls, and their ensembles. The differences in average accuracy between
he 1D and 2D approaches were 0.32% for CAUEEG-Dementia and
.68% for CAUEEG-Abnormal, respectively. In other words, the indi-
idual models showed a slight difference in performance between the
D and 2D approaches. The ensembles of 1D models or 2D models sig-
ificantly improved the accuracy in two tasks, and the best performance
as observed in the ensemble of both 1D and 2D models. In general, the

ffectiveness of ensembling is maximized when the variance in differ-
nt models is high. The main difference between 1D and 2D models is
ow the receptive fields of the networks expand as the layer deepens.
n other words, the order in which the networks look into the informa-
ion on EEG signals differs. We conjecture that these two approaches’
ifferences in information processing maximized the ensembling effect.

.7. Ablation study 

In deep learning research, an ablation study inspects performance
hanges by removing architectural or design choices to discover the im-
act of each component. The CEEDNet with the 1D-ResNet-18 backbone
nd its ablated variants were trained for 100M samples and evaluated
n the validation set of CAUEEG-Dementia. Table 9 reports the exper-
mental results. The usage of the age signal showed a critical effect on
ccuracy (57.74% with and 52.46% without the age signal), which is
onsistent with the report in Livingston et al. (2020) . According to our
bservations, the age-fc and age-conv options had no noticeable differ-
nce in performance. The additional FC layers and other regularization
ethods bought gradual improvements. 

In this paper, we implemented the CEEDNet using nine different
ackbones. These backbones can be divided into 1D CNN, 2D CNN, and
11 
ransformers. Combining the experimental results in Tables 4 to 6 , some
nteresting points can be noticed. At first, 1D and 2D models are on par
ith each other in performance. This indicates that it is crucial to foster

nd-to-end learning conditions rather than extracting good input fea-
ure representations in drawing the power of deep models. Secondly,
iT (Transformers) showed relatively low accuracy and also underfit-

ing tendency. We conjecture that longer training and more data are
eeded to derive the attention mechanism’s capability. Lastly, an en-
emble model surpassed all the single models with a noticeable differ-
nce, which indicates that there remains room to improve for individual
odels. 

.8. Impact of artifact events 

In order to investigate the impact of artifacts caused by the sub-
ects’ movements on our CEEDNet model, we conducted an additional
xperiment. As shown in Table 2 , the CAUEEG dataset includes the
vent history information during recording. For random sampling with-
ut movement events, we changed the random cropping variable 𝑡 in
qs. (1) and (2) to 𝑡 ′ with zero probability of cropping around the re-
ion where the events occurred using that information, resulting in the
vent-rejection random sampling. The results of comparing the valida-
ion accuracy of the linear SVM and CEEDNet models using the original
 and modified 𝑡 ′ are shown in Table 10 . When there is no movement,
he shallow linear SVM’s accuracy improves by about 1%. On the other
and, the accuracy of our deeper CEEDNet model is reduced by about
%. From these results for our deep end-to-end model, we conjecture
hat the penalty for reducing the usable signal area during training out-
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Fig. 6. Channel-agnostic occlusion sensitivity analysis of the CEEDNet 2D-VGG-19 model on the CAUEEG-Dementia training set. During classification, all 
channels in the input time-frequency feature map were simultaneously occluded by a sliding rectangle whose width and height are quarters of those of the input. 
These results were generated by averaging all results by class of the training set. The class score for the correct class is visualized in color. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Channel-agnostic occlusion sensitivity analysis of the CEEDNet 2D-VGG-19 model on the CAUEEG-Abnormal training set. During classification, all 
channels in the input time-frequency feature map were simultaneously occluded by a sliding rectangle whose width and height are quarters of those of the input. 
These results were generated by averaging all results by class of the training set. The class score for the correct class is visualized in color. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

w  

N  

e  

p

4

 

s  

l  

g  

t  

s  

p  

t  

m  

t  

t  

z  

S  

o
 

i  

I  
eighs the benefit of lowering artifacts’ impact. It seems that the CEED-
et learned from the entire range of EEG signals regardless of the pres-
nce or absence of artifacts, but at least it was not biased by artifacts
er se. 

.9. Occlusion sensitivity analysis 

The occlusion sensitivity was initially introduced in computer vi-
ion to identify whether the classifier network is sensitive to specific
ocations or whether the overall context is essential ( Zeiler and Fer-
us, 2014 ). In recent years, occlusion sensitivity analysis has been used
o inspect which part of the time-frequency representation of the EEG
12 
ignal affects the classifier outputs ( Roy et al., 2019 ). In this paper, we
erformed the occlusion sensitivity analysis with the 2D-VGG-19 models
rained on CAUEEG-Dementia and CAUEEG-Abnormal. We systemically
oved the occlusion box from the top left to the bottom right while es-

imating the classification scores of our model on the “occluded ” input
ime-frequency map. The occlusion test was conducted by inserting a
ero-out operation right after the input data normalization described in
ection 3.2 . We set the height and width of the occlusion box as a fourth
f those of the input time-frequency feature map size. 

Fig. 6 visualizes the experimental results of an occlusion sensitiv-
ty analysis performed channel-agnostic on the CAUEEG-Dementia task.
n this experiment, the low-scoring (bluish) areas, which aggravate the
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erformance, indicate that they are critical to classify the input EEG
orrectly. No matter the class label, occluding a high frequency over
0 Hz rarely affected the class score estimation in CAUEEG-Dementia.
he narrow area around the delta ( < 4 Hz) and theta (4–7 Hz) bands
howed the most remarkable influences on the classification results for
ementia , while the normal class was sensitive to the wide region around
lpha (8–12 Hz) and beta (13–30 Hz) waves. The occlusion sensitivity
or mci seems to be intermediate from normal to dementia in this analysis.
ote that this occlusion sensitivity experiment cannot reflect all nature
f highly nonlinear deep CEEDNet models ( e.g ., a single moving rectan-
le cannot simulate the combinatorial properties of distant feature rela-
ionships). Nonetheless, our results accord with previous findings that
he EEG slow waves (theta and delta) activity of dementia patients is
trengthened while the high-frequency waves (alpha, beta, and gamma)
iminish ( Cassani et al., 2018; Malek et al., 2017 ). 

The results of the occlusion sensitivity test in CAUEEG-Abnormal are
hown in Fig. 7 . The low-scoring area for normal in CAUEEG-Abnormal
eems narrower than the area for normal in CAUEEG-Dementia. Given
hat the training data for the normal classes in the two tasks are the
ame as each other, this difference is interesting. We conjecture that
his is caused because the abnormal label in CAUEEG-Abnormal covers
ore diagnostic labels than the union of dementia and mci in CAUEEG-
ementia. In other words, the learned manifold for the abnormal class in
AUEEG-Abnormal would occupy more space or have multiple facets,
hich is plausible in Fig. 7 b. Additional results for the channel-wise
cclusion sensitivity analysis can be seen in Appendix C . 

. Conclusion 

In this work, we present the CAUEEG dataset and its corresponding
wo evaluation tasks to aid the active research on automatic EEG diagno-
is. Our tasks utilize a more practical evaluation protocol than the epoch-

ased classification used in previous works. Based on CAUEEG, we also
ropose a new end-to-end CEEDNet approach for the automatic early
etection of dementia. To demonstrate the performance of the CEED-
et, we tested the shallow methods and Iercitano’s CNN model. On the
AUEEG-Dementia and CAUEEG-Abnormal tasks, CEEDNet produced a
ignificant improvement in accuracy and other metrics compared with
xisting methods. Our CEEDNet was tested with various variations to an-
lyze the effect of model architecture and size. Extensive experiments
uggest that, like in other research fields, deep models for automatic EEG
iagnosis overwhelm the shallow models equipped with elaborately de-
igned preprocessing when given sufficient end-to-end learning condi-
ions. On the classification problems between normal, mci , and dementia

nd between normal and abnormal , the high ROC-AUC scores (0.9 and
.86, respectively) recorded by the best CEEDNet model demonstrates
13 
hat our method can lead potential patients to early diagnosis through
utomatic screening. In the future, we would like to advance the work
n three directions: i) scaling up the CAUEEG dataset, ii) introducing the
nsupervised/semi-supervised learning strategy, and iii) improving the
erformance of Transformer-based backbones. 
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ppendix A. CAUEEG dataset and evaluation tasks details 

Figs. A.1 and A.2 illustrate the preview of the JSON information
les for the CAUEEG dataset and its two evaluation tasks, respectively.
hese information files are attached to the dataset. 
Fig. A.1. Preview of CAUEEG dataset annotation. All the necessary 
information, including task description and diagnostic labels, is saved 
in the JSON file format. 

https://github.com/ipis-mjkim/caueeg-dataset
https://github.com/ipis-mjkim/caueeg-ceednet
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Fig. A.2. Preview of evaluation task annotations. All the necessary infor- 
mation, including task descriptions, data splits, and labels, is saved in the 
JSON file format for each evaluation task. 

Fig. A.3. Histogram of sequence duration 

in minutes for all EEG recordings in the 

CAUEEG dataset. The red vertical line repre- 
sents the mean length. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this ar- 
ticle.) 

 

a

Figs. A.3 and A.4 show the histograms of signal length and owner’s

ge of all EEG recordings in the CAUEEG dataset, respectively. 
14 
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Fig. A.4. Histogram of patients’ age for all 

EEG recordings in the CAUEEG dataset. The 
red vertical line denotes the mean age. (For in- 
terpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.) 
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ppendix B. Experimental details 

This section supplements the training details and experimental re-
ults of CEEDNet. The detailed hyperparameter settings for CEEDNet are
ummarized in Table B.1 . In this paper, we tried to train our CEEDNet
sing as various hyperparameter combinations as possible for each task
nd backbone. Thus, the hyperparameter settings shown in Table B.1 are
15 
ot necessarily optimal. The learning rate schedules considered for the
raining of CEEDNet are depicted in Fig. B.1 . Tables B.2 and B.3 provide
he detailed experimental results of those in Sections 4.2 and 4.3 , respec-
ively. Tables B.4 and B.5 also show the detailed evaluation results on
he no-overlap version of test sets, which are described in Section 2.4 . 
Fig. B.1. Learning rate schedules consid- 

ered for training the CEEDNet models. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.) 
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Table B.1 

Hyperparameter settings for training the CEEDNet models on CAUEEG-Dementia and CAUEEG-Abnormal . 

Hyperparmeters 1D-VGG-19 1D-ResNet-18 1D-ResNet-50 1D-ResNeXt-50 2D-VGG-19 2D-ResNet-18 2D-ResNet-50 2D-ResNeXt-50 ViT-B-16 

Crop length 2000 2000 1000 4000 4000 2000 2000 4000 12000 
Age signal usage 
type 

age-conv age-conv age-fc age-fc age-conv age-fc age-conv age-fc age-conv 

Photic channel usage × O O × × × × O ×
EKG channel usage O O × O O O O × O 

MWGN 1.10E-02 0.00E + 00 4.30E-03 4.02E-02 3.68E-03 3.23E-02 1.10E-02 5.63E-02 8.39E-02 
AWGN 8.12E-03 0.00E + 00 1.25E-02 3.75E-02 4.79E-02 7.46E-02 8.12E-03 1.04E-01 2.96E-02 
AWGN (age) 1.52E-03 0.00E + 00 1.22E-02 1.15E-01 3.11E-02 2.78E-02 1.52E-03 1.80E-02 1.34E-01 
MixUp 0.1 0.2 0.2 0.1 0.3 0.2 0.1 0.0 0.3 
DropOut 0.2930 0.3000 0.2689 0.2722 0.2015 0.4970 0.2930 0.0420 0.4234 
Weight decay 7.06E-02 4.39E-02 4.04E-05 4.82E-02 1.25E-02 1.34E-03 7.06E-02 1.59E-02 2.76E-02 
#FC layers 3 3 3 3 2 2 3 5 2 
Activation ReLU GELU GELU GELU GELU ReLU ReLU Mish GELU 
Minibatch size 256 512 192 256 128 192 256 192 48 
#Total train samples 1.00E + 08 1.00E + 08 3.20E + 07 5.00E + 07 1.00E + 08 3.20E + 07 1.00E + 08 3.20E + 07 1.00E + 08 
Base learning rate 4.69E-04 4.69E-04 1.42E-03 1.90E-03 8.48E-05 1.07E-03 4.69E-04 2.53E-03 3.18E-05 
Learning rate 
schedule 

cosine_decay_with_ 
warmup_half 

cosine_decay_with_ 
warmup_half 

constant_with_ 
twice_decay 

cosine_decay_with_ 
warmup_half 

constant_with_decay cosine_decay_with_ 
warmup_one_and_half 

cosine_decay_with_ 
warmup_half 

constant_with_ 
twice_decay 

constant_with_ 
twice_decay 

(a) CAUEEG-Dementia evaluation task 

Crop length 2000 3000 4000 3000 2000 3000 4000 1000 4000 
Age signal usage 
type 

age-conv age-fc age-fc age-conv age-conv age-conv age-fc age-conv age-conv 

Photic channel usage × O O O × O × O O 

EKG channel usage × O O × O × O × O 

MWGN 1.53E-02 1.32E-02 2.92E-02 7.95E-02 1.17E-02 2.85E-04 8.59E-02 8.42E-02 5.09E-02 
AWGN 1.13E-01 9.95E-02 1.16E-01 8.05E-02 5.69E-02 9.88E-02 1.75E-02 1.96E-02 1.14E-01 
AWGN (age) 1.30E-01 1.71E-01 9.64E-02 2.69E-01 1.78E-01 1.84E-01 1.35E-01 2.18E-01 9.66E-02 
MixUp 0.0 0.1 0.3 0.1 0.2 0.2 0.3 0.3 0.2 
DropOut 0.1393 0.4512 0.1559 0.0041 0.0049 0.3305 0.1144 0.1451 0.3886 
Weight decay 3.39E-02 1.44E-04 4.71E-02 2.86E-02 1.17E-02 9.32E-03 3.77E-02 2.98E-05 3.47E-02 
#FC layers 4 3 4 3 3 5 2 5 2 
Activation GELU ReLU GELU GELU ReLU GELU GELU GELU ReLU 
Minibatch size 512 256 320 256 256 192 128 64 48 
#Total train samples 4.00E + 07 4.00E + 07 4.00E + 07 4.00E + 07 1.00E + 08 4.00E + 07 1.00E + 08 4.00E + 07 1.00E + 08 
Base learning rate 6.75E-04 2.53E-03 1.33E-04 1.90E-03 1.70E-04 3.37E-03 3.29E-04 2.00E-04 8.80E-05 
Learning rate 
schedule 

constant_with_decay transformer_style constant_with_decay constant_with_decay linear_decay_ 
with_warmup 

transformer_style transformer_style constant_with_ 
twice_decay 

transformer_style 

(b) CAUEEG-Abnormal evaluation task 
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Table B.2 

Detailed experimental results on the CAUEEG-Dementia test set. TTA indicates the test-time augmentations technique of multiple random cropping. The best 
three scores are marked in bold. 

Method 

Model 
size 
(MiB) 

TTA 
Test 
accuracy 

Class-wise accuracy Sensitivity Specificity 

Normal MCI Dementia Normal MCI Dementia Normal MCI Dementia 

k-Nearest Neighbors (k = 5) 11848.7 36.80% 47.58% 58.46% 68.49% 74.00% 21.01% 11.99% 32.28% 79.96% 88.63% 

Random Forests (#trees = 2000) 2932.8 46.62% 71.12% 50.08% 72.34% 32.01% 82.00% 15.99% 91.24% 30.01% 93.28% 

Linear SVM 0.5 52.33% 73.47% 59.06% 72.14% 77.15% 39.44% 32.55% 71.11% 69.50% 86.25% 

Ieracitano-CNN 13.2 54.27% 70.86% 61.51% 76.17% 76.35% 37.14% 44.15% 67.35% 74.48% 87.58% 

CEEDNet 1D-VGG-19 77.2 64.00% 81.47% 68.50% 78.03% 77.07% 49.26% 64.09% 84.28% 78.74% 83.00% 

CEEDNet 1D-VGG-19 77.2 ✓ 67.11% 84.02% 70.67% 79.54% 79.66% 52.99% 67.17% 86.81% 80.08% 83.95% 

CEEDNet 1D-ResNet-18 43.6 65.93% 82.64% 70.00% 79.22% 83.56% 51.10% 59.38% 82.06% 80.06% 86.29% 

CEEDNet 1D-ResNet-18 43.6 ✓ 68.75% 84.26% 72.54% 80.69% 87.25% 54.26% 60.44% 82.34% 82.28% 87.91% 

CEEDNet 1D-ResNet-50 100.2 61.83% 79.95% 65.95% 77.77% 85.87% 45.81% 47.35% 76.17% 76.66% 88.61% 

CEEDNet 1D-ResNet-50 100.2 ✓ 67.00% 83.19% 70.00% 80.82% 93.36% 50.26% 50.04% 76.69% 80.51% 91.79% 

CEEDNet 1D-ResNeXt-50 98.2 65.53% 83.66% 68.72% 78.68% 72.46% 62.03% 59.87% 90.81% 72.28% 85.39% 

CEEDNet 1D-ResNeXt-50 98.2 ✓ 68.54% 85.30% 71.14% 80.63% 74.17% 66.28% 63.15% 92.41% 73.72% 86.86% 

CEEDNet 2D-VGG-19 77.1 68.26% 83.13% 71.45% 81.95% 91.48% 59.69% 45.15% 77.80% 77.71% 95.06% 

CEEDNet 2D-VGG-19 77.1 ✓ 70.18% 84.20% 73.39% 82.77% 92.61% 65.15% 43.56% 78.83% 77.78% 96.74% 

CEEDNet 2D-ResNet-18 43.7 63.51% 79.78% 68.78% 78.46% 89.63% 50.46% 42.02% 73.49% 78.54% 91.44% 

CEEDNet 2D-ResNet-18 43.7 ✓ 65.88% 80.98% 71.28% 79.51% 92.43% 54.32% 41.78% 73.66% 80.31% 92.96% 

CEEDNet 2D-ResNet-50 98.5 65.67% 79.68% 69.03% 82.63% 84.65% 53.41% 53.73% 76.50% 77.35% 92.93% 

CEEDNet 2D-ResNet-50 98.5 ✓ 67.21% 81.40% 69.18% 83.84% 87.24% 55.43% 53.07% 77.67% 76.50% 94.81% 

CEEDNet 2D-ResNeXt-50 99.1 64.47% 81.13% 67.59% 80.21% 88.07% 48.46% 50.63% 76.70% 77.78% 90.75% 

CEEDNet 2D-ResNeXt-50 99.1 ✓ 67.91% 83.35% 70.75% 81.73% 92.37% 51.38% 53.50% 77.59% 81.06% 91.79% 

CEEDNet ViT-B-16 343.6 61.30% 79.09% 67.35% 76.15% 87.93% 37.62% 53.10% 73.45% 83.17% 84.37% 

CEEDNet ViT-B-16 343.6 ✓ 66.18% 83.56% 69.55% 79.26% 97.04% 37.58% 58.22% 74.94% 86.57% 86.76% 

CEEDNet Ensemble 981.1 73.29% 87.73% 74.81% 84.04% 95.21% 58.90% 59.81% 82.96% 83.29% 92.67% 

CEEDNet Ensemble 981.1 ✓ 74.66% 88.61% 75.38% 85.32% 96.98% 59.09% 62.12% 83.27% 84.06% 93.59% 

Table B.3 

Detailed experimental results on the CAUEEG-Abnormal test set. TTA indi- 
cates the test-time augmentations technique of multiple random cropping. Since 
the CAUEEG-Abnormal is a binary classification task, sensitivity for normal is the 
same as the specificity for abnormal and vice versa. The best three scores are marked 
in bold. 

Method 

Model 
size 
(MiB) 

TTA 
Test 
accuracy 

Sensitivity 

Normal Abnormal 

K-Nearest Neighbors (K = 7) 14015.3 51.42% 59.00% 48.00% 

Random Forests (#trees = 2000) 1930.5 72.63% 10.00% 97.00% 

Linear SVM 0.3 68.00% 51.18% 76.60% 

Ieracitano-CNN 13.2 65.98% 52.26% 72.98% 

CEEDNet 1D-VGG-19 77.2 72.45% 51.65% 83.08% 

CEEDNet 1D-VGG-19 77.2 ✓ 74.28% 50.75% 86.30% 

CEEDNet 1D-ResNet-18 43.5 73.60% 46.78% 87.31% 

CEEDNet 1D-ResNet-18 43.5 ✓ 74.85% 46.96% 89.11% 

CEEDNet 1D-ResNet-50 100.7 74.11% 56.10% 83.32% 

CEEDNet 1D-ResNet-50 100.7 ✓ 76.37% 56.09% 86.74% 

CEEDNet 1D-ResNeXt-50 98.2 72.37% 46.65% 85.52% 

CEEDNet 1D-ResNeXt-50 98.2 ✓ 77.32% 47.93% 92.34% 

CEEDNet 2D-VGG-19 77.2 72.13% 57.76% 79.47% 

CEEDNet 2D-VGG-19 77.2 ✓ 75.39% 61.46% 82.52% 

CEEDNet 2D-ResNet-18 43.8 73.50% 63.29% 78.73% 

CEEDNet 2D-ResNet-18 43.8 ✓ 75.19% 65.95% 79.91% 

CEEDNet 2D-ResNet-50 98.5 73.06% 54.28% 82.66% 

CEEDNet 2D-ResNet-50 98.5 ✓ 74.96% 55.11% 85.10% 

CEEDNet 2D-ResNeXt-50 99.1 72.84% 57.73% 80.55% 

CEEDNet 2D-ResNeXt-50 99.1 ✓ 75.85% 59.98% 83.96% 

CEEDNet ViT-B-16 331.6 70.70% 36.31% 88.27% 

CEEDNet ViT-B-16 331.6 ✓ 72.70% 33.91% 92.52% 

CEEDNet Ensemble 969.9 79.12% 56.98% 90.44% 

CEEDNet Ensemble 969.9 ✓ 79.16% 57.19% 90.39% 
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Table B.4 

Detailed experimental results on the CAUEEG-Dementia no-overlap test set. The models used in Section 4.2 are re-evaluated on the no-overlap 

test set. TTA indicates the test-time augmentations technique of multiple random cropping. The best three scores are marked in bold. 

Method TTA 

Test 
accuracy 
(no-overlap) 

Class-wise accuracy Sensitivity Specificity 

Normal MCI Dementia Normal MCI Dementia Normal MCI Dementia 

Linear SVM 53.50% 74.41% 59.60% 72.98% 76.54% 41.84% 34.34% 73.05% 69.89% 85.49% 

Ieracitano-CNN 52.64% 69.52% 59.78% 75.98% 74.75% 37.42% 40.28% 66.20% 72.72% 87.52% 

CEEDNet 1D-VGG-19 61.79% 80.71% 66.83% 76.04% 74.34% 48.08% 62.41% 84.76% 77.69% 80.46% 

CEEDNet 1D-VGG-19 ✓ 65.01% 83.74% 68.49% 77.79% 77.29% 50.73% 66.91% 87.85% 78.77% 81.31% 

CEEDNet 1D-ResNet-18 66.51% 82.19% 71.08% 79.76% 83.88% 53.79% 57.97% 81.12% 81.09% 86.81% 

CEEDNet 1D-ResNet-18 ✓ 70.02% 83.87% 74.13% 82.04% 86.97% 57.61% 61.68% 81.89% 83.70% 88.63% 

CEEDNet 1D-ResNet-50 59.79% 78.43% 64.19% 76.95% 84.83% 44.73% 42.53% 74.36% 75.46% 88.08% 

CEEDNet 1D-ResNet-50 ✓ 64.44% 82.68% 67.69% 78.52% 93.97% 49.94% 39.23% 75.49% 77.96% 91.24% 

CEEDNet 1D-ResNeXt-50 64.81% 82.74% 68.42% 78.47% 68.79% 63.85% 59.94% 91.61% 71.06% 84.47% 

CEEDNet 1D-ResNeXt-50 ✓ 67.11% 83.90% 70.52% 79.80% 69.91% 67.45% 62.14% 92.80% 72.30% 85.51% 

CEEDNet 2D-VGG-19 67.32% 82.47% 71.40% 80.77% 91.41% 59.78% 40.29% 76.78% 78.12% 93.86% 

CEEDNet 2D-VGG-19 ✓ 70.13% 84.28% 74.16% 81.83% 92.97% 66.55% 39.18% 78.75% 78.56% 95.63% 

CEEDNet 2D-ResNet-18 61.71% 79.33% 67.93% 76.16% 90.03% 49.06% 35.64% 72.53% 78.85% 89.27% 

CEEDNet 2D-ResNet-18 ✓ 64.51% 81.18% 71.06% 76.79% 93.54% 54.42% 33.45% 73.31% 80.68% 90.81% 

CEEDNet 2D-ResNet-50 64.11% 78.58% 67.43% 82.21% 83.70% 51.63% 51.66% 75.32% 76.58% 92.09% 

CEEDNet 2D-ResNet-50 ✓ 65.94% 80.21% 67.96% 83.72% 85.91% 54.18% 51.82% 76.58% 75.93% 94.04% 

CEEDNet 2D-ResNeXt-50 62.50% 80.44% 65.25% 79.30% 88.26% 45.11% 47.59% 75.46% 76.92% 89.56% 

CEEDNet 2D-ResNeXt-50 ✓ 65.00% 82.44% 67.37% 80.19% 92.60% 45.76% 49.95% 75.98% 79.88% 89.97% 

CEEDNet ViT-B-16 60.34% 78.53% 66.99% 75.16% 86.59% 41.08% 47.47% 73.40% 81.99% 84.12% 

CEEDNet ViT-B-16 ✓ 65.44% 83.07% 69.59% 78.23% 96.43% 41.64% 51.86% 74.56% 85.77% 86.76% 

CEEDNet Ensemble 73.96% 89.03% 75.40% 83.50% 96.73% 60.97% 57.23% 84.13% 83.75% 91.99% 

CEEDNet Ensemble ✓ 76.66% 91.21% 76.88% 85.22% 99.03% 63.58% 60.68% 86.24% 84.58% 93.16% 

Table B.5 

Detailed experimental results on the CAUEEG-Abnormal no-overlap test set. 

The models used in Section 4.3 are re-evaluated on the no-overlap test set. TTA 

indicates the test-time augmentations technique of multiple random cropping. Since 
the CAUEEG-Abnormal is a binary classification task, sensitivity for normal is the 
same as the specificity for abnormal and vice versa. The best three scores are marked 
in bold. 

Method TTA 

Test 
accuracy 
(no-overlap) 

Sensitivity 

Normal Abnormal 

Linear SVM 66.02% 43.99% 77.34% 

Ieracitano-CNN 63.49% 49.14% 70.87% 

CEEDNet 1D-VGG-19 68.97% 46.96% 80.28% 

CEEDNet 1D-VGG-19 ✓ 69.61% 43.38% 83.10% 

CEEDNet 1D-ResNet-18 71.40% 41.68% 86.68% 

CEEDNet 1D-ResNet-18 ✓ 72.78% 41.32% 88.94% 

CEEDNet 1D-ResNet-50 71.37% 51.50% 81.59% 

CEEDNet 1D-ResNet-50 ✓ 73.65% 50.86% 85.36% 

CEEDNet 1D-ResNeXt-50 68.58% 40.81% 82.86% 

CEEDNet 1D-ResNeXt-50 ✓ 73.71% 41.22% 90.40% 

CEEDNet 2D-VGG-19 68.74% 53.27% 76.69% 

CEEDNet 2D-VGG-19 ✓ 71.79% 56.51% 79.64% 

CEEDNet 2D-ResNet-18 68.99% 58.73% 74.27% 

CEEDNet 2D-ResNet-18 ✓ 70.16% 60.43% 75.15% 

CEEDNet 2D-ResNet-50 70.10% 46.24% 82.37% 

CEEDNet 2D-ResNet-50 ✓ 71.72% 45.97% 84.94% 

CEEDNet 2D-ResNeXt-50 69.44% 51.85% 78.48% 

CEEDNet 2D-ResNeXt-50 ✓ 72.28% 53.78% 81.78% 

CEEDNet ViT-B-16 69.32% 33.57% 87.69% 

CEEDNet ViT-B-16 ✓ 71.40% 31.46% 91.93% 

CEEDNet Ensemble 75.46% 47.40% 89.88% 

CEEDNet Ensemble ✓ 75.77% 47.03% 90.54% 

A

 

w  

F

ppendix C. Channel-wise occlusion sensitivity analysis 

The results of the occlusion sensitivity tests performed in a channel-
ise manner are shown in Figs. C.1–C.3 on CAUEEG-Dementia and in
igs. C.4 and C.5 on CAUEEG-Abnormal. 
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Fig. C.1. Channel-wise occlusion sensitivity analysis for the normal class of the CEEDNet 2D-VGG-19 model on the CAUEEG-Dementia training set. During 
classification, the input time-frequency feature maps were occluded in sequence by channel by putting a sliding rectangle whose width and height are quarters of 
those of the input. The titles of each subfigure ( e.g ., Fp1) denote that the occlusion box was moved in that channel. These results were generated by averaging all 
results for normal in the training set. The class score for the correct class is visualized in color. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. C.2. Channel-wise occlusion sensitivity analysis for the mci class of the CEEDNet 2D-VGG-19 model on the CAUEEG-Dementia training set. During 
classification, the input time-frequency feature maps were occluded in sequence by channel by putting a sliding rectangle whose width and height are quarters of 
those of the input. The titles of each subfigure ( e.g ., Fp1) denote that the occlusion box was moved in that channel. These results were generated by averaging all 
results for mci in the training set. The class score for the correct class is visualized in color. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. C.3. Channel-wise occlusion sensitivity analysis for the dementia class of the CEEDNet 2D-VGG-19 model on the CAUEEG-Dementia training set. During 
classification, the input time-frequency feature maps were occluded in sequence by channel by putting a sliding rectangle whose width and height are quarters of 
those of the input. The titles of each subfigure ( e.g ., Fp1) denote that the occlusion box was moved in that channel. These results were generated by averaging all 
results for dementia in the training set. The class score for the correct class is visualized in color. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. C.4. Channel-wise occlusion sensitivity analysis for the normal class of the CEEDNet 2D-VGG-19 model on the CAUEEG-Abnormal training set. During 
classification, the input time-frequency feature maps were occluded in sequence by channel by putting a sliding rectangle whose width and height are quarters of 
those of the input. The titles of each subfigure ( e.g ., Fp1) denote that the occlusion box was moved in that channel. These results were generated by averaging all 
results for normal in the training set. The class score for the correct class is visualized in color. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. C.5. Channel-wise occlusion sensitivity analysis for the abnormal class of the CEEDNet 2D-VGG-19 model on the CAUEEG-Abnormal training set. 

During classification, the input time-frequency feature maps were occluded in sequence by channel by putting a sliding rectangle whose width and height are 
quarters of those of the input. The titles of each subfigure ( e.g ., Fp1) denote that the occlusion box was moved in that channel. These results were generated by 
averaging all results for abnormal in the training set. The class score for the correct class is visualized in color. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

R

A  

 

 

A  

 

A  

B  

B  

 

B  

 

B  

 

C  

 

C  

 

C  

C  

 

L  

D  

 

 

D  

 

 

F  

 

 

F  

F  

 

 

F  

 

G  

 

G  

H  

 

H  

H  

 

I  

 

 

I  

 

I  

 

J  

 

J  

 

 

L  

 

L  

M  

M  

 

 

 

M  

 

 

M  

M  

 

eferences 

hn, H.-J., Chin, J., Park, A., Lee, B.H., Suh, M.K., Seo, S.W., Na, D.L., 2010. Seoul neu-
ropsychological screening battery-dementia version (SNSB-d): a useful tool for assess-
ing and monitoring cognitive impairments in dementia patients. J. Korean Med. Sci.
25 (7), 1071–1076. doi: 10.3346/jkms.2010.25.7.1071 . 

l-Qazzaz, N.K., Ali, S.H.B., Ahmad, S.A., Chellappan, K., Islam, M., Escudero, J., et al.,
2014. Role of EEG as biomarker in the early detection and classification of dementia.
Sci. World J. 2014. doi: 10.1155/2014/906038 . 

lhussein, M., Muhammad, G., Hossain, M.S., 2019. Eeg pathology detection based on
deep learning. IEEE Access 7, 27781–27788. doi: 10.1109/ACCESS.2019.2901672 . 

a, J. L., Kiros, J. R., Hinton, G. E., 2016. Layer normalization. arXiv preprint
arXiv:1607.06450 . 10.48550/arXiv.1607.06450. 

ajpai, R., Yuvaraj, R., Prince, A.A., 2021. Automated EEG pathology detection based
on different convolutional neural network models: Deep learning approach. Comput.
Biol. Med. 133, 104434. doi: 10.1016/j.compbiomed.2021.104434 . 

i, X., Wang, H., 2019. Early Alzheimer’s disease diagnosis based on EEG spectral images
using deep learning. Neural Netw. 114, 119–135. doi: 10.1016/j.neunet.2019.02.005 .

rown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot learners.
Adv. Neural Inf. Process. Syst. 33, 1877–1901. doi: 10.48550/arXiv.2005.14165 . 

assani, R., Estarellas, M., San-Martin, R., Fraga, F.J., Falk, T.H., 2018. Systematic review
on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment.
Dis. Markers 2018. doi: 10.1155/2018/5174815 . 

aviness, J.N., Hentz, J.G., Belden, C.M., Shill, H.A., Driver-Dunckley, E.D., Sab-
bagh, M.N., Powell, J.J., Adler, C.H., 2015. Longitudinal EEG changes correlate with
cognitive measure deterioration in Parkinson’s disease. J. Parkinson’s Dis. 5 (1), 117–
124. doi: 10.3233/JPD-140480 . 

ortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20 (3), 273–297.
doi: 10.1007/BF00994018 . 

sukly, G., Sirály, E., Fodor, Z., Horváth, A., Salacz, P., Hidasi, Z., Csibri, E., Rudas, G.,
Szabó, A., 2016. The differentiation of amnestic type MCI from the non-amnestic types
by structural MRI. Front. Aging Neurosci. 8, 52. doi: 10.3389/fnagi.2016.00052 . 

opez de Diego, S.I., 2017. Automated interpretation of abnormal adult electroencephalo-
grams. Temple University. Libraries Ph.D. thesis . 

osovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al., 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 .
10.48550/arXiv.2010.11929. 

ubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J.,
Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., et al., 2007. Research criteria for
the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet
Neurol. 6 (8), 734–746. doi: 10.1016/S1474-4422(07)70178-3 . 

arina, F.R., Emek-Sava ş , D.D., Rueda-Delgado, L., Boyle, R., Kiiski, H., Yener, G., Whe-
lan, R., 2020. A comparison of resting state EEG and structural MRI for classify-
ing Alzheimer’s disease and mild cognitive impairment. NeuroImage 215, 116795.
doi: 10.1016/j.neuroimage.2020.116795 . 

irst, M.B., Pincus, H.A., 2002. The DSM-IV text revision: rationale and potential impact
on clinical practice. Psychiatr. Serv. 53 (3), 288–292. doi: 10.1176/appi.ps.53.3.288 . 

iscon, G., Weitschek, E., Cialini, A., Felici, G., Bertolazzi, P., De Salvo, S., Bramanti, A.,
Bramanti, P., De Cola, M.C., 2018. Combining EEG signal processing with supervised
methods for Alzheimer’s patients classification. BMC Med. Inf. Decis. Mak. 18 (1),
1–10. doi: 10.1186/s12911-018-0613-y . 
21 
ix, E., Hodges, J.L., 1989. Discriminatory analysis. nonparametric discrimination: Consis-
tency properties. Int. Stat. Rev./Revue Internationale de Statistique 57 (3), 238–247.
doi: 10.2307/1403797 . 

emein, L.A.W., Schirrmeister, R.T., Chrabaszcz, P., Wilson, D., Boedecker, J., Schulze-
Bonhage, A., Hutter, F., Ball, T., 2020. Machine-learning-based diagnostics of EEG
pathology. NeuroImage 220, 117021. doi: 10.1016/j.neuroimage.2020.117021 . 

randini, M., Bagli, E., Visani, G., 2020. Metrics for multi-class classification: an overview.
arXiv preprint arXiv:2008.05756 . 10.48550/arXiv.2008.05756. 

e, K., Zhang, X., Ren, S., Sun, J., 2016. Identity mappings in deep residual net-
works. In: European Conference on Computer Vision. Springer, pp. 630–645.
doi: 10.1007/978-3-319-46493-0_38 . 

endrycks, D., Gimpel, K., 2016. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415 . 

o, T.K., 1995. Random decision forests. In: Proceedings of 3rd international conference
on document analysis and recognition, Vol. 1. IEEE, pp. 278–282. doi: 10.1109/IC-
DAR.1995.598994 . 

eracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C., 2019. A con-
volutional neural network approach for classification of dementia stages based
on 2D-spectral representation of EEG recordings. Neurocomputing 323, 96–107.
doi: 10.1016/j.neucom.2018.09.071 . 

eracitano, C., Mammone, N., Hussain, A., Morabito, F.C., 2020. A novel multi-modal
machine learning based approach for automatic classification of EEG recordings in
dementia. Neural Netw. 123, 176–190. doi: 10.1016/j.neunet.2019.12.006 . 

offe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning.
PMLR, pp. 448–456 . http://proceedings.mlr.press/v37/ioffe15.html 

ahng, S., Na, D.L., Kang, Y., 2015. Constructing a composite score for the seoul neuropsy-
chological screening battery-core. Dementia Neurocognit. Disord. 14 (4), 137–142.
doi: 10.12779/dnd.2015.14.4.137 . 

elic, V., Johansson, S.E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., Winblad, B.,
Wahlund, L.O., 2000. Quantitative electroencephalography in mild cognitive impair-
ment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol.
Aging 21 (4), 533–540. doi: 10.1016/S0197-4580(00)00153-6 . 

ivingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C.,
Burns, A., Cohen-Mansfield, J., Cooper, C., et al., 2020. Dementia prevention, inter-
vention, and care: 2020 report of the lancet commission. Lancet 396 (10248), 413–
446. doi: 10.1016/S0140-6736(20)30367-6 . 

oshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 . 

alek, N., Baker, M.R., Mann, C., Greene, J., 2017. Electroencephalographic markers in
dementia. Acta Neurol. Scand. 135 (4), 388–393. doi: 10.1111/ane.12638 . 

cBride, J.C., Zhao, X., Munro, N.B., Smith, C.D., Jicha, G.A., Hively, L., Broster, L.S.,
Schmitt, F.A., Kryscio, R.J., Jiang, Y., 2014. Spectral and complexity analysis of scalp
EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Com-
put. Methods Programs Biomed. 114 (2), 153–163. doi: 10.1016/j.cmpb.2014.01.019 .

ichaud, T.L., Su, D., Siahpush, M., Murman, D.L., 2017. The risk of incident
mild cognitive impairment and progression to dementia considering mild cogni-
tive impairment subtypes. Demen. Geriatr. Cognit. Disorders Extra 7 (1), 15–29.
doi: 10.1159/000452486 . 

isra, D., 2019. Mish: a self regularized non-monotonic neural activation function. 4,
1048550. arXiv:1908.08681 . 

usaeus, C.S., Engedal, K., Høgh, P., Jelic, V., Mørup, M., Naik, M., Oeksengaard, A.-R.,
Snaedal, J., Wahlund, L.-O., Waldemar, G., et al., 2018. Eeg theta power is an early

https://doi.org/10.3346/jkms.2010.25.7.1071
https://doi.org/10.1155/2014/906038
https://doi.org/10.1109/ACCESS.2019.2901672
http://arxiv.org/abs/arXiv:1607.06450
https://doi.org/10.1016/j.compbiomed.2021.104434
https://doi.org/10.1016/j.neunet.2019.02.005
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1155/2018/5174815
https://doi.org/10.3233/JPD-140480
https://doi.org/10.1007/BF00994018
https://doi.org/10.3389/fnagi.2016.00052
http://refhub.elsevier.com/S1053-8119(23)00200-8/sbref0011
http://arxiv.org/abs/arXiv:2010.11929
https://doi.org/10.1016/S1474-4422(07)70178-3
https://doi.org/10.1016/j.neuroimage.2020.116795
https://doi.org/10.1176/appi.ps.53.3.288
https://doi.org/10.1186/s12911-018-0613-y
https://doi.org/10.2307/1403797
https://doi.org/10.1016/j.neuroimage.2020.117021
http://arxiv.org/abs/arXiv:2008.05756
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/arXiv:1606.08415
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1016/j.neucom.2018.09.071
https://doi.org/10.1016/j.neunet.2019.12.006
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.12779/dnd.2015.14.4.137
https://doi.org/10.1016/S0197-4580(00)00153-6
https://doi.org/10.1016/S0140-6736(20)30367-6
http://arxiv.org/abs/arXiv:1711.05101
https://doi.org/10.1111/ane.12638
https://doi.org/10.1016/j.cmpb.2014.01.019
https://doi.org/10.1159/000452486
http://arxiv.org/abs/arXiv:1908.08681


M.-j. Kim, Y.C. Youn and J. Paik NeuroImage 272 (2023) 120054 

 

N  

P  

 

P  

 

 

P  

 

P  

 

 

R  

 

R  

 

S  

 

S  

 

 

S  

 

S  

S  

 

S  

 

W  

X  

 

Y  

 

Z  

 

Z  
marker of cognitive decline in dementia due to Alzheimer’s disease. J. Alzheimer’s
Dis. 64 (4), 1359–1371. doi: 10.3233/JAD-180300 . 

air, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann machines.
In: Icml . https://icml.cc/Conferences/2010/papers/432.pdf 

ark, M., Moon, W.-J., 2016. Structural MR imaging in the diagnosis of Alzheimer’s dis-
ease and other neurodegenerative dementia: current imaging approach and future
perspectives. Korean J. Radiol. 17 (6), 827–845. doi: 10.3348/kjr.2016.17.6.827 . 

aszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. PyTorch: an imperative style,
high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32.
doi: 10.48550/arXiv.1912.01703 . 

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: machine learning
in python. J. Mach. Learn. Res. 12, 2825–2830. doi: 10.48550/arXiv.1201.0490 . 

erez-Valero, E., Lopez-Gordo, M.A., Morillas, C., Pelayo, F., Vaquero-Blasco, M.A.,
2021. A review of automated techniques for assisting the early detection of
Alzheimer’s disease with a focus on EEG. J. Alzheimer’s Dis. 80 (4), 1363–1376.
doi: 10.3233/JAD-201455 . 

oy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J., 2019. Deep
learning-based electroencephalography analysis: a systematic review. J. Neural Eng.
16 (5), 051001. doi: 10.1088/1741-2552/ab260c . 

ussakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al., 2015. ImageNet large scale visual recognition chal-
lenge. Int. J. Comput. Vis. 115 (3), 211–252. doi: 10.1007/s11263-015-0816-y . 

chuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta, A., Coombes,
T., Jitsev, J., Komatsuzaki, A., 2021. LAION-400M: open dataset of clip-filtered 400
million image-text pairs. 10.48550/arXiv. 2111.02114 . 
22 
enior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C.,
Ž ídek, A., Nelson, A.W.R., Bridgland, A., et al., 2020. Improved protein struc-
ture prediction using potentials from deep learning. Nature 577 (7792), 706–710.
doi: 10.1038/s41586-019-1923-7 . 

harma, N., Kolekar, M.H., Jha, K., Kumar, Y., 2019. Eeg and cognitive biomark-
ers based mild cognitive impairment diagnosis. Irbm 40 (2), 113–121.
doi: 10.1016/j.irbm.2018.11.007 . 

imonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale im-
age recognition. 10.48550/arXiv.1409.1556. 

onoda, S., Murata, N., 2017. Neural network with unbounded activation func-
tions is universal approximator. Appl. Comput. Harmon. Anal. 43 (2), 233–268.
doi: 10.1016/j.acha.2015.12.005 . 

rivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (1),
1929–1958 . http://jmlr.org/papers/v15/srivastava14a.html 

eller, J., Budson, A., 2018. Current understanding of Alzheimer’s disease diagnosis and
treatment. F1000Research 7. doi: 10.12688/f1000research.14506.1 . 

ie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1492–1500. doi: 10.1109/CVPR.2017.634 . 

 ı ld ı r ı m, O., Baloglu, U.B., Acharya, U.R., 2020. A deep convolutional neural network
model for automated identification of abnormal EEG signals. Neural Comput. Appl.
32 (20), 15857–15868. doi: 10.1007/s00521-018-3889-z . 

eiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional net-
works. In: European Conference on Computer Vision. Springer, pp. 818–833.
doi: 10.1007/978-3-319-10590-1_53 . 

hang, H., Cisse, M., Dauphin, Y. N., Lopez-Paz, D., 2017. mixup: Beyond empirical risk
minimization. 10.48550/arXiv. 1710.09412 . 

https://doi.org/10.3233/JAD-180300
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.3348/kjr.2016.17.6.827
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.3233/JAD-201455
https://doi.org/10.1088/1741-2552/ab260c
https://doi.org/10.1007/s11263-015-0816-y
arxiv:2111.02114
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1016/j.irbm.2018.11.007
https://doi.org/10.1016/j.acha.2015.12.005
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.12688/f1000research.14506.1
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1007/s00521-018-3889-z
https://doi.org/10.1007/978-3-319-10590-1_53
arxiv:1710.09412

	Deep learning-based EEG analysis to classify normal, mild cognitive impairment, and dementia: Algorithms and dataset
	1 Introduction
	2 Dataset and evaluation tasks
	2.1 Signal acquisition and data preparation
	2.2 Dataset statistics
	2.3 Evaluation tasks
	2.3.1 CAUEEG-Dementia
	2.3.2 CAUEEG-Abnormal

	2.4 Evaluation methodology

	3 Deep neural networks for diagnostic classification
	3.1 Model architecture
	3.2 Preprocessing and data augmentation
	3.3 Training

	4 Results and discussion
	4.1 Experiments settings
	4.2 Evaluation on CAUEEG-Dementia
	4.3 Evaluation on CAUEEG-Abnormal
	4.4 Epoch-based classification
	4.5 Patient overlap exclusion
	4.6 Basic operation dimension and ensemble
	4.7 Ablation study
	4.8 Impact of artifact events
	4.9 Occlusion sensitivity analysis

	5 Conclusion
	Data and code availability statement
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	Appendix A CAUEEG dataset and evaluation tasks details
	Appendix B Experimental details
	Appendix C Channel-wise occlusion sensitivity analysis
	References


